1. 緒 言

合成樹脂の切削加工における特異現象がしばしば見られ、その原因として、合成樹脂の分子量や、ガラス状態などが考えられる。このため、合成樹脂の切削にあたっては、その特性を考慮することが必要である。

合成樹脂の切削加工は、合成樹脂の特性と関連する重要な工房であり、その目的として、合成樹脂の精度向上があげられる。したがって、金属切削では無視されるような小さな工具摩耗であっても、合成樹脂の切削ではこれを無視することができない場合が多い。

著者らは、さらに、合成樹脂の切削における工具摩耗について、高速度鋼工具および各種超硬合金工具のいずれも、被削材種の相違によって、摩耗形態および摩耗量に差異を生じ、特に高速度鋼工具の摩耗が超硬合金工具のそれに比べ、はるかに大きいことを確かめた。さらに、高速度鋼工具の摩耗が、切削方向の曲面を考慮して進展し、特に硬質化ビニール樹脂の切削においては、切削初期から切削方向に丸みが生じ、切削の進行とともにその切刃丸みが著しく大きくなり、切削刃先端を生ずる、いわゆるデタメ摩耗やフランク摩耗の明確な区別が認められないことを確かめた。

高速度工具の摩耗が、超硬合金工具のそれに比べ大きいことは認められているが、それは定性的にはいわゆる丸みと摩耗形態として、また摩耗形態については摩耗断面形状の定性的な検討結果として得られたものであり、摩耗断面の詳細な検討や切削摩耗量以外の摩耗の定義もはなされていない。

摩耗が工具刃先にいかなる形状変化をもたらし、それが切断面にどのような影響をおよぼすかを検討することによって、工具材種、工具形状、切削条件などを選択する根拠を得るための手がかりが得られる

2. 切刃丸み形状の測定について

切刃丸みが完全に円弧であるか否かを含め、いかなる形状を呈しているかを詳細にしらべたために、切刃の摩耗を切刃断面形状として直接観察する方式を採った。そのためには、摩耗した部分を切刃に直接に写し出しなければならないが、摩耗前および摩耗後における形状を、所定の切削時間ごとに追跡観察する関係上、この場合は切刃の切断は不適用である。そこで、あらかじめ2分割された組合せパイト（以後2分割パイトと呼ぶ）の合成切刃部の摩耗形状を、パイトの側面から観察する方式を採った。

これは、既報および未報の切削において実験したに比較して用いられた方式と同様のものである。

3. 実 験 方 法

3.1 工具摩耗形状に関する実験

工具摩耗を断面形状として詳細に観察する目的で、図1に示すような高速度鋼付刃2分割パイトを用いた。2個の刃付付刃の合せ面を研削後塩ビラップ仕上げし、ガイドビンおよびボルトによって固定したもので、合せ面の切刃部が切削面の中央に向かうように切削が行なわれる。
ここで特に重要なことは、仕上げ後の切刃先端が十分銳利であること、および2分割ベイトの合せ部の両切刃が完全に一致していることである。そこで、パイヨのすくい面および誘導面の仕上には、600ダイヤモンドを用いて入念に研削し、その後パイヨを分解して、各切刃を顕微鏡で観察して、刃先が銳利であることを確かめた。また切刃の研削仕上げでは、パイヨを組み合わせた状態で研削が行なわれるのに対し、両切刃は完全に一致しているが、研削仕上がりおよび所定の切削時間ごとにパイヨを分解して刃先形状を観測するので、再び組み合わせる際は、その部を顕微鏡によって両切刃が完全に一致していることを確かめてから切削にとりかかることを留意した。

切削方向は旋盤によるパイヨ状被削材端面の二面元切削方式とした。工具には高速鋼第3種（JIS：SKH 3、HRC62）を、被削材には硬質セラミック樹脂を、それぞれ用いた。表1に硬質セラミック樹脂の一般性質を示し、表1からわかるように、硬質セラミック樹脂は金属に比べて一般に弾性係数が小さく、熱伝導率が小さい。現状熱膨張係数が大きい。硬質セラミック樹脂は一般の金属材料に比べて脆性に乏しく、また被削材の形状がパイヨ状であるため、被削材を直接旋盤に取付けず、被削材保持具を用いて角度の変形を起こさないように考慮した。本実験に用いた切削条件を表2に示す。

工具摩耗形状の測定に関しては、所定の切削時間ごとにパイヨを分解し、切刃の側面形状（組合せた状態では切刃断面形状に相当する）を顕微鏡写真により、記録フィルムを伸縮させて拡大して詳細にしらべた。

3-2 摩耗形状と切削機構に関する実験 まず、工具摩耗形状と切りくず形状および切削断面形状の関係をしらべるために、表2の条件を用いて切削試験を行い、所定の切削時間ごとに工具摩耗を対比させて切りくず断面形状および切削断面をしらべた。

切りくずは長方形に鋭利な刃物で切断し、その断面形状を顕微鏡で観察し、また切削断面は顕微鏡でその表面を観察するとともに、切削方向のあらさを触針式表面形状検査機によって測定した。測定値は、この場合小さいことが望ましく、ここでは0.4 gとした。

つきに工具摩耗形状と切削抵抗の関係をしらべるために、工具摩耗形状の幾何学的解析結果から、あらかじめ円弧状の丸みをつけた切刃より、表3の条件で切削を行ない、丸み半径と切削抵抗の関係を求めた。

切刃丸みは、万能工具研削機で用い600ダイヤモンドとして円弧状に研削し、工具顕微鏡で丸み半径を測定した。

切削抵抗は軽切削用工具動力計と電磁オシログラフを用いて測定記録した。

なお切削方式は、3-1節と同様、旋盤によるパイヨ状被削材端面の二次元切削である。

4. 実験結果および考察

4-1 工具摩耗形状について 鋼などの金属切削における工具摩耗は、一般にすくい面摩耗と逃げ面摩耗にあらゆるように区別されることがよく知られている。そしてすくい面摩耗はクレータ摩耗として、また逃げ面摩耗は切削抵抗に相当する切削面荷重に支配されて切刃がすくい面摩耗を生じる。またさらに、摩耗が切削抵抗により高速度鋼パイヨ状工具の摩耗過程を切削断面形状として観察し、切削抵抗に逃げ面摩耗が進行し、その後すくい面摩耗が現われる事柄を確かめている。

