外管回転偏心二重管の速度分布と摩擦モーメント*

山田 豊**, 中林栄一**, 阿部忠夫***, 小林保弘****

1. 論 言

外管が回転する偏心二重管内流れの摩擦モーメントおよび圧力分布については、すでに内管外径 63.5mm の小形装置を用いた結果について報告した(1)(2)。実験結果のうちもなのは、偏心率の小さいときには回転数を増して遷移状態に近づくと、摩擦モーメント係数は層流の理論値よりはずれて小さくなり、偏心率の大きい場合には逆に大きくなること、また遷移状態では使用流体によって摩擦モーメント係数の値が異なる場合のあることなどであるが、さらに詳しく調べるには速度分布および流動状態との関係を明らかにする必要がある。

外管回転の同心二重管では、D. Coles(3)、C. van Atta(4)によって層流と乱流が二重ねじのように共存するスパイラル状ブレーンが発生することが観察され、熱線風速計による速度変動の記録から確かめられたが、摩擦モーメントおよび速度分布の測定はされていない。

本報では、内管外径 300mm の大形実験装置を製作し、これを用いて摩擦モーメントと速度分布および流速状態との関係を、レイノルス数および偏心率の広い範囲にわたって実験的に明らかにした。

2. 記 号 (図1参照)

\[
\begin{align*}
 r_o &: \text{外管半径} \\
 r_i &: \text{内管半径} \\
 \delta &: \text{平均すきま} = r_o - r_i \\
 r_m &: \text{平均半径} = (r_o + r_i)/2 \\
 \beta &: \text{すきま比} = \delta / r_m \\
 e &: \text{偏心量} \\
 m &: \text{偏心率} = e / \delta \\
 U &: \text{外管の周速度} = r_o \omega \\
 R_e &: \text{回転レイノルス数} = r_m \omega \delta / \nu \\
 \frac{cM}{\nu} &: \text{摩擦モーメント係数} = M / 2 \pi r_m \omega \delta
\end{align*}
\]

* 昭和44年3月17日 東海支部第18回総合講演会および昭和47年8月28日 第50回全国大会講演会において講演。原稿受付 昭和49年8月15日。
** 正員、名古屋工業大学（名古屋市昭和区御器所町）。
*** 日立製作所長崎工場。
**** 豊田工機株会社。
装置に比べて外径が大きくため測定するモーメントは著しく大きいのに対し、測定部を支える軸受は両端にある2個の小形軸受ののみあり、その上3個の内管はいずれも空気が満たされているため自重は浮力によって打ち消されるので、軸受に作用する摩擦トルクは比較的小さいため、摩擦モーメントの測定精度は小形装置に比べるとかなり高い。

速度分布測定用の内管には、中央断面上の1箇所に外径0.8 mmの管から作ったビトー全圧管および静圧管が10 mmの間隔をおいて壁面より同一高さに取付けられ、この2本のビトー管は一体となって内管を支える中空軸の中に取付けられたブロッケの斜面上に乗っており、ブロックを軸方向に移動させることにより、ビトー管を上下させることが出来る。偏心量の調整および最大すきま位置の決定法は前報(1)、(2)と同様であるので省略する。なお、本装置はすきまに比べて長さが十分長くないので、すきまの端に生ずる二次流れの影響がある。したがって二次流れの発生を防ぐため、内管の両端にすきまのほぼ半分の半径方向高さをもつ薄板製のリングを取付けた。

4. ビトー管の検定

流速は \(u = \zeta \sqrt{2 \rho p / \rho} \) から求められる。 \(\zeta \) はビトー管係数で、ビトー管レイノルズ数 \(R_e = du/\nu \) （ \(d \) ：ビトー管径）の関数である。 \(R_e \) の小さいときは、内径330 mmの外管を用い、実験装置を同心にしてビトー管をすきまの中央の位置におき、外管の回転数を流れが層流を保つ範囲内で変えて \(\zeta \) を求めた。かくして求められた \(\zeta \) を用いて、ビトー管を半径方向に移動させて求めた同心二重管の層流の速度分布は、後述するように理論値とよく一致した。 \(\zeta \) のおおよその値は \(R_e \) が 15 で 0.75, 20 で 0.85, 40 で 0.95, 100付近では 1.02 であるという値となった。

