1. はじめに

液状凝縮の研究は、液滴間で液膜が全く存在せず蒸気が初期から液滴となって凝縮するのか否かという基礎的な問題点も含んでいるが(1)(2)，最も問題のある熱伝達率を論ずる際には，孤立液滴の凝縮成長速度と凝縮面上の数密度と二者の問題が解されることである(3)。このうち前者についてはすでにかなり豊富な理論的研究が存在するが(4)(5)(6)，後者は著者によって適当にあてはめが行われているが(7)。実測例を最近のものに限られ(8)，研究は遅れている。この原因は液滴どうしの合体という不規則現象の理論的取扱いの困難さに求められる。この点をと関連して、凝縮過程全体を電子計算機によってシミュレートし諸特性を解明しようとする試みがなされている(9)(10)。

本報で著者は，上記二つの問題点を包括的に検討する必要があると著者は考えている。実際的に見れば，現象全体が解決しなければならぬ。この液滴分布その他の定量的な数値をもととして，その間の基礎関係式を理論的に導くとともに，それから得られる諸結果について述べる。

ここで，一定温度の凝縮面上に置かれた半径で切欠き球形をした孤立液滴の凝縮成長速度を \(r \) として，Faticaら(11)の結果を引用しておけば，

\[
\dot{r} = \frac{\lambda}{4 \pi \tau r} \frac{\Delta T}{L} \tag{1}
\]

ただし，\(\lambda \) は凝縮熱の熱伝導率，\(\tau \) は比重量，\(L \) は凝縮熱，\(\Delta T \) は飽和温度と凝縮面温度の差である。\(\dot{r} \) は接触角を\(\theta = 90^\circ \) によって定まる定数で，\(\theta = 90^\circ \) ならば，\(\dot{r} = 8.3 \) である。

記号

- \(h \)：凝縮熱伝導率
- \(L \)：凝縮熱
- \(l \)：凝縮面の最大傾斜方向長さ

2. 初步的理論（水平下向き凝縮面の場合）

2.1 基礎方程式の誘導

初期液滴半径を \(R_{\text{min}} \)（液滴の初期の議論は一応おくとする），落下限界液滴半径を \(R_{\text{max}} \) とする。液滴の初期の問題は（長時間にわたる平均あるいは）多くの数値についての統計的平均として得られる液滴分布密度を \(N(r) \)，液滴の凝縮成長を含めると \(N(r) \) を合わせて見掛け成長速度を \(\dot{R}(r) \) とする。第1の仮定として，液滴の幾何学的配置はランダムである（すなわち，ある径の液滴のそばに特定の径の液滴がかたよって存在するということがない）とする。第2の仮定として（理論の本質に関係ないが簡単のため），液滴は半球形であるとする。つぎに，液滴が自らより大なる液滴と合体したときは消滅したものとし，自分より小なる液滴と合体したときは自身が（合体）成長したものの定義とする。

最初半径が \(r = \rho + dr \) の間にある単位面積当たリ \(N(r) dr \) 個の液滴について，時間 \(dt \) 後の個数の変化について考える。 \(\rho = \rho \) であるような半径が \(\rho = \rho + d\rho \) の間に含まれる液滴数は単位面積当たリ \(N(\rho) d\rho \) 個存在するが，そのおおのおののまわりに描かれる半径 \(\rho + d\rho \)。
幅 \((\hat{r}_s(r)+\hat{r}_t(\rho))dt\) なる円環の中に，最初考えた半径 \(r\sim r+dr\) なる液滴の中心がもしあっていなければその液滴は上記の仮定と定義によって消滅することになる。消滅する液滴の数を \(r < \rho \leq R_{\max}\) にわたって総計すれば下式の左辺を得る。一方，最初の液滴は \(dt\) 後には半径が \(r+\hat{r}_s(\rho)\sim r+dr+\hat{r}_s(\rho)\) に成長するから，

\[
N(r)dr\int_r^{R_{\max}}2\pi(r+\rho)(\hat{r}_s(r)+\hat{r}_t(\rho))d\rho N(\rho)d\rho = N(r)dr - N(r+\hat{r}_s(\rho)dr)\left(1+\frac{d\hat{r}_s}{dr}dr\right)
\]

整理すれば，

\[
2\pi N(r)\int_r^{R_{\max}}(r+\rho)(\hat{r}_s(r)+\hat{r}_t(\rho))N(\rho)d\rho = -\frac{dN\hat{r}_s}{dr}dr
\]

全く同様の考え方によって，半径 \(r\) なる液滴が \(dt\) 間に自分より小さな液滴を合体することにともなう体積の増分について，つぎの関係式を得る。

\[
\int_{r_{\min}}^{r_{\max}}2\pi(r+\rho)(\hat{r}_s(r)+\hat{r}_t(\rho))d\rho \int_{r_{\min}}^{r_{\max}}\frac{2}{3}\pi r^3\hat{r}_s\hat{r}_t dt
\]

\[
: \frac{2}{3} \int_{r_{\min}}^{r_{\max}}\rho^3(r+\rho)(\hat{r}_s(r)+\hat{r}_t(\rho))N(\rho)d\rho = r^2\hat{r}_s(r)\hat{r}_t(r) - \hat{r}_s(r)\hat{r}_t(r)
\]

\(\hat{r}_s\) が与えられれば，\(N\) および \(\hat{r}_s\) は連立積分微分方程式 (2)，(3) を満足すべき一意的に定まることがなる。なお式 (2) は \(N\) と \(\hat{r}_s\) のみを含み，その一方が与えられれば他は必然的に定まることを示しておく注目すべきである。

2-2 基礎式から導かれる性質

(1) 擴散または液滴上に拡散する蒸気の総量は \(\hat{V}_s = \int_{R_{\min}}^{R_{\max}}2\pi r^2\hat{r}_s(r)N(r)dr\) であるが，式 (3) の関係を \(\hat{r}_s\) に用いて，\(\hat{V}_s\) を \(\hat{r}_s\) で表わすことを行なえば，

\[
\hat{V}_s = \int_{R_{\min}}^{R_{\max}}2\pi r^2\hat{r}_s(r)N(r)dr - \int_{R_{\min}}^{R_{\max}}2\pi \rho^3\hat{r}_s(r)\hat{r}_t(r)N(\rho)d\rho
\]

第2項の積分順序を変更すれば，

\[
\hat{V}_s = \int_{R_{\min}}^{R_{\max}}2\pi r^2\hat{r}_s(r)N(r)dr - \int_{R_{\min}}^{R_{\max}}2\pi \rho^3\hat{r}_s(\rho)\hat{r}_t(\rho)N(\rho)dr
\]

したがって，式 (2) を用い，さらに部分積分を行なえば，

\[
\hat{V}_s = \int_{R_{\min}}^{R_{\max}}2\pi r^2\hat{r}_s(r)N(r)dr + \int_{R_{\min}}^{R_{\max}}2\pi \rho^3\hat{r}_s(\rho)\hat{r}_t(\rho)N(\rho)d\rho
\]

\[
= \int_{R_{\min}}^{R_{\max}}2\pi r^2\hat{r}_s(r)N(r)dr + \int_{R_{\min}}^{R_{\max}}2\pi \rho^3\hat{r}_s(\rho)N(\rho)d\rho
\]

結局つぎの関係式を得る。

\[
\frac{2}{3} \int_{R_{\min}}^{R_{\max}}\rho^3\hat{r}_s(\rho)N(\rho)d\rho + \int_{R_{\min}}^{R_{\max}}2\pi r^2\hat{r}_s(r)N(r)dr = \frac{2}{3} \int_{R_{\min}}^{R_{\max}}2\pi r^2\hat{r}_s(r)N(r)dr
\]

\(\hat{r}_s(r)N(r)\) なる量は，\(N(r)dr/\hat{r}_s(r)\) と書けば明らかのように，半径が \(r\) という値を越えて成長していく液滴の流束を表わしている。したがって式 (4) は，初生液滴として拡散する量と液滴上に拡散する量との合計が限界径に達して落下していく液滴の量にありうるという物理的に当然成立すべき関係式が導かれたことを意味する。

(2) 擴散熱伝達率が一定なること 基礎方程式 (2)，(3) は，\(\hat{r}_s\) および \(\hat{r}_t\) に関して線形となっている。したがって，\(\hat{r}_s\) が式 (1) [もう少し一般的に \(\hat{r}_s = \varphi(r)\Delta T\)] ように書くならば（初生液滴半径 \(R_{\min}\) 、落下限界液滴半径 \(R_{\max}\) 、および破壊面の液滴によらる破壊率 \(\alpha\) が変わらないという条件下で）液滴は \(\Delta T\) に比例し，

\(N(r)\) は \(\Delta T\) に無関係に \([\varphi(r)\] の形のままで \) 定まることがなる。結局（上の条件下で）式 (4) で表わされる拡散量は \(\Delta T\) に比例し，前段の結論を得る。