表1 硬質セラミック樹脂の一般性質

引張強さ kg/cm²	350〜640
压縮強さ kg/cm²	570〜600
弾性係数 kg/cm²	(2.5〜4)×10⁴
かたさ ホンダヤウェル	M40〜50
熱傳導率 cal/cm·s·°C	(3.0〜7.0)×10⁴
熱膨張係数 1/°C	(5〜18.5)×10⁻⁵

図1 摩耗断面観察用2分割パイヨ

表2 切削条件（1）

<table>
<thead>
<tr>
<th>内径 D mm</th>
<th>切削幅 b mm</th>
<th>切削速度 v m/min</th>
<th>切削荷重 f₁/₁₀₀ N</th>
<th>すくい角 α deg</th>
<th>逃げ角 β deg</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>5</td>
<td>100</td>
<td>0.06</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

表3 切削条件（2）

<table>
<thead>
<tr>
<th>切削幅 b mm</th>
<th>切削速度 v m/min</th>
<th>切削荷重 f₁/₁₀₀ N</th>
<th>すくい角 α deg</th>
<th>逃げ角 β deg</th>
<th>逃げ角 逃げ角</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>100</td>
<td>0.05, 0.06, 0.113, 0.118</td>
<td>20</td>
<td>10</td>
<td>0.04, 0.10, 0.16</td>
</tr>
</tbody>
</table>
削の場合は異なり、図2のように切刃は切削初期から丸みを呈し、摩耗の進行は切刃丸みの増大としてなされることが認められる。なお、すくい角 $\alpha = 20^\circ$ の切刃摩耗の断面写真を図10（A）に示してある。

この丸みが円弧であるか否かを判定するために、丸みの形状を幾何学的に内接円法によって検討した。すなわち、丸み形状の任意の3点を通る円を描き、この円が丸み上にのるかどうかを検討し、さらに円の中心がバイトくさび角中心線に対してどの位置にあいかをしらべた。その結果を図3および4に示す。ここで図3は $\alpha = 10^\circ$、図4は $\alpha = 20^\circ$ の場合である。いずれも切刃丸みには小さなおとうとが存在するが内接円とよく一致し、また円の中心はしばしばバイトくさび角中心線上にのっていることがわかる。しかし、この円弧はもとの（摩耗前の）すくい面および逃げ面よりわずかに内側に寄っている。すなわち摩耗によって生じた切刃の丸みは、厳密にはもとのすくい面および逃げ面に接する円弧として示されない（これについてはあとで改訳する）が、摩耗の大部分は同一半径（r）の円弧であり、摩耗の進行とともにすくい中心線上における角をもつ円弧として増大しているといえる。

この丸みを近似的にもとのすくい面と逃げ面に内接する円弧と考えれば、図5からバイトくさび角中心線上の刃先後退量（V_t）と切刃丸み半径（r）には次式の関係がある。

$$ V_t = r \left(\csc \left(\frac{\pi}{4} \cdot \frac{\alpha + \beta_r}{2} \right) - 1 \right) \quad (1) $$

ここで、α: すくい角 deg, β_r: 逃げ角 deg。

式（1）において

$$ \left(\csc \left(\frac{\pi}{4} \cdot \frac{\alpha + \beta_r}{2} \right) - 1 \right) = k_0 \quad (2) $$

とおけば、式（1）は次のように簡単な式で表わされる。

$$ V_t = k_0 r \quad (3) $$

ここで k_0 は α および β_r によって定まる係数である。

したがって、$\alpha = 10^\circ$, $\beta_r = 10^\circ$ の場合は $k_0 = 0.743$ となり V_t と r の関係は

$$ V_t = 0.743 r \quad (4) $$

また、$\alpha = 20^\circ$, $\beta_r = 10^\circ$ では $k_0 = 1$ となり V_t と r の関係は

$$ V_t = r \quad (5) $$

で表わされる。図3および4の内接円法によって求められたバイトくさび角中心線上の刃先後退量実測値（V_t'）および切刃丸み半径（r）を、切削時間との関
図6 切刃丸み半径、刃先後退量（1）

図7 切刃丸み半径、刃先後退量（2）

図8 r と V_t, V'_t の関係（1）

図9 r と V_t, V'_t の関係（2）

表4 k の値

<table>
<thead>
<tr>
<th>切削時間 T_c min</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.833</td>
</tr>
<tr>
<td>10</td>
<td>0.832</td>
</tr>
<tr>
<td>20</td>
<td>0.850</td>
</tr>
<tr>
<td>30</td>
<td>0.811</td>
</tr>
</tbody>
</table>

（a）α=10°の場合

<table>
<thead>
<tr>
<th>切削時間 T_c min</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1.1542</td>
</tr>
<tr>
<td>10</td>
<td>1.063</td>
</tr>
<tr>
<td>20</td>
<td>1.132</td>
</tr>
<tr>
<td>30</td>
<td>1.145</td>
</tr>
<tr>
<td>40</td>
<td>1.125</td>
</tr>
<tr>
<td>50</td>
<td>1.089</td>
</tr>
</tbody>
</table>

（b）α=20°の場合
した状態で得られた値とすれば、そのときのすくい角（α_0）および逃げ角（β_e）が得られ、これらを条件として与えられたすくい角（α）および逃げ角（β_e）の差（Δα、Δβ）を求めることができる。

まず、α=10° の場合、k_0=0.829 において式 (2) から α_0+β_e=23°40’ が得られる。ここで α=β=10° であり、また図3から明らかのように、円弧の中心はすくい角中心線上にあるから、α_0=β_e となる。したがって角度差は次のようになる。

Δα=α_0−α=1°50’, Δβ=β_0−β=1°50’

また、α=20° の場合も同様にして、k_0=1.123 において α_0+β_e=33°40’ となる。α=2β_e=20° であるが、図4から円弧中心はすくい角中心線上にあるから Δα=Δβ としてよく。したがって Δα=Δβ=1°50’ となる。これらの角度差は薄いのすくい角によって非常に小さい値である。