\(R_e \) の非常な大きい場合には、全圧は正確に得られがビトー静圧管で得られる静圧は必ずもし正確ではないので、\(\zeta \) に影響するのは静圧の指示である。測定位置における静圧は、内管壁上の静圧にビトー管位置までの遠心力による圧力上昇を加えた値である。外管回転同心二重管の高いレイノルズ数における乱流状態の速度分布を、\(\zeta \) を1付近の一定値に仮定して求め、すきまの中央の静圧を内管壁上の静圧に遠心力による

\[
\frac{u}{U} = \frac{1}{1 + m \sin \varphi} \left\{ 1 - \frac{m^2}{2 + m^2} (3 \varphi - \varphi^3) + \frac{1}{3} \frac{R_e \beta m}{2 + m^2} \frac{1 - m^2}{2 + m^2} \sin \varphi (3 \varphi - 10 \varphi^3 + 14 \varphi^5 - 315 \varphi^7 - 252 \varphi^9 - 70 \varphi^{11}) \right\}
\]

図3 m=0の摩擦モーメント係数と速度分布

増分を加えたものに等しいとした所、\(\zeta = 1.02 \) とするとビトー静圧管から求めた値と一致した。したがって \(R_e \) が100以上では \(\zeta \) は1.02の一定値とした。

5. \(\beta = 0.095 \) 2の摩擦モーメントと速度分布

前報(1)で述べた方法により層流の場合の速度分布を求めると次式のようになる(6)。
ここに \(r = y/h \), \(h \) : 最大すき間の位置より回転方向に角度 \(\varphi \) の位置のすき間, \(y \) : 外管壁からの距離, \(u : y \) の位置の速度である。慣性力が無視できる場合には

\[
\frac{u}{U} = \left(\frac{6}{1 + m \cos \varphi} \right) \left(2 + \frac{m}{m^2} \right) \frac{1}{(2 - \varphi)^2}
\]

\((1 - 4 \varphi + 3 \varphi^2)\) である。

層流の場合の摩擦モーメント係数 \(c_m \) の理論値は

\[
c_m = \frac{1}{R_e} \sqrt{1 - m^2} \quad \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots (3)
\]

である。図 3(a)は同心の場合の摩擦モーメント係数 \(c_m \) と回転レイノルズ数 \(R_e \) の実験結果を示す。図中45°の直線は \(m = 0 \) の場合の式 (3) の値 \(c_m = 1/R_e \) を示す。スピンドル油の場合は \(R_e \) が 7000 でも層流を保つが、それより動粘性係数 \(v \) の小さい 53.58%のグリセリン水溶液では、\(R_e = 3500 \) 付近から層流の値より著しく大きくなる。図(b) は速度分布を示す。\(r = y/\delta = 0 \) は外管壁, \(r = 1 \) は内管壁を示す。\(R_e = 2000 \) では図(a)からわかるように流れは層流で、速度分布も層流の理論値と極めてよく一致している。\(R_e = 5000 \) では層流の場合に比べ壁から離れたところの速度こう配はゆるやかで、壁付近では急になる。この場合はグリセリン水溶液を用いた場合であるが、スピンドル油を用いた場合は \(R_e \) が 5000 でも \(c_m \) は層流の値 \(1/R_e \) と一致し、流れは層流であるが、速度分布を求めるとグリセリン水溶液の場合と一致する。これはビーム管によって流れが乱され、乱流（正しくは後述するようにスパイラルタープレース）に変移したことを示す。\(R_e \) をさらに変えて実験した結果、乱流の場合の場合は \(R_e \) が 50000 まで \(R_e \) を増やすにしたがいゆるやかになるが、さらに \(R_e \) を増すと流れの安定化のため逆にやや急になり始める。図(b) には実験結果の一部が示してある。\(R_e = 50000 \) および 250000 について図(b)から速度こう配を求め、図(a)の \(c_m \) の値を用いて混合距離 \(l \) と \(\delta \) の比を計算すると図(c) のようになる。\(R_e = 50000 \) 以上では外管回転による流れの安定化により混合距離は短くなり、\(l/\delta \) の最大値は \(r = 0.75 \) 付近にある。すなわち安定化の影響は内管側よりも外管側に近い方が強くうける。