(3) 放出慣性 基礎方程式 (2)，(3) において，\(\rho = m\xi\) なる置換を行なえば，

\[
\frac{2\pi N(m\xi)}{m^2(\gamma+\xi)} \int_{m\xi}^{R_{\max}}m^2(\gamma+\xi) \hat{r}_s(m\xi) + \hat{r}_t(m\xi)] N(m\xi)d\xi = -\frac{d}{m\xi} N(m\xi)\rho(m\xi)
\]

\[
\frac{2}{3} \int_{R_{\min}/m}^{R_{\max}/m} m^2\xi^2(\gamma+\xi) \hat{r}_s(m\xi) + \hat{r}_t(m\xi)] N(m\xi)d\xi = m^2\xi^2 \hat{r}_s(m\xi) - \hat{r}_s(m\xi)
\]
また、被覆率 \(\alpha \) については、
\[
\alpha = \frac{R_{\text{max}}}{R_{\text{min}}} \pi r^2 N(r) \, dr = \frac{R_{\text{max}}}{R_{\text{min}}} \pi m^\eta r N(m) \, \eta \, dr
\]
これらをもと式 (2), (3) と比較すれば、容易につ
ぎの結論を得る。\(\dot{\rho}_e(r) \) に対して \(N(r), \dot{\rho}_e(r) \) が \(R_{\text{min}}, R_{\text{max}}, \alpha \) なる条
件を満足する解であったならば、\(N^*(\eta) \equiv m^\eta N(m) \), \(\dot{\rho}_e^*(\eta) \equiv m \dot{\rho}_e(m) \) と置く
とき、これらが \(R_{\text{min}}^* = R_{\text{min}}/m, R_{\text{max}}^* = R_{\text{max}}/m, \alpha^* = \alpha \) なる条
件を満足する \(\dot{\rho}_e^*(\eta) \equiv m \dot{\rho}_e(m) \) に対する
解となっている。ところで式 (1) のごとく \(\dot{\rho}_e \propto 1/r \)
の場合には、\(\dot{\rho}_e^*(\eta) = \dot{\rho}_e(\eta) \) となるから、上の関係に
よって、\(R_{\text{min}}, R_{\text{max}} \) を \(1/m \) にした場合の解が直ちに
求まることになる。すなわち、両対数面上に描いた場
合、\(N(r) \) および \(\dot{\rho}_e(r) \) のグラフはそれぞれ \(r^2 \) およ
び \(r^{-1} \) の方向に平行移動することになる。この
とき、凝縮面上の液滴の分布自体も相似形のまま尺度を \(1/m \)
にしたものとなっていることを注意しておく。また、
このとき凝縮熱伝達率は \(m \) 倍となる。

2-3 非定常な場合と方程式の数値解法 基礎方程
式 (2), (3) を直接解くことはなかなかむずかしいの
で、\(N \) および \(\dot{\rho}_e \) が平衡値から始まっ
て時間にしたがって平衡状態に収束していくという物
理的に意味を持った過程を考慮して、解を求める方法を
とる。そのために、\(N \) および \(\dot{\rho}_e \) が時間 \(t \) によって
も変わると考えると、式 (2) はつぎのようになる。
\[
\frac{\partial N}{\partial t} = -\frac{\partial N_{\dot{\rho}}}{\partial r} - 2 \pi N(r)
\times \int_r^R \frac{R_{\text{max}}}{r} \left(\dot{\rho}_e(r) + \dot{\rho}_e(\rho) \right) N(\rho) \, d\rho \cdots (5)
\]
この式は、半径 \(r \) のところについて、流入・流出する
液滴の流束の差からそこで減衰する液滴の数を差引い
た分だけ、液滴が蓄積されることを表わしている。

解法の基本方針は、まず初期滴径分布 \(N(r, t_0) \)
を与えれば、式 (3) は (変形整理すれば明らかなどおり)
第 2 種 Volterra 形積分方程式となっており、数値積
分近似によって連立一次方程式に書き変えることによ
り、比較的容易に \(\dot{\rho}_e(r, t_0) \) を求めることができる。
ついて、\(N(r, t_0) \) および \(\dot{\rho}_e(r, t_0) \) を式 (5) 右辺に代
入し、差分近似および数値積分近似を行なうことによ
って、(\(\partial N/\partial t \)) (r, t_0) が定まる。時間刻みを適当に取
って新しい滴径分布を定め、初めから継返し収束する
まで続けるのである。現象の性質から \(r \) の刻み \(\Delta r \) は
ほぼ対数目盛で等間隔にするように区間を分けて取っ
た。また、時間の刻み \(\Delta t \) は \(\Delta r/\dot{\rho}_e \) に近似して適当に
小さく取らないと変数を起こしてしまう。本節の計算
ではこのことを逆に用いて、時間系列にしたがって精密
に解いていくのではなく、発散を起こさない範囲で \(\Delta r \)
の値に応じて \(\Delta t \) を適当に変え、1 回の計算による \(N \)
の修正をできるだけ大きくして、なるべく早く平衡解
に達するようにした。収束の程度は各点での修正量で
判断しているが、最終解に対しては式 (4) の左辺と右
辺の差が 2% 程度である。境界条件としては \(N(R_{\text{min}}) \)
を適当に与えて、その結果得られた平衡解に対する被
覆率 \(\alpha \) が所定の値 (実際に意味があるのは \(\alpha = 1.0 \))
になるようにするのである。

2-4 計算結果とその考察 方程式 (2), (3) の解
は、\(\dot{\rho}_e, R_{\text{min}}, R_{\text{max}} \) および \(\alpha \) を定めれば一意的に決定
される。\(\dot{\rho}_e \) として式 (1) 仮定すると、すでに述べたよ
うに尺度を変えた場合の影響は容易に得られるとと
ても、対象物質および温度差を変えると \(\dot{\rho}_e \) が (\(\Delta T \) L)
\(\Delta T \) に比例して変わるのみで \(N \) および \(\dot{\rho}_e \) に対して得
られた結果はこの限りで普遍的である。したがって、
100 °C の水を \(\Delta T =1°C \) の場合について、\(R_{\text{max}} = 0.1 \)
mm 一定とし、\(R_{\text{min}} \) と \(\alpha \) を変えた場合について計
算を行なってみた結果を図 1 に示した。これよりつぎ
のことがいえる。① \(R_{\text{min}}/R_{\text{max}} \approx 1 \) なるときの解は
つぎの 4 領域からなる。その 1 は \(R_{\text{max}}/1<25 \) で、
液滴はほとんど合体することなく成長する (\(\dot{\rho}_e \) か
て \(R_{\text{min}} = \text{const} \) となっている)。その 2 は \(1<25 \approx r/R_{\text{max}} \)
<1/5 で、液滴の合体が生じ始めつぎへ移る等流域で
100°C 水蒸気。\(\Delta T =1°C \)
図 1 水平下向き面への凝縮挙

NII-Electronic Library Service
ある。その③は $1 \leq r/R_{\text{max}} \leq 1/2$ で、N 分布が r の一定指数乘でほぼ平衡している。（実数被覆界に制限を付けず 1.0 以上の仮想的な値を許す解の広い範囲にわたって r^{-2} に比例した部分が現われる）。その③は $1/2 \leq r/R_{\text{max}}$ で、R_{max} の以上の半径の液滴が存在しないため、再び合体による液滴個数の減少が早くなる。②上記と関連して、液滴規模状態は比較的大きな液滴の挙動ではほぼ決定されている。$R_{\text{min}}/R_{\text{max}} \leq 1/25$ など R_{min} の変化は熱伝達率にはほとんど全く影響をおよぼさない。同時に、式 (4) が次第第1項で表される初生液滴として濃縮する量が蒸発時間を占める割合は無視しうる。③ $r/R_{\text{max}} < 1/10$ なる液滴による被覆率が 3 % 程度であることを考慮して、面の全被覆率は正確に $\alpha = 1.0$ が満たされているものと思われる。なお、α を変えた場合には、図 1 の計算例に示したように、その変化率の 2 倍程度の影響が熱伝達率 h に現われる。

実測による落下限界液滴半径 R_{max} はほぼ 1mm 前後である (3)。上記計算例を $R_{\text{max}} = 1.0 \text{ mm}$ の場合に直せば、熱伝達率は $h = 8 \times 10^3 \text{kcal/m}^2\text{K} \cdot \text{hr} \cdot \text{m}^3$ となる。Tanner ら (9)、Cakir ら (10) および指圧法 (5) による測定値が $1.7 \times 10^3 \text{kcal/m}^2\text{K} \cdot \text{hr} \cdot \text{m}^3$ 程度であるのに対しては若干相違する。また滴度分布については指圧法 (5) による実測値と著しく傾向を異にする。実はこれら滴度濃縮の実験は鉛直あるいは傾いた濃縮面について行なわれたものである。そこで本章の理論があてはまらない原因があると考えられ、次章に改めて考察する。