以上の結果から、工具摩耗はもとのすくい面と逃げ面に接する円弧として進行すると見なすことができると、

4.2 工具摩耗と切削機構の関係について

4.2.1 切りくず形状 すくい角 α=20°、切削厚さ t_1=0.06 mm/rev および削り速度 v=100 mm/min の条件における硬質塩化ビニル樹脂の切りくずは、せん断ひずみの小さな完全流れ形の形状を呈しているが、工具摩耗が円弧状に増大するため、その切りくずの形状は大きく変化する。

図10(B)は、工具摩耗に対応する切りくず断面の形状を示したものである。工具摩耗のほとんど生じていない切削初期においては、非常に大きなすくい面が完全流れ形の切りくずであるが、工具摩耗の増大にともない、切りくず表面に隆起が生じ、工具摩耗がさらに増大すると、その隆起は大きくなっている。これは、工具摩耗が刃先丸みの増大として成長するために、切りくず分離点近傍の応力集中度が低下するとともに、刃先丸み半径が切削厚さの値に近づき、被削材の塑性変形領域が拡大されて刃先前方における「より立ち上がり」を助長する。その際、せん断面でのせん断ひずみは増加し、ついには、「大きなすくい面」を伴うことになる。これが周期的に繰返されることによって、生成された切りくず中に残留するせん断ひずみが、銳利な刃先によって生成されたそれよりも、大きくてかつ周期的な変動を呈していくものと考えられる。しかし、すくい角の小さな、かつ切刃丸みのない、正常なパイトと切削したときの切りくず断面に見られるようなせん断破壊面は、ここでは認められない。

4.2.2 切削面の性状 切削面は被削材の一部が切刃によって切りくずとして分離されたときに生成されるものであるから、切りくず分離時の変形の程度によって切削面の性状は変化するはずである。図10(C)は、工具摩耗の進行に対応する切削面の顕微鏡写真である。摩耗の小さい領域では、切削面はならった状態にあるが、摩耗の増大にともない切削面表層部の切削方向への流動が大きくなり、その流動は間欠的に生じており、切削面がしだいに荒れてくるのが認められ、切りくず形状の変化もよく対応している。この流動には、丸みをもった刃先によって引き起こされる。切りくず分離の際の大きな塑性流動のほかに、工具逃げ面とその摩耗面による表層部の溶融が寄与していることが考えられる。これは顕微鏡観察によって、切削面上に多数の局部的な溶融が確認されたことから推測することがで

diagram

図10 工具摩耗にともなう切りくずおよび切削面の変化
の経過（すなわち工具摩耗の増加）とともにあらさも
大きくなっていることがわかる。これにより、切刃丸み半
径（r）との関係で、定量的に最大あらさあらさ（R\text{max})
として求めたものが図12である。図から明らかのように、切刃丸みが小さくない場合のあらさはきわめて
小さいが、丸み半径 r が 0.01 mm を越えると、あ
らさ（R\text{max}) は r とほとんど直線的関係で増大して
おり、切刃の円弧状摩耗が切削面あらさを強く支配し
ていることが認められる。

4.2.3 切刃丸み半径と切削抵抗の関係 図13は、
切刃丸み半径（r）と切削抵抗2分力（主分力F\text{N}、背
分力F\text{T})の関係を、切削厚さ（t\text{H})をパラメータとし
て示したもので、切削抵抗は切削開始後の安定領域の
値をとった。

いずれの切削厚さ（t\text{H})においても、r の増加にと
てもないF\text{N}、F\text{T} ともに増大しているが、ときに背分力
（F\text{T})の増大が顕著であり、r ≥t0 において F\text{T} は F\text{N}
に接近するかあるいはほとんど等しく（F\text{T}=F\text{N}) なっ
ている。

図14は、切削厚さ（t\text{H})と主分力（F\text{N}）および背分力
（F\text{T})の関係を、r をパラメータとして示したもの
である。F\text{N} については r=0 の場合を除いて、t\text{H}
に対してほぼ直線的に増大している。r=0 の場合、t\text{H}=0.113 および 0.18 mm/rev で F\text{N} が小さな値を示し
ているが、これはき裂形の切りくず生成領域であっ
て、F\text{N} に比較的大きな変動があり、その平均値とし
て示したためで、このときの F\text{T} の最大値は図の範囲
のところ（破線で描かれた円）にあり、この場合 t\text{H}
との関係は二点鎖線で示されるごとき直線関係にあ
る。また F\text{T} についても同様である。

つきに F\text{T} と r の関係については、r=0.04 mm
の場合は、F\text{T} は t\text{H} の増加にともない減少している
が、r=0 におけるような負の値にはならない。r が
大きくなる（r=0.1, r=0.16）と、F\text{T} は t\text{H} の増加
とともに、はじめはほぼ直線的に増大するが t\text{H} が r
に接近する状態からは F\text{T} の増大割合はゆるやかに
なっている。

4.2.4 切刃丸み半径と合力方向の関係 切刃丸み
半径の増加とともに、主分力および背分力が増大し、
とくに背分力の増大傾向が著しく、これが明らかに
されたが、これを切削抵抗合力の方向（切削方向に対
する）について考察する。

図15は、切刃丸み半径（r）と合力の方向角（φ）の
関係である。ここで φ は $\tan^{-1} \frac{F_\alpha}{F_r}$ として求め
たものである。また図の縦軸の負の値は、合力が切削
方向に対して上方を向いていることを意味している。

$r=0$ においては、いずれの切削厚さ（h_t）の場合も
φ は -5° ～-18° の範囲にあるが、r の増大にとも
ない φ は急激に正の大きな値になる。この変化は h_t
の小さな場合ほど顕著である。そしていずれも φ は
一定値に収束する傾向にある。

合力の方向は、合力の大きさとともに切くず生産
機構上および切削面生産機構上、重要な意味をもって
いると考えられる。すなわち合力の方向が下方にある
場合（φ が大きな正値をとる場合）、被削材が切刃に
よって圧縮された状態で切くず分離がなされ、切る
くず分離と同時に生成された切削面も工具の逃げ面
(丸みの部分を含めて) でこすられているはずですである。
したがって合力の方向は切削方向と一致するか、わず
かに上方を向く状態がよい。このような考えにたてば、
切刃丸みの増大は φ を増大させる、切くず生成上
害をもたらすことがわかる。

今まで論じてきたことをもとに、切削モデルと
して示すと図16のようになるものと思われる。

国16（a）は、$r=0$ におけるいわゆる完全流れ形の
切くず生成状態であり、被削材は銑利な切刃による
集中応力によって容易に引裂かれて、切くずはせん
断ひずみの小さな状態で生成される。切刃丸みが大き
くなると国（b）のようになり、被削材は切刃丸みに
よって圧縮を受け、切くず分離を容易ならしめる
べき集中応力は q のように分散し、また切くず分離

![図14 切削厚さと切削抵抗の関係](image1)

![図15 rとφの関係](image2)

![図16 切削モデル](image3)
に直接関与する真のすくい角（α）は負の角となって、切りくずは大きくな断ずみをともなって生成される結果となる。このような状態においては、大きな弾性変形を呈する被削材は、図16(b)の斜面部分において切削面が弾性回復（δ）によって工具逃げ面と接触することになると考えられる。これらの現象は著者の先行研究の真のすくい角をもった工具による硬質塩化ビニール樹脂の二次元切削においても認められている(9)。(9).