図4は偏心率 \(m = 0.25 \) の場合を示す。図(a)の \(R_e \) の小さな所では \(c_m \) は層流の理論値式 (3) の値とよく一致するが、\(R_e \) が大きくなるとそれよりやや小
さくなって $R_e = 2500$ 付近から ϵw の値の変動を伴って急に大きくなる。図(b)は $R_e = 2000$ の場合 $\psi = 0^\circ, 90^\circ, 180^\circ, 270^\circ$ の場合の速度分布を示す。図中破線は慣性力を無視した層流の理論値式(2)の値を示す。$\psi = 90^\circ$ の場合は式(2)と非常によく一致しているが、他の角度の場合はあまりよく一致していない。しかし $\psi = 180^\circ$ の場合、R_e の小さい場合を示すと図(c)のようになり、R_e が小さくなるに伴い実験値が式(2)の値に近づく様子がわかる。図(d)は $R_e = 50000$ の場合を示す。壁近傍を除けば速度こう配はゆるやかになるが、ψ による速度分布の変化の傾向は図(b)の場合と同様である。

図5は $m = 0.5$ の場合であって、図(a)は $\epsilon w - R_e$ の関係を示す。R_e が増すに伴い ϵw が式(3)の値より小さくなる傾向は $m = 0.25$ の場合よりも大きい。図(b), (c) はそれぞれ $R_e = 2000, 50000$ の場合、ψ をパラメータにして速度分布を示したもので、$m = 0.25$ の場合と同様の傾向であるが、角度 ψ による変わり方がいちょう大で、特に $\psi = 0^\circ$ では内管壁近傍で逆流が生じている。図(d)は $R_e = 1000$ の場合に慣性力を考慮した式(1)の値を示したもので、$\theta = 180^\circ$ の外管壁近傍の値が実験値よりかなり大きい点を除けば、両者の傾向はだいたい一致している。図(e)は $R_e = 50000$ の場合、ψ の 10° 間隔で速度分布を測定し、その結果から描いた等速度線図である。図は半径に比べすぎまを 5 倍に拡大して描いてある。0° ～180° の線に対して比較的対称になっている。よく離点は 300° ～310° の間、再付着点は 40° ～50° の間にある。

図6は $m = 0.5$ の場合、R_e をパラメータにして $\psi = 0^\circ, 90^\circ, 180^\circ, 270^\circ$ の場合をそれぞれ図(a)～(d)に示す。比較のため式(2)の値も同時に記入してある。図(a)の最大すぎまの位置では、$R_e = 2000$ の

図 5 $m = 0.5$ の摩擦モーメント係数と速度分布
実験値は内管近傍の逆流速度が小さい点を除けば、式 (2) とよく一致している。R_e が増すと逆流は一時なくなるが、$R_e=50000$ ではずかずか逆流が生ずる（図 5（e）参照）。$\varphi=90^\circ$, 270° では $R_e=2000$ の速度は式 (2) の値より内管近傍では大きく内管近傍では小さいが、R_e の大きい場合はこの傾向が逆になる。$\varphi=180^\circ$ では $R_e=2000$ の速度は $\varphi=90^\circ$, 270° の場合と逆に式 (2) の値より外管近傍で大きく、内管近傍で小さく、R_e の大きい場合はこの傾向がいっそう大きくなる。

$m=0.75$ の場合の c_m-R_e の関係と、$\varphi=0^\circ$ の場合の速度分布を図 7（a）、（b）に示す。層流の c_m の値は $m=0.25, 0.5$ の場合と逆に、R_e を増すと式 (3) の値より増加するが、$R_e=60000$ 付近で一度式 (3) の値と一致しており急激に増加する。速度分布はいずれの場合も式 (2) の値とあまり異なる。

図 8 は偏心率をパラメータにして速度分布を示したものである。図（a）、（b）は $R_e=2000$ の場合につい

6. $\beta=0.0488$ の摩擦モーメント

すきま δ が前章の 1/2 の場合である。この場合も速度分布の測定を試みたが、すきまが小さいのでビトーチン、特に内管管はできるだけ細い管を用いて先端を平日にしないと速度分布の影響の大きな精度が悪くなるが、一方流れにスピンドル油など粘性係数の高い流体を使用する場合が多いので、管が細くてしかも給油部の断面積が小さいと測定に長時間を要し誤差が増し

図 9（a）～（d）はそれぞれ $m=0, 0.25, 0.5, 0.75$ の場合の c_m-R_e の関係を示す。いずれの場合も R_e の小さい場合は層流の理論値、式 (3) とよく一致している。R_e を増しても $m=0$ の場合は式 (3) とよく一致するが、$m=0.25, 0.5$ では実験値は式 (3) より低くなり、$m=0.75$ では逆に大きくなるが、その差は β の大きい前章の場合より小さい。$m=0.25, 0.5$
では遷移領域において使用流体による claimer の差が著しい、またこの場合には、圧力分布も使用流体による差が著しいことは、既報(2)の場合と同様であった。