3. 傾いた液滴面に対する理論

3.1 モデルと基礎方程式 傾いた液滴面では、落下液滴が面の最大傾斜方向に流れて、帯状領域に流れる液滴をいっしょに持ちます。このことは古く Fatem ら (4) によって指摘されているが、傾いた面での液滴巻き込み現象の本質をなすものと考えられる。そこで、つぎのようなモデルを考える。傾斜面の最大傾斜方向を I とし、その方向に幅が落下限界液滴直径 $2R_{\text{max}}$ に等しい帯状領域を取って考える。この帯の上に中心がある液滴が落下する場合には、ちょうどこの帯の中心に沿って落下するものとし、また、落下液滴が下方にいてもだいたいこのことも当面考えない。

ⅰ) この帯状領域に対し、時刻 $t = 0$ における初生液滴の衛生に加える過渡的な滴度分布 $N(r, t)$ （前章の滴度分布 N と区別する）の成長を考えると、

$$2R_{\text{max}} \int_0^{t_f} r_a(R_{\text{max}}, t)N(R_{\text{max}}, t)dt = 1$$

を満たす時刻 $t = t_f$ に、平均位置 $x = l/2$ （x は液面より上端からの距離）から初生の液滴が落下する。

ⅱ) 順次同様にして,

$$2R_{\text{max}} \frac{1}{2\pi} \int_0^{t_f} \frac{r_a(R_{\text{max}}, t)N(R_{\text{max}}, t)dt}{2} = 1$$

を満たす時刻 $t = t_f$ に、平均位置 $x = l/2$ から第 k 番目の液滴が落下する。

ⅲ) とするととき,

$$t_f^k = t_f^{k-1} - t_k$$

を満たす場合、時刻 $t = t_k + t_f^k$ に、第 k 番目の液滴が落下した。ここで、軸下限界で洗われる下部の衛生流側から初めて液滴が落下する。" n がある程度大きければ、以後は t_k を周期として新しい現象が繰返される。

液滴面上に残っている初生液滴の衛生に始まって大体落下液滴に洗われていない部分の滴度分布 $N(r, t)$, つぎのような考え方で導けることができる。

であると考えられる。上記の溶液部分ととらわれず一般に広い液滴面を考えると、ある微小時間間に数個の液滴が落下してまだ洗われたことのない部分を新たに洗い流す。この洗い流された部分の滴度分布は、その時点において残っている部分の滴度分布を全く同じ分布をしていはずである。したがって、液滴が落下することが残った部分の滴度分布におよぼす影響は、その液滴が占めていた面積が滴度分布を考える標準基準面から除外されることになる。そこで、液滴は液滴面を流れることなく離脱するものとして、離脱の瞬間に、離脱した液滴のくん線を除いて、初めからの液滴が残っている部分を一まとめて集め、その滴度分布を計算すればよい。

最初の基準面積すなわち全体面面積に対する時刻 t までに落下した液滴の全体の合計が占める割合を $\alpha(t)$ とする。時刻 t に新たに落下する液滴の占めていた面積を考えれば、α の変化率について,

$$\frac{d\alpha}{dt} = (1-\alpha)N(R_{\text{max}}, t)r_a(R_{\text{max}}, t)\pi R_{\text{max}}^2$$

または,

$$\frac{d}{dt}\ln(1-\alpha) = -\pi R_{\text{max}}^2N(R_{\text{max}}, t)r_a(R_{\text{max}}, t)$$

(6)

滴度分布を考えている基準面積が折れ曲がる影響は、最初の単位面積をもとに考えれば分かりやすい。最初の単位面積当たりについての滴度分布密度を N とすれば,

$$N = (1-\alpha)N$$
したがって，滴径分布の時間変化率は，
\[\frac{\partial N}{\partial t} = -\frac{1}{1 - \alpha} \frac{\partial N}{\partial t} + \frac{\dot{N}}{1 - \alpha} \frac{d\bar{a}}{dt} \]
ここで，右辺第1項は基準面積の変化を考えない場合の液滴個数変化を表わしており，式(2)および(5)を導いた過程を振り返れば，式(5)右辺の \(N \) を \(\dot{N} \) で置き換えたもので表わされることがわかる。したがって，
\[\frac{\partial N}{\partial t} = -\frac{\partial N}{\partial t} - 2\pi \int_0^\infty \left(N(r) - \rho \right) (r_0 + r) \]
\[+ \rho(\rho) \frac{\partial N(\rho)}{\partial \rho} \]
右辺最終項は明らかに基準面積の変化による寄与を表わしており，これに式(6)を代入すれば，
\[\frac{\partial N}{\partial t} = -\frac{\partial N}{\partial t} - 2\pi \int_0^\infty \left(N(r) - \rho \right) (r_0 + r) \]
\[\times (r_0 + r) \frac{\partial N(\rho)}{\partial \rho} \]
液滴成長速度については，式(3)がそのまま適用できる。
\[\frac{2}{3} \int_{\rho_{\text{min}}}^{\infty} \rho^2 (r_0 + r) (r_0 + r) \frac{\partial N(\rho)}{\partial \rho} \]
\[= \rho^2 (r_0 + r) \]

初期条件滴数 \(N(r_0, t_0) \) が与えられれば，式(7)，(8)を条件(9)の下で解くことによって， \(N(r, t), \tilde{u}(r, t) \)
が求まる。なお，前述のモデルによって凝縮熱伝達率を求めためには,

単位面積当たり算積落下液滴数:
\[\nu(t) = \int_{\rho_{\text{min}}}^{\infty} \left(r_0 + r \right) \frac{\partial N(\rho, t)}{\partial t} dt \]
(10)

3-2 基礎式から導かれる性質
(1) 滴の熱伝達率が一定になると，一般に \(\dot{r} = \rho(r) \frac{dT}{dt} \)
(2) に対する方程式 (7)，(8) の解を \(N_1(r, t), \tilde{u}_1(r, t) \) とすれば， \(\Delta T = \Delta T \)
に対する解は， \([\tilde{N}_{\text{min}}, \tilde{N}_{\text{max}} \) および初期滴数 \(N \)
\((r, 0) \) が同一という条件下で， \(\tilde{N} = N_1(r, \Delta T t), \tilde{u} = \Delta T \tilde{u}_1(r, \Delta T t) \)
で与えられることが容易にわかる。したがって，さらに凝縮面長さ \(I \) が同じならば，現象すべての速度が \(\Delta T \) に変化して進行し，頸部の結論を導得る。

(3) 対法効果 前章における考察と同様にして，
式(1)のごとく， \(\dot{r} \propto \Delta T \) と書ける場合については，
\(\tilde{N}_{\text{min}}, \tilde{N}_{\text{max}} \) が \(\tilde{N}_{\text{min}}, \tilde{N}_{\text{max}} \) となる条件を満足する解であったならば，
\(\tilde{N}_{\text{min}} = \tilde{N}_{\text{max}} = \tilde{N}_{\text{max}} \)
と置いて，これらが \(\tilde{N}_{\text{min}} = \tilde{N}_{\text{max}} = \tilde{N}_{\text{max}} \)
\(\equiv \tilde{N}_{\text{max}} \) なる条件を満足する解となっている。すなわち， \(\tilde{N}_{\text{min}}, \tilde{N}_{\text{max}} \) を \(\Delta T \) にすると，凝縮面上の
液滴の分布も相似形のまま尺度が \(\Delta T \) となり，現象の
進行速度は \(\Delta T \) 倍となる。そして結局， \(\Delta T \) とす
るとき，熱伝達率は前章の場合同様 \(\Delta T \) 倍となる。

3-3 相似滴 前章の考察をより一般化して，
\(\tilde{N}_{\text{min}} = \tilde{N}_{\text{max}} = \tilde{N}_{\text{max}} \equiv \tilde{N}_{\text{max}} \) すなわち水平上向き面の過渡の液滴凝縮のような場合を想定し，このような場合に時間的に面上の滴数分布が全相似形を保つまま
成長していくという状態が満たされるような特殊な解がないかどうかを考える。もしこのような状態が存在するとき，凝縮のモデルで過渡的滴数分布の推移を考える際も， \(\tilde{N}_{\text{min}}, \tilde{N}_{\text{max}} \equiv \tilde{N}_{\text{max}} \)
の場合には，最低の滴数分布が海岸よりずっと以前にそのような相似分布に近い状態が実現されてしまうことが予想される，有力な手掛かりとなる。定性的に考えると，凝縮分布の中心部（すなわち全体の滴数分布中で被覆率に対する寄与が大きい滴数領域）より \(\Delta T \) のずっと小さな部分では，
前章の計算結果からもわかるように， \(\tilde{N}_{\text{min}} \) が \(\tilde{N}_{\text{max}} \) \(\Delta T \) であって， \(\tilde{N}_{\text{min}} \)
より大きくならず，その部分の液滴は凝縮分布の中心部を追って急速に成長し滴数分布の広がりをせよみようとするのである。一方，凝縮分布の中心
部より \(\Delta T \) のずっと大きい部分では，式(3)あるいは(8)の左辺はほぼ一定となり，右辺で \(\tilde{N}_{\text{min}} \) とし
ても \(\tilde{N}_{\text{min}} \) の項を無視すれば， \(\tilde{N}_{\text{min}} \) \(\Delta T \) となって \(\Delta T \) が
大きくならにしたがって急激に液滴成長速度は零なり，この部分でも凝縮分布の広がりをおさえるとすると作用がある。したがって，上記の意味での相似解が存在する可能性は十分あると予想される。