4・2・5 切刃丸み半径と切削抵抗の関係 切削抵抗が切削厚さと完全に比例せず、切削厚さが小さくなるにつれて切削抵抗（すなわち単位容積あたりの切削エネルギー）が増大する。いわゆる“寸法効果”のあらることはよく知られた事実であり、この原因についてはいろいろ議論されている。そのひとつとして切刃の丸みをとりあげ、益子(10)(11)は「押込み力」を、また津村ら(12)(13)は「押しながら力」をそれぞれ考え、これらの力が「寸法効果」をもたらしていることを指摘している。

本報にのべられている切刃丸みは摩耗によって生じたものであり、その大きさはかなり大きく、したがって切刃丸みの、比切削抵抗におよぼす影響は大きいかと推定される。

図17に、切刃丸み半径（r）をパラメータとして、切削厚さ（h）と比切削抵抗（K）の関係を示す。r=0ではhの減少によってKはゆるやかにこう配で増大しているが、rが大きくなると、hの減少とともにKは直線的に増大しており、切刃丸みの寸法効果にふれず影響は顕著であることがわかる。

4・2・6 切刃丸みによる残留切削抵抗 前述したように、切刃に丸みをもつ工具による切削では、被削材は丸みの部分によって大きく変形され、切刃の通過後に切削面は弾性回復して工具逃げ面と接触しているはずである。これを切削抵抗の残留として検討を試みた。すなわち、切削中に工具の切込み送りのみを停止して、工作物は回転したまま工具に作用する力（残留切削抵抗と名づける）をしらべた。図18は背力についての一例であるが、切込み送り停止後切削面は工具と共回転し接触することになり、その間切削残し部分が、ラピング作用によって細かく切りくずを生じないから、徐々に除去されていく。しかし、その後は完全な除去はされずに抵抗が残存することが示されている。この状態のモデルを図19に示す。すなわち工具と被削材は図の(r')で弾性的に接触しているものと考えられる。

残留切削抵抗について測定した結果、r=0においては、残留抵抗は主力、背力とも0.1～0.5kgの間にあって非常に小さな値であるが、rが大きい場合は図5に示されるように、r=0の場合にくらべてかなり大きな値を示している。このことからも、切刃丸みは切削面と交な過酷な状態で摩耗していることが推定される。

なお、切削面と工具逃げ面との接触状態の定量的検討を現在行っているので、次回の機会にのべる予定で
表 5 切刃丸みのある場合の残留切削抵抗例

<table>
<thead>
<tr>
<th>切刃丸み半径r mm</th>
<th>切削厚さ δ mm</th>
<th>残留主分力 Rea kg</th>
<th>残留背分力 Rab kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>0.03</td>
<td>2.1</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>0.06</td>
<td>1.7</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>0.113</td>
<td>2.1</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>0.18</td>
<td>2.0</td>
<td>1.7</td>
</tr>
<tr>
<td>0.16</td>
<td>0.03</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>0.06</td>
<td>2.1</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>0.113</td>
<td>2.1</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>0.18</td>
<td>1.8</td>
<td>1.8</td>
</tr>
</tbody>
</table>

* 定常切削時に与えられたものがある。

5. 結 論

以上、硬質塩化ビニル樹脂の切削における工具摩耗に関して検討した結果をまとめると、次のとおりである。

（1）硬質塩化ビニル樹脂の切削における熟度成形工具摩耗の切削刃面形状は、ほぼすき間面と逃げ面に接する円弧として進行する。

（2）切刃丸み形状は工具摩耗とともに著しく変化し、切刃丸みは大きくなりほど残留を増加し、それが周期的に変動している。

（3）切削面あらさは工具摩耗に密接な関係があり、摩耗による切刃丸み半径とほぼ直線的関係で增大する。

（4）切削抵抗は工具摩耗に強く支配される。なお切刃丸み半径の增大は、主分力および背分力の増大をもたらし、ときに背分力は著しく大きくなり主分力とほぼ等しくなる傾向にある。

（5）切削抵抗は切刃丸みの増大とともに増し、切刃丸み寸法効果に与える影響は顕著である。

6. 工具摩耗の増大によって、「残留切削抵抗」が比較的大きく存在する。これは被削材の弾性変形によるものと思われる。

なお、工具摩耗および摩耗形状の生因などは重要な研究課題であり、これらについて現在検討中である。今後これを検討する予定である。

終わりに、本研究を進めるにあたりご指導くださった、東京工業大学教授益子正二博士に厚くお礼申し上げる。またご助言、ご激励くださった、武蔵工業大学教授岡本定次博士に感謝の意を表す。

なお、本実験は本学機械工学研究室の諸氏の協力のもとに行なわれたことを付記し、謝意を表す。

文献

(2) 益子, ほか2名, 機論, 29-202 (昭33-6), 1054.

(3) 益子, ほか2名, 機論, 29-202 (昭33-6), 678.

(6) 中山, 田村, 精密学会論文論集, (昭39-4), 17.

(7) 岸田, 機論, 23-134 (昭32-10), 680.

(8) 益子, ほか2名, 機械学会論文論集, (昭42-4), 681.

(9) 益子, ほか3名, 機械学会論文論集, (昭43-11), 89.

(10) 益子, 機論, 29-78 (昭35-7), 32.

(11) 益子, 機論, 22-118 (昭31-6), 371.

(12) 某機関, ほか2名, 機論, 26-166 (昭36-5), 803.

(13) 某機関, ほか3名, 機論, 26-166 (昭36-5), 809.

討論

[質問] 小林 昭（東京芝浦電気会社）
ブラスチック切削のときの工具摩耗については従来研究があることなく、硬質塩化ビニル樹脂について貴重なデータを紹介されて興味深く、ことに敬意を表す。なお切削条件によって異なるのは当然である。前質問者らから、やはり著者と同様のノミを用いた2枚に相当ベイト法で、ガラス繊維入りエポキシ樹脂製品を結晶合金工具で切削した場合、工具摩耗によって摩耗形態の異なることを明らかにした（小林, ほか3名, プラスチック, 20-4 (昭44-4), 50; 小林, 機論, (東京37回), (昭44-2-21), 11). プラスチック切削の場合、一般には逃げ面摩耗が優先し、場合によっては刃先丸みを生じる場合もあることを経験している。その一例を図示すると付図1のようになり、工具摩耗によって大きく変わる。この場合にはおもにガラス繊維による加工が優先されているものと理解している。

ここに実験機関の PVC について、刃先丸みの大きさ、その進行、それが切刃丸みや切削抵抗あるいは加
工面に及ぼす影響など詳しく論じられ、摩耗生因について
はふれておられないが、むしろこれについて何い
tかい、PVC切削の場合、なぜ刃先丸みを増大という
形で摩耗が進行するのか、前に質問者が合せたいの
はりつけ面に薄い膜状エレメントを形成させて温度分
布を測ることがある。加工中の温度との関係を検
t討することが望ましいと思う。実験に使われた PVC
の組成、製法などがよくわからないが、一般に 170℃
を越えると融解し、190℃以上になると

\[
\text{H} - \text{H} \quad \text{C} - \text{C} = \text{H} - \text{Cl} - \\
\text{H} - \text{H}
\]

の構造が \(-\text{C} = \text{C} = \text{H}\) となり HCl を出しながらポリ
ビニル構造になるといわれている。加熱分解で生じた
HCl が切削中にどのように作用するかをつきとめて
いたがる。たいていおもしろい研究になることと
期待している。

もうひとつ伺いたいのは、切削の進行に伴って刃先
丸みが増大し、背力が増加し、あらさが悪くなるこ
とが指摘されているが、確実に述べられたような成品
の加工精度に及ぼす影響はいかがか。の変化は \(F_i\)
の変化として影響するとともに、 \(F_i\) の増大は加工後
の弾性回復も大きくするであろう。この辺が寸法精度
をどのように左右するかとお考えか。

【回答】 貴説のように工具摩耗形態は、プラスチ
ックの種類、工具材種、切削条件などによって異なる
ものと思われる、著者もいくつかの事例を確認してい
むら (1)(3) (4) また ガラス繊維や布、紙などの強化材
はいったものでは、プラスチック自体よりもむしろ
強化材がおもに工具摩耗を支配していると考えら
れる。

ご指摘の工具摩耗の生因については、本論文の対象
が摩耗形状解析とそれが切削機構に及ぼす影響であ
り、摩耗生因には触れていない。しかし、本文末尾に
述べたように、工具摩耗および形状の生因は重要な課
題であり、しかも種々の因子（熱、温度、化学反応
など）が複雑にかみ合っているものと推察される
が、順次解明していく予定である。

ご指摘のように、切削中の温度は工具摩耗を解明す
るための重要な手がかりを与えてくれるものと思われ
る。著者が工具－工具熱電対法で測定した切削温度（刃
先近傍温度）は、約 210℃（被削材：硬質塩化ビニル
、 \(v = 100 \text{ m/min} \quad t_i = 0.06 \text{ mm/rev} \quad \alpha = 10° \quad \beta = 10°\) ）であり（図 2）、切りくずと工具すくい面との
接触面ではさらに高温になっているはずである。した
がって塩化ビニルの摩耗機構に変化をもたらすことも十分
予測される。この点については、現在赤外線放射スペクトル
により切りくずからの HCl の酸化状態をしらべている。また X線マイクロアナライザーによる工具摩
耗面の分析を行っている。これらの結果が明らかに
なりたい。統報として報告する予定である。

次に寸法精度については、本実験がパイプ端面の二
次元切削方式なので、寸法精度を定量的に求めていな
い。ここでは表面あらさを上げているが、当然あらさ
と精度は密接な相関性をもつと思われ、刃先丸みと
して進行する工具摩耗が寸法精度に及ぼす影響は著し
しいものと考える。

【質問】 中山一雄（横浜国立大学工学部）
合成樹脂の刃切は金属刃切と基本的に異なる点が多
く、これを解明するには切りくず生成機構と関連させ
て調べるのが有効かと考える。その点で、以下にお答
えいただきたい。

（1）（1333 ページ右欄下 6 行め） \(r = 0\) では切りく
ずは「引ききさ」によって生じるとあるが、切りくずの
形状や厚さからみて、引ききさ以外に切りくずが受ける
せん断ひずみやせん断力、せん断仕事などはどの程度の
ものか、金属刃切では引ききさのための力は全く無視
できるほど小さく、逆にゴムなどではこれが大部分か