前章の考察から，もし相似解が存在するとときはつ

\[\tilde{N}(r, t) = \tilde{N}_{\text{max}}(r, t) = \tilde{N}_{\text{max}}(r, t) \]
(13)
ここでは，
\[m = m(t) \]
ただし，
\[m(0) = 1 \]
したがって，初期状態が
\[\dot{N}(r, 0) = N^*(r), \quad \dot{r}_s(r, 0) = \dot{r}_s^*(r) \quad \cdots \quad (15) \]

であるものとする。式 (13) の形を仮定して、基礎方程式 (7), (8) において \(R_{\min} = 0, R_{\max} = \infty \) と置いたもの [したがって式 (7) 右辺最終於項は無くなる] に代入整理し、\(m_r = \xi \) も書き換え、

\[
3m^3 \frac{dm}{dt} N^*(\xi) + m_r^2 \frac{dm}{dt} \xi \frac{dN^*(\xi)}{d\xi} = -m_r^2 \frac{dN^*(\xi)}{d\xi} \xi \dot{r}_s^*(\xi) - m_r^2 2 \pi N^*(\xi) \times \int_0^\infty (\xi + \eta) \left[\dot{r}_s^*(\xi) + \dot{r}_s^*(\eta) \right] N^*(\eta) d\eta
\]

\[
= \xi^2 \left[\dot{r}_s^*(\xi) - \dot{r}_s^*(\eta) \right] \quad \cdots \quad (16)
\]

方程式 (16) が時間 \(t \) を含まず、\(N^*(\xi), \dot{r}_s^*(\xi) \) が \(\xi \) のみの関数として決定されるためには、

\[
m_r^2 \frac{dm}{dt} = -A m^3 \quad \cdots \quad (18)
\]

したがって、条件式 (14) を考慮すれば、

\[
m = \frac{1}{\sqrt{2Ai + 1}} \quad \cdots \quad (19)
\]

このとき式 (16) は、

\[
A \left(2N^*(\xi) + \frac{d\xi N^*}{d\xi} \right) = \frac{dN^* \dot{r}_s^*}{d\xi} + 2\pi N^*(\xi) \int_0^\infty (\xi + \eta) \left[\dot{r}_s^*(\xi) + \dot{r}_s^*(\eta) \right] N^*(\eta) d\eta \quad \cdots \quad (20)
\]

これと式 (17) から、相似解 \(N^*(\xi), \dot{r}_s^*(\xi) \) が定められる。それらの結果と式 (19) とを式 (13) の右辺に用いることによって、任意の時刻 \(t \) における液滴分散と見掛け成長速度をつぎのように与えられる。

\[
N(r, t) = N^*(r/\sqrt{2Ai + 1}) / (2Ai + 1)^{1/2} \quad \cdots \quad (21)
\]

\[
\dot{r}_s(r, t) = \dot{r}_s^*(r/\sqrt{2Ai + 1}) / \sqrt{2Ai + 1} \quad \cdots \quad (22)
\]

ここで、液滴分散中心が \(t = 0 \) において \(r_0 \) であったとするとき、それが \(nr_0 \) の位置まで移動した時点：

\[
t_o = \frac{n^3 - 1}{2A} \quad \cdots \quad (23)
\]

を時間の基準に取直して、\(\tau = t - t_o \) に対する液滴分散 \(N_s \) と見掛け成長速度 \(\dot{r}_s \) を求めれば、式 (21) を書き換えることにより、

\[
N_s(r, \tau) = \left(\frac{r}{n^2 \sqrt{2Ai + 1}} \right) N^*(r/\sqrt{2Ai + 1}) / (2Ai + 1)^{1/2} \quad \cdots \quad (24)
\]

\[
\dot{r}_s(r, \tau) = \left(\frac{\dot{r}_s^*(r)}{n^2 \sqrt{2Ai + 1}} \right) / (2Ai + 1)^{1/2} \quad \cdots \quad (25)
\]

\[
\text{ただし、}
\]

\[
N_s(0, 0) = \frac{1}{n^2} N^*(\frac{r}{n}) = N^*(r) \quad \cdots \quad (26)
\]

\[
\dot{r}_s(0, 0) = \frac{1}{n^2} \dot{r}_s^*(\frac{r}{n}) = \dot{r}_s^*(r) \quad \cdots \quad (27)
\]

である。式 (21) と式 (23) を比べることにより、式 (18) の定数 \(A \) は時刻 \(t = 0 \) における液滴分散の中心位置を定めるものであることがわかる [このことは、実際の式 (24) のそれぞれ右側の等号関係を仮定して、式 (17), (20) を \(N^* \) と \(\dot{r}_s^* \) に関する方程式に変換すれば、もっとの方程式と全く同形でただ \(A \) を \(n^2 \) で置き換えたものが得られることも容易に確かめることができる]。

式 (22) から、液滴分散中心が \(t = 0 \) における位置 \(r_0 \) から \(nr_0 \) の位置まで移動するに要する時間 \(t_{n-1} \) (= \(t_o \)) と、さらにその位置から \(nr_0 \) まで移動するに要する時間 \(t_{n-2} \) の比を求めれば、

\[
\frac{t_{n-2}}{t_{n-1}} = \left(\frac{n^3 - 1}{n^3 - 2} \right) \quad \cdots \quad (28)
\]

となって、前項で考察したと同様の事実 (尺度が \(1/n \) になれば現象の速度は \(n^2 \) 倍となる) がこの場合も成立していることがわかる。

3-3 計算方法と結果および考察 条件式 (9) の下式 (7), (8) の数値解を求める具体的方法は前項で述べたものと本質的には変わりがない。ただし今回は、1段階の計算で新しい液滴分散が計算されることに、条件式 (9) が満たされると \(N(R_{\min}) \) の値を定めめる新しい液滴分散を計算する際 \(N(R_{\min}) \) だけは決定されず境界条件として与えなければならないので、前項の場合はこれを一定値に与えていた。さて今回は液滴径 \(r \) の全範囲にわたって一様な時間刻み \(\Delta t \) を取り正確な時間離散にしたがって \(\dot{N} \) を計算していく必要がある。このため、前項で述べた発散をおさえられる条件 \(\Delta t < A/r_s \) を満たすように時間刻み \(\Delta t \) を取ろうとすると、最も液体径に近いこの条件が最も適している。したがって初期液滴径 \(R_{\min} \) を変えるときほは \(\Delta t \propto R_{\min}^{-2} \) で \(\Delta t \) を変えればならないことになる。

一方で本節で目的とする液滴の落下が起こる液滴分散がその影響で変化していくという現象が発生する時間の程度は、落下限界液滴半径 \(R_{\max} \) というしきりで決まってしまうと考えられるから、\(R_{\max} \) を一定にし \(R_{\min} \) を
変えて計算を試みる場合には、R_{min} が小さくなるにしたがって飛躍的に計算量が増大することとなる。

100°Cの水で $\Delta T = 1^\circ \text{C}$、$R_{\text{max}} = 1.0 \text{ mm}$、$R_{\text{min}} = 0.03 \text{ mm}$ の場合について、初期滴径分布を $N(r, 0) \propto r^{-5}$ と置いて計算を行なった結果を、滴径分布 N の推移について図 2 に、液滴成長速度 r_e の推移について図 3 に、単位面積当たり積算落下液滴数および落下液滴こん跡率 α について図 4 に、また単位面積当たり付着凝縮液量 V について図 5 に示した。図 2,3 から前節で考察したとおり、初期滴径分布から始まってきてねせんのうちに相関滴径分布が形成され、その後はそのままの形を保つつつ時間経過につれて尺度のみが大きくなっていくことが認められる。ここで、滴径分布の中心部（被覆率に対する寄与の大きい滴径領域）付近に、分布密度が $N(r) \propto r^{-5.49}$ となる直線部が存在することが注目される。また図 4 より、時間経過して液滴の落下がひん書形に起こり始めると、滴径分布は急激に相似解から変形して、その後は時間を待てばほとんど変わらずほぼ定常な分布を示すことが認められる。前節の考察および上の計算結果から予想されるように、初期滴径分布が相当速いものであっても（もちろんその分布中心はかなり液滴径の小さい所になければいけないが）、最初の一時で短時間の部分を除けば全く同一の経過をたどると考えられる。また、本計算例では計算容量の制限から $R_{\text{min}}/R_{\text{max}} = 0.03$ であったが、したがってこれをさらに小さく取ることにしたとしても、やはり最初の間わめて短時間の部分を除ければ全く同一の経過をたどるであろう。実際、計算の容易さから逆に $R_{\text{min}}/R_{\text{max}} = 0.1$ と比を大きく取った場合（初期分布は同じく $N(r, 0) \propto r^{-5}$）について計算を行なった結果を、積算落下液滴数について

図 2 傾いた面への滴状凝縮 (滴径分布の推移)

図 3 傾いた面への滴状凝縮
(液滴成長速度の推移)

図 4 傾いた面への滴状凝縮 (積算落下液滴数と落下液滴こん跡率の時間による変化)
図4に示してある。この場合現象が約5s早くなって
いるだけで（この程度大きなR_{min}/R_{max}を取って
いると、初期部分を除いて全体の現象はほとんど変わ
らないことがわかるであろう。

図4.5を用いれば、3.1節のモデルにしたがって
凝縮熱伝達率を計算することができる。たとえば、最
大傾斜方向長さ$l=50$ mmの場合を考えれば、

i) $2R_{max}l\nu(t_2)=1$ すなわち
\[
\nu(t_2)=\frac{1}{2R_{max}l}=0.01 \text{ (個/mm²)}
\]
を満たす $t_2=42$ sに、$x=l/2=25$ mmの位置から最
初の液滴が落下し、
\[
V_1=\frac{2}{3}\pi R_{max}^3+2R_{max}l\frac{1}{2}\nu(t_2)
\]
\[
=\frac{2}{3}\pi \times 1.0 \times 25^3+2 \times 1.0 \times 0.348=19.5 \text{ (mm²)}
\]
の凝縮液を洗い落とす。

ii) $2R_{max}l\nu(t_4)-\nu(t_2)=1$
すなわち
\[
\nu(t_4)=\frac{1+2}{2R_{max}l}=0.03
\]
を満たす $t_4=51$ sに、$x=l/2=12.5$ mmの位置から
第2の液滴が落下し、
\[
V_2=\frac{2}{3}\pi R_{max}^3+2R_{max}l\frac{1}{2}\nu(t_4)
\]
\[
+2R_{max}\left(1-\frac{1}{2}\right)V_1(t_4-t_2)
\]
\[
=\frac{2}{3}\pi \times 1.0 \times 25^3+2 \times 1.0 \times 0.360+2 \times 1.0 \times 0.348
\]
\[
=20.1 \text{ (mm²)}
\]
の凝縮液を洗い落とす。

図5頚いた面への波状凝縮（付着凝縮液量の
時間による変化）

iii) 以下同様に、$\nu(t_k)=(1+2+\cdots+2^{k-1})(1/2R_{max})$
を満たす t_k に、$x=l/2^k$ の位置から第kの液滴が落下し、
\[
V_k=\frac{2}{3}\pi R_{max}^3+2R_{max}l\frac{1}{2k}\nu(t_k)
\]
\[
+2R_{max}\left(1-\frac{1}{2^{k-1}}\right)V_1(t_k-t_{k-1})
\]
の凝縮液を洗い落とすとして計算すれば、
$t_6=63$ s、$V_6=2.09+4.60+35.3=22.1 \text{ (mm²)}$
$t_8=85$ s、$V_8=2.09+2.34+23.7=28.1 \text{ (mm²)}$
$t_{10}=126$ s、$V_{10}=2.09+1.17+32.5=35.8 \text{ (mm²)}$

iv) $t_6-t_6>t_1$ となるから、第6の液滴が上部の古
い液滴付着部から落ちる前に、第5の液滴で洗われた
下部の新生面側から初めて液滴が落下する、
以後$t_6-t_6=126$sを周期として現象が繰返される
と考えれば、1周期の総流下凝縮液量は、
\[
V_1+V_3+V_5+V_7+V_9+V_{11}=125.6 \text{ (mm²)}
\]
したがって、単位面積・単位時間・単位温度差当たり
の凝縮率は、
\[
=\frac{2}{3}\pi \times 1.0 \times 25^3+2 \times 1.0 \times 0.360+2 \times 1.0 \times 0.348
\]
\[
=20.1 \text{ (mm²)}
\]
これ熱伝達率で直接、
$h=1.86\times 10^4 \text{ kcal/m²h°C}$

最大傾斜方向長さlを変えて、同様の計算を行なっ
た結果はつきのようになる。

<table>
<thead>
<tr>
<th>l mm</th>
<th>25</th>
<th>50</th>
<th>100</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>h kcal/\text{m²h°C}</td>
<td>1.68×10⁴</td>
<td>1.86×10⁴</td>
<td>2.04×10⁴</td>
<td>2.16×10⁴</td>
</tr>
</tbody>
</table>

これより、熟伝達率はlによってあまり影響を受けな
いかが、lが大きくなるにしたがい多少大きくなること
がわかる。

上の計算で得られた凝縮熱伝達率の値を前章のそれ
と比べると2～3倍大きくなっているが、従来の実験
値と比べると依然として相当な違いがある。この第1
の理由は、上のモデルでは落下液滴が流下するにつれ
て大きくなり落下境界液滴半径 R_{max} より広い軌跡
を残し、その上部の液滴をすべて上がっしに持ち去る効果
を考慮していないことにある。上の単純な計算でも、
1回の流下で面から持ち去られる凝縮液量は落下境界
液滴体積の10倍ないしそれ以上に達し、もし液湿が
半球形に近い形を保ったままで流下するとすれば、最
下部付近では、実際の軌跡幅はモデルで仮定した軌跡
幅の2倍以上となっていることがわかる。さらに、凝
縮面上部には落下界線半径に近い大きな液滴が多数存
在し、1個の液滴の落下がその液滴の流下軌跡に接す
4. 液度分布のランダム性および凝縮熱伝達率に関する一般的考察

4-1 液度分布のランダム性について 前章までの理論では、初めに 2-1 節で仮定したように、液度の幾何学的配置がランダムであるとしてきたが、このことについて考察する。それに関連して、2 章で扱った水下向き面の場合の液度分布 \(\bar{N}(r) \)（図 1 参照）と、3 章で扱った顕著な面における上部に残ってまだ一度も落下液度に洗われていない部分の液度分布 \(\bar{N}(r, t) \)（特に時間経過後のほぼ一定常形に達した分布：図 2 の \(t=80 \) s の分布参照）との間の根本的な差があるかを考えて見る。それは、3-1 節で \(\bar{N} \) に関する基礎式を導く際に述べたとおり、\(\bar{N} \) では液度分布を考察するべき基準面積から離脱液度を分けていくことであるが、このことは、被覆率の微視的な更新過程における変化に関係するものである。次のように見ることができる。2 章の \(\bar{N} \) に関する基礎式（2）の左辺は単位面積・単位時間・単位半径当たりに半径 \(r \) での液度合体のため消減する数を表し、これを単純に \(\bar{N}(r) \) と書くこととして、式（2）の両辺に \(\pi r^2 \) を乗じて \(\bar{N}(r) \) と \(\bar{N}(r, t) \) に関しても積分し、さらに右辺に部分積分を施せば次の関係式を得る。

\[
\int_{R_{\text{min}}}^{R_{\text{max}}} \pi r^2 \bar{N}(r) dr + \pi R_{\text{max}}^2 \bar{r}_e (R_{\text{max}}) N(R_{\text{max}}) = \pi R_{\text{min}}^2 \bar{r}_e (R_{\text{min}}) N(R_{\text{min}}) + \int_{R_{\text{min}}}^{R_{\text{max}}} 2 \pi r \bar{r}_e (r) N(r) dt \quad \text{(25)}
\]

この式の各項の意味を考えれば、次のためあたりで凝縮面被覆率が一定に保たれていることがわかる。

【液面の消減による新生面露呈】+【液面の離脱による新生面露呈】=【新生初期液面の付着による新生面露呈】

一方、3 章の \(N \) に関する基準式（7）について、上と同様第 2 節の液面消減率を \(\bar{N}(r, t) \) と書き、同様の積分を行なえば、条件式（9）を考慮することにより次式を得る。

\[
\int_{R_{\text{min}}}^{R_{\text{max}}} \pi r^2 \bar{N}(r, t) dr = \pi R_{\text{min}}^2 \bar{r}_e (R_{\text{min}}, t) N(R_{\text{min}}, t) + \int_{R_{\text{min}}}^{R_{\text{max}}} 2 \pi r \bar{r}_e (r, t) \bar{N}(r, t) dt \quad \text{(27)}
\]