（付 1） 安藤、第 14 回合成樹脂工業技術講演会講演要覧（昭 43-3）、15。
（付 2） 安藤、第 15 回合成樹脂工業技術講演会講演要覧（昭 45-11）、73。
と思うが、塩化ビニルはどの辺にあるのか。
（2）図17をよく見ると、$r = 0$でも $r = 0.16$ に劣
らぬ寸法効果が認められる。これは一つの大きな手が
かりを示すものと思うが、このときの切りくずの厚さ
や形状は切り厚さによってどのように変化したか。
（3）$T = 60 \text{min}$ 以上で r が大きくなると、切り
くず断面、切削面写真（図10）およびあらかじめプロフィ
ル（図11）の3者に约 0.1 mm の周辺もつぼうとつ
が見られるが、これら相互の位相はどうなっているか
。つまり、たとえば図12の左上の切削面に切り
くず厚さの変動も書き入れると、切りくずの形はどう
なるか。
（4）表層部の溶融もあらさの原因であるとのこと
だが、これは本の溶融（液化）のことである。それとも
単なる軟化のことか。また温度上昇は塑性変形によっ
てかなり変化すると思うが、低温ではこのような現象
はなくであるだろうか。
【回答】ご指摘のとおり、合成樹脂の切削の特異
性の解明には、切りくず生成機構と関連させて調べ
ることは有効であると思う。文献（1）、（8）、（9）な
どのその点に関する言及がなされている。
（1）「引裂がれり…」。切刃が銛利（$r = 0$）な
場合、応力集中によって被削材が容易に破壊（微破
壊）されて切りくずとして離脱することを述べたもの
である。したがって切りくずのひずみは全く無い訳で
はないが、かなり小さい値となる。たとえば本実験条
件（$\alpha = 20^\circ, \beta = 10^\circ, b = 4.5 \text{mm}, v = 100 \text{m/min}$,
$t_i = 0.06 \text{mm/rev}, r = 0$）においては、せん断のひず
み $t_i = 1.42$, せん断力 $F_s = 3.56 \text{kg}$, せん断応力 $t_{ii} =
10.1 \text{kg/mm}^2$, 工程移動当りのせん断仕事 $w_s = 14.3
\text{kg/mm}^2$ となり、鋼などの金属材料に比べかなり小さ
い値となっている。
一方、ゴムの切削については、たとえば森川(付3)
の報告に詳説されているが、弾性域の広いゴムの変
形機構によって、塩化ビニールのような合成樹脂とはか
なり様相を異にしているようである。
塩化ビニールの場合は、金属とゴムの間にあるもの
と推測される。
（2）$r = 0$ で $t_i = 0.113$ および 0.18 mm/rev にお
ける切りくず形状は、1332ページ右欄10〜16行に述べ
たようにき裂形であり、切削抵抗主分力の平均値が
小さくなっている。すなわち $r = 0$ における寸法効果
のうち切削厚さの大きな領域、切りくず形状の変化
によるもので、これを主分力の最大値（切りくず分離
時の抵抗）から求めてみると、$t_i = 0.113$ で $K_s = 12.8
\text{kg/mm}^2$, $t_i = 0.18$ で $K_s = 11.7 \text{kg/mm}^2$ となって
、この領域の寸法効果はほとんどなくなり、切削厚さの
小さい領域にわが寸法効果が現れている。ここ
で $t_i = 0.03$ における切削比は $r = 0.94$, $t_i = 0.06$ で
は $r = 0.88$ といずれも大きな値となっている。
（3）r が大きくなると、切りくず断面上のあらさと
もし切削面あらさも、ともに増大しているが、切りく
ずのあらさとは、これを切りくず表面として示すと、た
とえば付図2（斉藤氏の回答）のように、切りく
ず長手方向に対しほぼ直角に、しま状に現われてい
る。これに対し切削面は、図10（C）にも示されている
ようにしま状のうつおとではなく、丸みをもった刃
先でむしられた面がさらに丸みの断面（底部）によって
押しか指示されたような面を呈している。そして両者の
おととの大きさには、かなりの差異がみられ、また前
述のように面の形態も異ねており、両者の位相関係
は不明である。
図12の左上の切削面、同図のあらさが切削方向
のそれであることを示すためのものであり、切りくず
断面形状との対応を考慮したものではない。なお切削
中の切りくず生成状態は図16（b）のようなもの
と考えている。
（4）表層部の溶融自体がおもにあらさを大きくし
ているのではなく、1331ページ右欄24〜26行めにも
述べたように、切削面表層部の間欠的な乱流があらさ
を大きくしていると思う。そして局部的な溶融が舌状
の流れ（全面均一流動ではない）を誘起させ、これも
あらさに関与していると思われる。
次に表層部の「溶融」についてであるが、顕微鏡で
観察した限りでは、全面的に溶融した状態が認められ
ているが、溶融の「液化」かどうかは性質が大きい
のでで断定できない。すなわち高分子物質は明確な融点
を示さず、ある温度範囲で徐々に軟化して溶融に移行
するといわれているが、硬質塩化ビニール樹脂の軟化温
度は75〜85°C (付4)、融点は約 210°C (付5) (付6) である。
一方著者の行なった切刃近傍の温度測定結果によると、切
刃が銛利な状態で210°C を越えており（付2）、工具と被削材の接触面では局部的にはさらに高温
になっているものと推察される。したがって「溶融」
の定義には厳密性を欠く点があるが、非常に流動しやす
い状態になっているという意味で、これを用いた訳
である。
低速域（たとえば 78〜485 mm/min）の実験では、

(付4) 熊本・ほか2名編、機械工芸のための機械材料、
(昭32)，220，共立出版。
(付5) 高分子学会編、レオロジーハンドブック、(昭40)。
(付6) Plastics Databook、(昭43)，85，工業調査会。
このような現象はほとんど見られなかった。

質問者 青藤勝政（北海道大学工学部）
（1）工具刃先にあらかじめ円弧状の丸みをつけた
切刃によって切削実験を行なわれ、工具摩耗による切
りくず生成機構の特異性について切削面あらさ（図
11）、切削抵抗（図13）などについて検討されている
が、切刃丸み半径が切れ刃に比べて大きな場合、
どのような切りくずの生成が行なわれるのかお尋ねしたい。図10（B）に示されている切りくず断面写
真に加えて、切りくずの外観。性状をお示しいただく
れば幸いである。

（2）図17に示された切削抵抗にみられる寸法
効果は切れ刃に刃厚さ（切削厚さ）によるものではなくて、
すくい角効果ではないかと思う。図17の実験範囲で
は、平均的な有効すくい角は+20°から-70°の範囲
で変化しているはずである。

一方、刃先丸みがない（r=0）切込みの大きい場合
の切りくずはき裂形であるから、切りくず生成機構の
変化によって寸法効果が現われたものと考えられる。
もちろん図14の鏡面で示した抵抗値を用いて切削
抵抗Kを求めるとき、寸法効果はさらに小さくなり、
寸法効果は切れ込みの小さな範囲だけに現われている。

切削抵抗と有効すくい角との関係から図17を整理する
と、いわゆる切削における寸法効果と工具摩耗と
の関係が明らかになるかなと思う。

（3）工具摩耗形状に関する検討（1331ページ）で、
α=20°の場合の角度差は150°になるのではないか。
α=20°、β=10°に対し1°50’と小さな値ではない
と思う。