すなわち、この場合には、【液面の消減による新生面露呈】

=【新生初期液面の付着による新生面露呈】

+【液面の成長による新生面周辺の被覆増加】

(28)

なる関係で被覆率を 1.0 に保っており、したがって、離脱液度を分けて考えていることが確かめられる。

ここで式（26）あるいは（28）の関係で新生面露呈と新被覆増とをつりあいが微視的に行なわれているさま、特に新生液面がどのような部分に発生するのかを考えると、まず、式（26）のつりあいの意味する現象が液度分布のランダム性の仮定とははっきり矛盾する内容を含んでいることに気付く。すなわち、離脱液度面に明らかに新生液面が密着することになり、この部分については当分の時間にわたって小さな液度の偏在が見られることになろう。すなわち、水平下向き面では、大きな液度のみに注目するとり一見液面の幾何学的配置がランダムであるという仮定が満たされているかに考えられるが、実際には、離脱液度面に新生液面が密着し、当分の間周辺と無関係に一定で考察した過程の過程で波に波面を差し付けて液面が成長している、かなりの時間経過ののち相当程度成長した液面が周辺の液面と共に差し干しを起こすようにになる。このような現象が面上のすべての部分で均等に繰返されていると考えるのが正確な姿である、水平下向き面の場合でも小さな液面周辺が局所的に起こっている過渡的な現象がかなり本質的に作用していると考えるべきである。
考えると、2 の理説は実はかなり実際と違った仮想的なモデルに対するものといわざるを得ない。
それでは、3 章の顕れた面上の部に残った液面分布についてはどうであろうか。式（28）のつりあいが行なわれている状況を考えてると、上での液滴液滴こんという三度面積への初生液滴付着による微小液滴偏在の要因も加えか、体合を起こした液滴のまわりに露呈される新面面にのみ初生液滴が付着することになる。またこの場合、現に面上に存在する液滴はすべてが発生以来迄も生やすった液面なのであれば、液滴の合体を含むば露呈される新面面は、その面積がきわめて小さい、きわめて多数かつ均一に凝縮面上にばらまかれていることがある。このように考えると、3 章における場合には、液滴分布のランダム性の仮定はかなり高度に満たされているものといえる。4.2 滴分布がランダムでない場合と凝縮熱伝達率の一般論 もし液滴の幾何学的配置がランダムであるという仮定をはずしたらどうなるかについて考察をしておく。半径 r なる液滴に対して、r < R であるような半径 r なる液滴がどう合体消溶させられるような位置にある（すなわち前節の中心から r + R なる距離に後者の中心がある）分布密度が、面全体の平均值

\[N(r) \] に対して修正重なり関数

\[\phi(r, r') \] 倍だけ達しているものと仮定する。このとき基礎方程式（7）、（8）はつきのようになる。

\[\frac{\partial N}{\partial t} = -\frac{\partial N}{\partial r} - 2\pi N(r) \int_{r}^{R_{max}} (r + r') \phi(r, r') \, dr \]

\[+ \frac{N_{0}(r)}{N_{0}} \phi(r, r) \, dr \]

\[+ \frac{\pi}{2} \int_{R_{min}}^{R} (r + r') \phi(r, r') \, dr \]

\[= \frac{\lambda}{\Delta T} \frac{1}{R_{max}} \text{func} \frac{\lambda}{R_{max}} \frac{l}{R_{max}} \]

\[\times \text{func} \frac{\lambda}{R_{max}} \frac{l}{R_{max}} \]

明らかに、\[\phi = 1 \] と仮定すればランダム配置を仮定する場合となる。ここでは \[\phi \] の形は不明のままに残して、この因子を考慮するとき2・2 節、3・2 節で考察した事項がどうなるかについて検討する。

（1）凝縮熱伝達率が一定なること 2・2 節（1）項におけると同様に、\[\Delta T = 1 \] に対する方程式（29）、（30）の解を \[N_{0}(r, t) \] 、\[\phi_{0}(r, t) \] 、またこのときの滴分布の修正重なり \[\phi_{0}(r, r') \] であったとすれば、\[\Delta T \Delta T \] に対する解は、もし \[\phi = \phi_{0}(r, r; \Delta T \Delta T) \] が満たされるならば、\[N = N_{0}(r, \Delta T \Delta T) \] 、\[\phi_{0}(r, \Delta T \Delta T) \] で与えられ、現象のすべての速度が \[\Delta T \Delta T \] 倍に進めることが起こることになる。この結果から逆に単なる現象の進行速度の変化に対しては \[\phi = \phi_{0}(r, \rho; \Delta T) \] となるのであることが認められる。結局頭書の結論を得る。

（2）寸法効果 これについては3・2節（2）項と同様に、\[N_{0}(r, r, \phi_{0}(r, r)) \] が \[R_{min}, R_{max}, N_{0}(r, r) = f(r) \] なる条件を満足する解であり、そのときの滴分布の修正重なり \[\phi_{0}(r, r, \Delta T) \] であったとする。もし新たな滴分布の修正重なり \[\phi(r, r, \Delta T) = \phi(r, m, m; \Delta T) \] が満たされれば、\[N_{0}(r, r, \Delta T) = m^{2}N_{0}(mr, m') \] と置くとき、それが \[R_{min} = R_{min}, m_{r}, R_{max} = R_{max}, m_{r}, N_{0}(r, r, \Delta T) = m^{2}f(mr, m') \] なる条件を満足する解である。\[N_{0}, r_{a} \] は、\[R_{min}, R_{max} \] を \[m_{r} \] とすると、滴分布も相似形のままゆく方向に \[m_{r} \] となり、現象の進行速度は \[m_{r} \] で増値することを意味し、この結果から逆に \[\phi_{0}(r, r; \Delta T) = \phi(mr, m', m_{r}) \] となるであろうことが認められる。そして結局、凝縮面長さも \[m_{r} \] とするとならば熱伝達率は \[m_{r} \] となる。

以上により上記の2性質が順次拡張されさりきって一般的に成立することがわかった。この二つの性質を一つにまとめることによって、凝縮熱伝達率に関するきわめて普遍的な性質を得ることができる。対物質が違う場合も考慮すれば、（1）項の性質は、式（1）を考慮するとき、単位面積・単位時間当たり凝縮量は（\[\Delta T \Delta T \]）に比例するといえるように普通的である。同様に（2）項の性質をいい換えれば、単位面積・単位時間当たり凝縮量は、一つの代表寸法をだし落下限界液滴半径 \[R_{max} \] に比例します。③ に対する初生液滴半径の比 \[R_{min}/R_{max} \] および凝縮面の最大傾斜方向長さ \[l \] の倍率 \[l/R_{max} \] の二つの因子にも関係する。したがって凝縮熱伝達率は、

\[h = \frac{\lambda}{\Delta T} \frac{1}{R_{max}^{2}} \text{func} \frac{\lambda}{R_{max}} \frac{l}{R_{max}} \]

\[\times \text{func} \frac{\lambda}{R_{max}} \frac{l}{R_{max}} \]

さらに、2・4 節における計算結果とその考察、3・2 節（3）項における考察、および3・2 節の計算結果とその考察に述べたとおり、全体の現象はかなり大きくなった液滴の挙動をほどよく決定されている。かつ数小液滴範囲の現象の進行速度がきわめて速いことから、\[R_{min}/R_{max} < 1/25 \] が満たされる場合には \[R_{min} \] の変化および初生液滴の発生状況はほとんど全く大体的現象に影響をぼらさない。また、3・3 節の計算結果について計算例を示したように、\[l/R_{max} \] は変に熱伝達率に影響をおよぼすがその程度はそれほど顕著ではない。したがって、凝縮熱伝達率は、

\[h = \frac{\lambda}{R_{max}^{2}} \text{func} \frac{\lambda}{R_{max}} \frac{l}{R_{max}} \]

ただし \[K \] は普通的定数である。
ともな結論に達する。

5. 結論

従来、その数学的取扱いが困難とされてきた液滴の変体現象について幾何学的統計的な考察を加えることによって、変体凝縮過程を記述する基礎をなす変位分布と液滴成長速度について論じた。第1段階として、液滴の配置がランダムであると仮定の下に、仮想的な水平下向き面における可定的現象に対する初めの考察を加え、変位分布と液滴成長速度との関係において、三つの基礎関係式（2）、（3）を導いた。第2段階では、実際上最も重要な傾いた凝縮面において、新鮮な面上への初生液滴の発生する変位分布の過渡的な成長。そして最初に落下界面に達した液滴の流下による著面面の露巻。という過渡的現象の挙動を本質的過程を形成していると考え、さきに定常的現象に対する基礎関係式を修正して、この過渡的変位分布の成長に関する基礎関係式（7）、（8）を導いた。第3段階として、液滴配置のランダム性の仮定について考察を加え、第2段階のモデルでこの仮定が十分妥当であることを結論したうえで、さらにこの仮定をはずした一般的な場合についての関係式（29）、（30）に関しても検討を加えた。