[回答]（1）切刃丸み半径（r）が切れ刃厚さ（t）
より大きな場合には、切りくず生成に直接関与するの
は切刃丸みであり、被削材には切刃丸みによって切
刃前方に大きな圧縮応力が働き、切りくずは変形
を受けながら生成されることになる。付図2は切刃
丸みr=0.1 mmの工具における切りくず表面の写真
で、図（a）はt=0.06 mm/rev、図（b）はt=0.03
mm/revの場合を示している。

いずれも切りくずの流出方向（長手方向）にはほぼ直
角にしましてのようするのが見られる。

（2）ご指摘のように、切れ刃厚さの変化にともない
有効すくい角*も変化し、これが切削抵抗を変化せ
しめているとは確かである。しかし、切刃丸みを一
定した場合には、有効すくい角の変化は、切れ刃厚さに
依存するものであることを考えると、切削抵抗が切

* 本文中の「切りくず生成に直接関与するすくい角」（α0）」（1331
ページ右欄下1行め以下）に相当するものと解釈する。
な裏づけを必要とするものと思われ、むずかしい問題ではないかと考える。この点についてはさらに検討してみたいと思う。

（３）著者の計算ミスであった。ご指摘のように

\[\alpha = 20^\circ \] における角度差は 1°50' である。

角度差を \(\Delta a, \Delta \beta \) として求めているが、本文中(1331ページ右欄14〜16行)にも述べてあるように、

パイトのくさび角 (60°および70°) と比較をして小さいと判断したものである。

【質問】

鴨川 昭夫（理化学研究所）

（１）最初の諸項において三元切削か二次元切削か明記したほうが良いようにと思われる。

（２）硬質炭化ビニル樹脂において不純物がはいっている場合には灰色化し、純のものは無色透明だがどちらか。

（３）表1で、Mスケールの場合には荷重が 100 kg で測定値が 40〜50 となっている。したがって 10 kg の差のものは不純物の影響かクリープによる影響か判断しかねないので、60 kg で測定したほうがよいのではないか。

（４）1331ページ右欄24〜26行中に、『摩耗の増大にともない切削面表面部の切削方向への流れが大きくなり、その流れは間欠的に生じており、切削面が二面に荒れてくる』と述べられているが、理解しにくいこととこの1原因のみでは説明つかないと思われる。すなわち図10と図11を比較して考えた場合、摩耗すると \(R \) が大きくなり、接触面積が増大するためのびびり振動するものか、または図10の 160 min の写真を観察すると若干熱によるチッピングも行なわれているようであり、以上三つのうちのいずれかであり、判定はむずかしいと思われる。念のために、切削抵抗の自動計測装置をよく観察したほうが良いようにと思われる。

（５）1331ページで工具摩耗が行なわれると工具刃先は円弧になる【結論（1）】ことを論じているが巨視的にみて図10の60 min では円弧と逃げ面摩耗が共存し、160 min 是切刃におけるとつ（チッピング）を示している。すなわち図示すると付図3のようであり、完全に \(R \) に摩耗していない。したがって \(R \) に摩耗するという解はゆき過ぎている。したがって図8に示すように計算値と実測値平均に差が生じているように考えられる。

摩耗量（目測）で表示するのは、先端摩耗の仕方が不規則のために、計算ではとても無理ではあるが、摩耗幅としての整理の仕方をもう一度よく検討すべきで

ある。このままでは論文として無理のように思われ

る。なお、工具摩耗による刃先の後退量の測定も誤差

が非常に多くなるのではないか。

（６）1333ページ右欄下5行、『引裂かれない』という表現は非常に重要であると思われる。質問者の考察では、せん断面でせん断された流れ形ではないか、一大発見と思われるのでなかった方法でこの現象を証明すべきであろう。

【回答】

（１）実験方法の項で二次元切削であることを明記してあるので、とくに諸項でそれを明記しなければならないとは思われない。

（２）本実験で用いた硬質炭化ビニルは、パイプ状のもので、灰色（顔料入）である。その組成については不明である。

（３）表1は硬質炭化ビニルの一般的性質を、鋼などの金属材料との相違を念頭において引用値として示したものである。なお「かたさ」についての実測値は、既報⑨にパーカイタカ 73（ロックウェル方式）として示している。

（４）質問者は切削面のあらさが、切刃丸みの増大によるびびり現象あるいは切刃のチッピングによるものではないかとのご意見をお持ちのようだが、著者の検討結果ではびびりあるいは切刃チッピングは認められなかった。もしこびびりであるとすれば、被削材と切刃の背力方向の相対振動振幅によって、切削面は切削荷に貫通するしぼ状の一つびびりマークが存在するはずであるが、図10（C）からわかるように、そのようなびびりマークは認められず、また切削抵抗の変動も大きくなっていることは認められない（図18のC領域）。また丸みが大きくなると、刃先に作用する集中応力は分散し、さらにThickness切刃との接触領域では軟化流動しているはずであり、切削が高速度鋼であると考え合わせて、いわゆる切刃のチッピングが生じないものと思われる。ちなみに、一般にいかなる摩耗といえども、平滑面として生じることはほとんどなく、摩耗面には微小のおずかつつが存在するのが常である。

（５）工具摩耗が「完全な円弧」としてのみ現われると述べているのではないことは、1329ページ右欄6〜10行および1330ページ左欄1〜5行に指摘して

いるとおりである。したがってそのことを前提として
図8および9は、完全な円弧と仮定した場合（図中破線）と実際に現れた摩耗形状の場合（図中実線）を比較したものであり、仮定と実際の相違が角度差（Δα, Δβ）としていかなる値をとるかを検討した（1330ベガ右欄下2行め～1331ベガ左欄16行め）結果から、ずるかにすくい面および返し面摩耗は生じるが、摩耗のほとんどは刃先の純化による円弧として生じることを指摘したのである。したがって結論でも、「…ばすくらい面と返し面に接する円弧…」と述べている。

また、ご指摘の摩耗の表示法だが本書の対象の一つは工具摩耗の断面形状であり、摩耗重量ではない。切削工具の摩耗を重量で求めるのは、本来に目的に沿わないし、本実験のように、摩擦工具の場合には、工具全重が摩耗重量のオーダから考えて、重量測定のほうがむしろ適当なようである。