これら各段階において、基礎方程式の性質について理論的考察を加え、i）凝縮熱伝達が温度差をより一定にすること、およびii）最大、最小液滴寸法および凝縮面形状の尺度がそれぞれ1/mでなければ、凝縮熱伝達はm倍になると、これらの二つの性質が一般的に成立つことがわたった。これら2性質を合わせ、数値計算による検討をあわせ行えば、凝縮熱伝達の一般的に式（32）によって表わされるこ
toを結論した。

また、水平上向き面への過渡的変体凝縮の場合、あるいは傾いた面における変位分布の過渡的成長でも液滴が落下を始める前の段階を考慮する場合には、変位分布が相似形を保つまでも寸法だけが大きくなっていくという状態が実現されることを理論的に導き、実際、計算結果でそのような状態が現われるさまを示した。

液滴の流下現象について簡単なモデルを立てて熱伝達率を計算した結果は実際値より小さいものとなっ
た。この理由は、液滴が流下するときまわりの液
滴の落下を誘発し、また自身が流下するからと
ても成長するため、落下限界流下速度よりかなり
高い流下速度を極限と考えられるが、計算に用いたモデルではこのことを考慮していないためである。この点に関し
ては今後実験観察をもとに検討が必要である。

本報告の数値計算は東京大学大型計算機センター
HITAC 5020 E によって行なった。

文 献

（5）相村・加藤, 機論, No.710-17 (昭46-11), 151.
（8）近藤・服部, (昭28), 124, 滑流論。

論

具体的にいえばつきのところである。すなわち、式
（2）の導出において、凝縮面上に存在する半径 \(r \) の液滴に注目する状況下に、半径 \(r + dr \) の円環内には、半径 \(r_{min} \sim r \) の大きさの液滴の中心は存在するが、半径 \(r \sim r_{max} \) の大きさの液滴の中心は存在しないという条件を加えることである。このとき式（2）左辺の分布密度 \(N(r) \) が違うものになるが、著者はすでに4.2節で修正重み関数を考えておられるから、上記の拘束条件から \(\psi \) の具体的な値を与えることが問題
といえるかもしれない。なお式（3）の導出においても、半径 \(r \) の液滴の外周の円環領域（半径 \(r + r_{min} \sim 2r \) の領域）に存在する液滴に関し、上と同じことが
いえるが、この場合はさらに半径 \(r \) の近傍液滴どうしの間で外周円環領域が重なり合うチャンスの存在の問題を含んでいる。

最後に、被覆率 \(\alpha \) はきわめて厳密には \(\alpha < 1 \) であるべく（近似的には \(\alpha = 1 \) であっても）、また \(\alpha \) がどんな値になるかは凝縮の物理現象をもつもので、形式論理面から \(\alpha \) の値がアプリオリに定まると考えてはならぬと思う。本文の形式化の解析の範囲内では、熱伝達率その他の計算値が実験値に合うように \(\alpha \) の値を定めるという論理になっているのであるか否か。

そこでして、普通の試験凝縮の場合、 \(\alpha \) が 1 に近い値になることは、いろいろな面からみて妥当な事実のように思われる。

[回答] 貴重なご指摘をいただきたい。へん 有難い。確かに、個々の液滴が全く独立する（重なり合いを許しても）ランダムに配置されているとする本報の解析は、理論の 1 段階としてそれ以上の要因を有すると想定するが、さらに仮定を現実に近づけた解析が必要であると思っている。すなわち、液滴配置について、「液滴は大きさの順に優先権を与えて、互に重なり合うことなく、その限りでランダムに配置される」と仮定することによって、基礎式（2）および（3）[あるいは式（7）および（8）]に修正を加え、液滴どうしの幾何学的排斥条件を考慮した明確に定式化された方程式を導くことが可能であり、現在著者はその方向で理論を展開中であって、近く報告することができると思う。なお、その場合でも、i）熱伝達率が一定であること、ii）それが代表寸法に比例すること、iii）過渡的成長過程で相似解が存在が \(\sqrt{\frac{t}{r}} \) に比例して進むこと、など本報で述べた基本的性質はそのまま保存されることを付言する。

被覆率 \(\alpha \) についても、上記の幾何学的排斥条件を考慮すると、1.0 との差が微少であっても重要な意味を持つと予想され、ご指摘の方向で解決がかかるものと考えられ、慎重に数値計算を行なっている段階である。

[質問] 森沢一郎（東京大学工学部建築研究所）

液滴凝縮を理論的に扱おうとする際の最大の障害の一つは、液滴の合体成長というランダム過程と液滴分布をどう結びつけるべきかという問題の解決が困難であることである。その点、本論文で展開されている方法は一つの新しい方向を示唆するものと考えられ、著者の努力を敬意を表したい。

しかし、実際の複雑な現象の数学的モデルを作るときにはしばしば起こりがちなことであり、ある程度はやむをえないことでもあるが、本論文中にはモデル化のためのやや無理な仮定がいくつかみられるように思える。もちろん仮定というものがあり、一つの近似として許される場合もあるが、下記の事項だけは現象の本質と深くかかわっているだけにもっと厳密な検討を要する問題であると考える。

(1) 液滴分布のランダム性の仮定 本文論文の前半、後半を通じて著者は滴流れ分布のランダム性を仮定している。ここでいうランダム性とは、凝縮面上の任意の場所に半径 \(r, r + dr \) なる液滴の存在する確率が（単位面積あたり） \(N(r) dr \) であるという意味である。さらにこの \(N(r) \) をなるべく円形の仮定も仮定されている。ところで、実際の液滴凝縮の観察によれば、1 個の液滴の周囲に存在する液滴の局所的分布は、全体の分布 \(N(r) \) とは著しく相違しており、むしろ同一液滴のもののランダム・パーキンの状態に近い。しかしこのような分布する、場所ごとの履歴（たとえば一時排除されたか）によって変化し、定まった傾向を見出ることはむずかしい。

本論文の計算結果として得られている滴流れ分布や成長速度が実際とは大きくかけ離れてはいるが、原因の一つはこの事実の無視にあると考える。著者もこの点には気づいて多少検討をされているようであるが本質的な疑問は結構残ってしまっているのである。3108 ページ左欄 3～16 行の部分での結論など多少独特の思考がある。

(2) 孤立滴の凝縮成長速度の仮定 孤立滴の凝縮成長速度について著者は、すでにかなり豊かな理論的研究が存在していることか問題を考えていないが、これは異問である。これまで行ってきたほとんどすべての解析が凝縮面表面温度一定でなく大きな仮定に立っているからである。少し考えればわかるように（また最近は測定結果も二、三発表されているが）、現実の凝縮面の伝熱効果は蒸気側の輸送能力に比べて不十分なものであるために、表面温度は上をおおう液滴の大きさによって大きく変わる。一方、液滴の大きさは、凝縮によるばかりでなくひんなりと不透明な現象に変化させるので、実際の凝縮面以上の不透明な規則性 \(f_{1}(r) \) なるものはほとんど存在しないかのように思われる。したがって、この量をあたかも既知であるかのように考え、残りの二つの未知数 \(N(r), f_{1}(r) \) を二つの方程式の連立から導き出すという論は無理があるのではないかと思う。なお、著者は液滴が凝縮のみによって成長する期間を打破して考えているのであるが、凝縮面上の初生液滴の密度が 10^5/cm^2 以上であるという観測結果からみると、液滴は直径 1 μ以下で合体成長を行なっている。
ことになる。

筆者は、上記の二つの問題点が本論文の計算結果と実際との大きな食違いを説明するものであり、著者が考えている流下流液の幅が広がることや、落下液によ
る他液量の落下の誘発などの効果は過剰のではないと考える。このことは、溝状凝縮熱伝達率が凝縮面の高さ（2〜12cm）によってほとんど変わらないという測定結果からもいえることであると思う。

【回答】（1）の前半のこの指摘については甲藤氏のご質問を再現すると思うので、その回答をご参照いただきたい。
なお、場所ごとの座席についての配慮が必要である点については、3章の考察がそれにあたると考えている。また、4-1節の考察については、幾何学的解析条件を考慮した場合にもあらわれる問題があらって、ここで述べたことが予め修正を要するかどうかはそのまま成立立つものと考えている。

（2）ご指摘のとおり著者は、本論文の段階では凝縮面材料の熱伝導率が無限大で、その温度は一定であ
ると仮定している。理論の一階でいて、この仮定の下での検討は重要であると考える。ご指摘のとおり、有
限の熱伝導率を持った凝縮面材料では、ΔTは一定であることを新たに同定変数として加えて、凝縮面材料内部の熱伝導を考慮することになろう。そのことは後に段階で検討しようと考えていることの一つである。