「…引裂かれた…」は、切りくずの形態を示しているのではなく、鉄料な切刃では応力集中によって被削材から切りくずが容易に分離されるという意味であり、切りくずの残留ひずみは生じている。したがって切りくず形状としては「完全なれか形」（1331ベガ左欄下5行め〜1333ベガ右欄11行め）というべきであろう。

【質問】鴨川昭夫
（1）摩耗の増大とはもとめ機械加工部の切削方向への流動が大きくなり、その流動は間欠的生じており切り面がだいに荒れてくる。
（2）工具の刃先がRのみで説明できないことをみとめた場合には、実験データのみの列挙のほうが正しいのではないか。たとえば、Rを変えた実験データなどは省略したほうがよいようにと思われる。
（3）「完全なれか形」は、切りくず面が十分に平滑で、まちがいない。
（4）質問者の論文（工具摩耗）を参考文献として入れたほうがよいようにと思われる。

【回答】（1）「摩耗の増大とはもとめ機械加工部の切削方向への流動が大きくなり、その流動は間欠的生じており切り面がだいに荒れてくる…」は、切りくずの形状を顕微観察にとづき、刃先の摩耗に対応させて述べたものである。これについて質問者は意味がわからないといわれるが、これは著者の説明不足によるとも思わわれるが、質問者の質問および提案内容から推察して、質問者の誤解にともなうものと思われる。

すなわち質問者は、著者の述べた「切削方向」を、「切削方向（F₁：F₂）と解しておられるようだが、「切削方向」がどうしてF₁：F₂と同意義なのか、「切削方向」とは刃先の進行方向（切刃の被削材に対する相対運動方向）のことであって、「切削力の方向」ではない。切削方向（F₁：F₂）という質問者の解釈は理解しきる。

それから、切削方向を力の方向として示すならば、「切削方向」とは「主分力（F₁）の場合、ベクトル的には、切刃が被削材に及ぼす切削運動方向の力」の方向となるはずで、背分力（F₂）方向という解釈にはならない。

（2）質問にもあるように、本書の対象は、工具摩耗形状およびそれが切削機構に及ぼす影響にある。したがって、まず摩耗断面形状を検討した結果、摩耗のほとんどが円弧として現われるのを確かめたので、摩耗形状を近似的に丸割りの円弧とし、丸割りの大きさと切削機構の関係を検討したのである。

摩耗形状と切削機構の関係を求めるには、摩耗形状を量化し、それと切削諸因子との関係を求めるべきがあるのは当然と思われ、もし摩耗が鋼切削などでしばしば見られるように、めりのないフランク摩耗やクレータ摩耗として現われる場合には、フレンク摩耗（Fα）あるいはクレータ摩耗（Kr）のように摩耗を量化できるが、本実験の場合は、摩耗が切刃の丸みとして現われる場合には、本文中の形状解析結果にもとづき、丸割り（r）として定量化するのを妥当と判断し、rの変化（摩耗量の変化）と切削機構の変化の相関性を検討したのである。

（3）刃先（丸いりょう）の摩耗では、切りくず分離の難易を左右するはずである。すなわち「刃先が鋭い場合は、応力集中によって被削材は容易に破壊（微小破壊）され切りくずとして分離される」という意味であり、前回の回答でも述べたように、切りくずの生成形態を指しているのではない。すなわち、本文中に「1333ベガ右欄4行め」にも述べているように、切りくずは残留ひずみを呈しているがそれは小さなひずみである。したがって質問者の指摘される「集中応力によって切りくずがすくい面上を流出する」は、著者の指摘とは異なるはずである。ただし、せん断面において、すべり（せん断すべり）はある
が、破壊現象は認められない。

(4) 質問者のご指摘の論文(4)は、拡張しているが、摩耗形状としては取上げておられないように思われる。

【質問】鴨川 昭夫

(1) 論文の表現から判断すると、Rが大きくなることによって仕上面あらさが大きくなる理由は、そう簡単な問題ではない。すなわち、切削方向（水平、垂直）によるものと解釈した。あらさの増大は水平と垂直方向によるもの考えたために、このような議論になったように思われる。論文を読む内に、考えさせられた（また、3項の応力集中など）。

(2) この項は、前に指摘したように摩耗のほとんどがRであるといるが、著者の摩耗写真からみてわかるように、フラットの部分がある。そして二つの刃端に接するような半径Rではない。最近工具摩耗の論文が提出されている。未発表だが、逃げ面の摩耗幅で整理されており、実際の摩耗形状をみると、先端、逃げ面に摩耗の状態が見られ、半径Rであるかどうかはっきりいえない。

参考までに、お知らせする。

(3) 応力集中によって流れ剥離発生はなく、き裂形切削になることを強調すべきであろう。

【回答】(1) 前回の回答に含まれると思われるので省略させていただく。

(2) 前回の回答においても述べたように、切刃刃先の丸みも摩耗の大部分を占めていることは断面形状から認められる。ただし、摩耗の「すべて」が丸みRとして生じているのではなく、すくい面および逃げ面に多少の別の形態の摩耗が生じていることもまた事実である。しかし摩耗断面形状の内接円法による検討（本文図3および4）および角度差についての検討（1330ページ右欄下2行め〜1331ページ左欄16行め）の結果から、摩耗のはほとんどがRとして定量化することができると判断した訳である。

著者も以前に工具摩耗を逃げ面摩耗幅として整理して報告した(2)(3)。逃げ面摩耗幅は、摩耗形状のいかんにかかわらず、逃げ面側から測定される投影面上の幅であり測定上簡単にあればあるが、切刃刃先に丸みのある場合は、必ずしも最適な定量化とはいえないと思われる。本論文では、工具摩耗の断面形状を対象として取扱っているのであり、この点については前回に回答したとおりである。

(3) あらかじめお断りするが、ここでは応力集中を切りくず形状との関係づけに用いているのでなく、切りくず分離の容易さを説明するために用いている。切りくず形状は、被削材の性質、すくい角、刃先速度、切込深さなどによって影響をうけるものであり、被削材に作用する応力の方向、せん断応力、せん断ひずみおよびひずみ速度（流れ形、せん断形の場合）などが影響因子となるはずである。

応力集中がき裂形切りくずを生成することは限らないのでないか。本実験では流れ形の切りくずが生成されている。