【質問】越後正三（九州大学工学部）
液面の成長速度と滴間分布を連成して理論的に取扱
っている本論文を興味深く拝読させていただいた。

（1）基礎方程式の導出し
(1)式(2)を求める過程を空間分布を考慮して吟
味すると液面の消減は一部重複して数えられているよ
うに思われる。すなわち、r < ρ, ρ ≤ Rmaxの場合半径
ρ, ρ'の液面中心間距離 r(ρ, ρ')が

\[r(\rho, \rho') = \rho + r_\rho(\rho) + r_\rho(\rho') \]

の関係にあるとき、r + r + drの差は液面と吸収されて消減することになる。

(ii) 式(3)で同様に、Rmin < r < r'の場合に\nも半径 r と r'の液面中心間距離 r(r, r')が

\[r(r, r') = r\rho + r_\rho(r) + r\rho(r') \]

の関係にあるとき、r と r'の液面体積増加は一部重
覆して見積もられている。

（2）3100ページの基礎式から導かれる性質（2）
熱伝導率が一定である場合を前提で、式(2), (3)
は r_\rho(r) および r_\rho(r) および r_\rho(r) に関しては
線形であるが、N(r) と r_\rho(r) に関しては非線形であ
る。したがって N(r) は ΔT に関係するという性質は、
導けないのでないか。

（3）2・3節の数値解析の解を求めるのに有効な検討されたことと比較する。しかし
に式(2)を式(5)に変えて示しているが、両式の収束解は
物理的意味が異なる。たとえば式(2)は N(r) を
与えて変形する N'(r) = N(r) に関して線形になり、
式(2)の左辺に N_iの第0近似値を入力して第一近似
を求めて反復し、収束解を得る方法と比較して考え
ると式(5)では上記の反復計算のすべての過程で dN/
dt = 0 となっている。この点に関することを意見を伺いたい。
また本計算方法で r の数値化は対数目盛を等間隔に
分割したとあるが r の大きい範囲での N(r), r_\rho(r) の
精度が悪くなると思うかいかか。

（4）図1で N(r) が2のあらゆる値で最大値をとるこ
との物理的意味は理解にくい。計算方法、計算結果
から考慮すると、これは式(1)の r_\rho(r) の小さい範
囲では r_\rho(r) = r_\rho(1) の関係を r_\rho(1) に由来している
ように思う。式(1)の妥当性は r のどの範囲で保証さ
れているか。

（5）熱伝導率 h = 8 × 10^3 kcal/m^2h^0.5 という値は
あまりにも小さく、傾斜のある場合でもなお小さい。
本論文では凝縮過程をきたして時間的に変化したモデル
を考えておられるが、液面の合体などに伴う動的な挙
動が凝縮熱流の本質に関係すると考えられるか。ある
ば静的な取扱いをされている本理論をさらに展開す
ることにより改善できると考えておられるか著者のご
見解を伺いたい。

【回答】（1）合体される液面の中心がその上に
存在すべき円環面を考え、それらどうしの重複を考え
ると、dr, dr および dt の大きさを適当に小さく
取ることによって、それらが重複しないあるいは重
覆しても二次の微小量になるようにすることができる。
しかし、ご指摘の主旨が、上記の重複が起こる場
合はもともと液面どうしが幾何学的に接触すること
であるということにあるとすれば、甲藤氏の指摘され
た内容に倣わし、その回答をご参照いただきたい。

（2）ご質問には誤解があるようであるが、ΔT = 1
に対して N = N_i, r_\rho = r_\rho_i が解であり、ΔT = ΔT_i
に対しては N = N_i, r_\rho = ΔT r_\rho_i が解となることである。

（3）ご質問の前半に述べておられる解法が著者に
はよく理解できないのでご質問の答えるかどうかか
からか、本報の解法の収束性はきわめてよく、任意
の初期条件から容易に同じ収束解に達したことを述

NII-Electronic Library Service
べておく。rの刻みの点は、計算結果に見られるとおり対数目盛で適当な変化を示しており妥当なものと思う。

（4）N分布に最大値が現われる意味は、本文に述べたとおり、液滴が微小な範囲では液滴がほとんど合体せずに成長することを示している。著者は、凝縮成長速度についてどのような仮定しよとも、液滴が微小でない範囲ではほとんど合体が起こらないという事実は成立し、その結果N分布に最大値が生ずることに必聴が起こるものと予想している。

（5）ご指摘のとおり、気体に伴う液滴の振動の影響など考慮されよう。しかし当面著者は、液滴どうしの微小な接触条件を考慮した解析の混雑を考えている。

【質問】勝田勝大郎（関西大学工学部）

滴状凝縮に対してシミュレーションによる解析は発表論文数も少ないのでは。またさて意味あるものと考える。本研究結果にもあるように実験観察による現象過程の確実なものは少なくて、観測される仮定の妥当性が欠如、無意味な計算結果となるのが理論解析の欠点であるそう。そこで次の点につき著者の見解を示されよう望む。

（1）Faticaらの円柱の凝縮成長速度式（1）を引用しているが、その妥当性をどう考えるか。

（2）滴径分布をランダムに値えると、実際にはΔTがランダムにならんで、本計算のごくっと温度一定の条件はくずれてしまうのである。点はどうか。

（3）実際の傾斜凝縮面上では、有尾状の落下滴もでき、また数値落下滴が膜状となって凝縮面上を被覆する部分も形成される（付1）から、滴径分布のランダム性の失われず制限もあると考える。本計算の適用できる範囲をどう考えるか。3107ページに落下滴軌跡幅については記述があるが。

（4）3106ページ右欄24行めにαが大きなものと多少凝縮熱伝達率が大きくななる結果が示されているが、古くShea-Kraseの結果（付2）では凝縮面長さにより減少することを示しており、当方の結果では上端よりある距離で最大値をとり、その後は減少を伴う傾向をもった。この反対傾向ともいえる結果をどう考えるか。

（5）式（31）右辺のΔTのもとの物理的意味はないか。この場合凝縮熱伝達率は時間の場所的平均値と考えられるが、それでよいか。もしよければΔTもそのような平均値か。（2）項と一に上に述べられたも構造で

【回答】初めに、著者は、本研究は理論解析であってシミュレーション（ディジタルあるいはアナログ計算機による模擬実験）よりは一步出たものと考察しているがいかがかだろう。

（1）少なくとも第一義的に引用する式として最も妥当ではないかと考えている（棚沢氏への回答（2）参照）。

（2）棚沢氏への回答（2）をご参照いただきたい。

（3）混雑の流下に関する現象はこれからの問題と考えており、本報ではまだ正確に議論できる段階ではないと考えている。

（4）αの影響についてもまだ正確にうんざりできる状態になく、さして大きな影響がないであろうという程度である。

（5）この場合にはあくまで$\Delta T=const.$の場合を考えている。ご質問の（2）とともに棚沢氏への回答（2）をご参照いただきたい。

【質問】編修理事

理論結果において、凝縮熱伝達率が温度差によらず一定になることなどを強調されている。その実験的うべくについて述べていただいた。なお、管が蒸気の流動によって制約的に流される場合に、本理論結果は適用されるか（機械の研究、9-8（昭32）、921；9-9（昭32）、1057；9-10（昭32）、1179）。

【回答】凝縮熱伝達率の温度差（あるいは凝縮熱負荷）による影響については、従来の実験結果を多くのものが温度差によらず熱伝達率がほぼ一定ととしており、本文の理論結果とよく一致する。しかし、温度差の小さい範囲ではその減少を伴って熱伝達率が小さくなると報告しているものもあり、測定条件に関する諸条件の問題もあって、熱伝達に関する実験結果はまだ確定されたものとなっているようである。

蒸気の流動の影響について岐阜の研究に関したご質問では、蒸気流による力の影響が比較的高けた液滴の挙動にのみ顧問で小さな液滴にはあまり作用しないものと考え、その影響は結局流体限界速度R_{max}を小さくするという効果で代表されることとなる。そのように考えれば、本文の結果に述べた式（32）によって、熱伝達率はR_{max}に逆比例し、熱伝達率を増加にすることになる。析波の観察結果もさらに上のようであったと記載されているが、R_{max}と熱伝達率の関係を直接検討していなかったようである。

本文論の諸結論について、実験研究者の立場から読み、たとえば勝田氏のご質問にもあるとおり、いろいろ疑問があるそうかと想像する。また、著者自身もけっ

して従来の実験結果を不勉強な訳ではなく、種々の問題点を意識し、また今後の発展の課題と考えている。それ故本研究において著者は、滴状凝縮機構を解析的
に取扱う新しい試みの一段階と考えており、実験結果との厳密な比較検討は、しかるべき段階で、著者自身が現在計画している実験（たとえば本文に述べた液滴
群の過渡的成長と相似分布の実測など）を踏まえた上で行ないたいと考えている。
なお、著者は現在、主として甲藤氏のご質問とその回答の線にそって、さらに現実に近いモデルについて解析を進めつつあり、新しい興味ある結果を得つつあることを付記する。