7. $\beta=0.0800$ の摩擦モーメントと流動状態
流れを可視化するため、内径 325 mm の透明な外管

![Graph](image1)

図 7 $\beta=0.75$ の摩擦モーメント係数と速度分布

![Graph](image2)

図 8 速度分布の偏心率による比較

を用い、流体中に重量比 8/10000 の割合で微細なアルミ粉末を混入した。微量のため粘性係数おおよび claimer
の値は変わらなかった。図10(a)〜(e)はcm-Rωの関係を示す。βの値は5章のβ=0.0952に近いので、cm-Rωの関係もおおよそそれに近い、流れの観察および写真撮影はRωの広い範囲にわたって行ったが、その一部を図11(a)〜(f)に示す。図11の場合の撮影位置は、いずれも二重管の最大さきまでの位置を真上にして外管が上から下へ回転する側で、水平より約35°上方から写したものである。流れが最初に現れるのはこの写真の側で、流れに乱れがあると微細なアルミ薄片からの光の反射が不均一となって明らかに見える。

図10(a)のm=0の場合、Rω=2550まではcmの値は完全に層流の理論線と一致し、乱れが全く現れない。
していない。グリセリン水溶液の場合、R_sを増して領域A（$R_s=2550$〜3100）になれば、乱れの発生した部分がとぎれていけどスピールの様相を呈し、外管の回転方向に回転する。この領域ではトルクの値も激しく変動しながら$c_D=1/R_s$の値より急激に増加する。しかしスピンデル油では図11(a)に示すように$R_s=3210$でも乱れは全く現れておらず、R_sが最大5500まで流れを保つことが流れの観察からも確認され、c_Dの値は式(3)とよく一致している。グリセリン水溶液の場合さらにR_sを増して領域B（$R_s=3130$〜4710）になると、とぎれていた乱れの部分が完全に結びつき、図11(b)に示すように完全なスパイラルとなる。しかし領域Bにおいては、スパイラルの方向が30秒〜2分程度の間隔で1秒以内の短時間に急激に移り変わり、この際トルクの測定値も激しく変化する。このスパイラルの方向は領域C（$R_s=4710$〜9400）になると安定し、トルクの測定値も一定値を示し、R_sの増加につれて乱流部分が増加する。領域D（$R_s=9400$〜14000）になるとき大半が乱流部分で占められ、スパイラルの形は崩れ、層流部分が消滅したり現れたりする不安定な流れとなる。領域E（$R_s>14000$）になると図11(c)に示すように全周に散らばり乱流となり、c_Dの値は領域Dの場合より急に増大したので、R_sの増加とともにゆるやかに減少する。なお使用流体がスピンデル油の場合、遷移レイノルズ数は約5000で、53.5％のグリセリン水溶液の遷移レイノルズ数約2600よりはるかに大きい。しかし遷移した後のスパイラル・プレスの状態は同一のR_sにおけるグリセリン水溶液の場合と同じであり、この後のR_sを下げた場合もグリセリン水溶液の場合と同じで、R_sが約2600まで乱流部分が存続する。

図10(b)は$m=0.25$の場合の$c_D=R_s$の関係である。R_sが低い場合、c_DはR_sが増加するにしたがい（式(3)の値の違い）大きくなくなっているが、$R_s=1000$では端面近傍の乱れが発生し、$R_s=2500$になると中心部にも発生するようになる。領域A($R_s=3030$〜3960)では図11(d)に示すように、スパイラルプレスのような形をした乱れが外管の回転方向に回転し、トルクの値の変動が激しい。領域B（$R_s=3960$〜9400）になると乱流部分が層流部分との境界面が管軸に平行になる。その周方向の変動は少なくなわり、トルクの値も落ち着き、領域C（$R_s>9400$）では乱れが全域に及び、完全に乱流となる。

図10(c)は$m=0.5$の場合である。$m=0.25$の場合と同様にR_sを増すに伴いc_Dが式(3)の値よりもますます離れて小さくなるが、乱れの発生が認められるようになるのはR_sが2000近くになってからである。しかし円周方向流が生ずる場合は（最大方向の付近）には周方向にうすい模様が見られる。これはテイラーユニットに似た弱い二次流れが生じていることを示すもので、これが図6(a)に示すように$R_s=2000$における逆流速度が式(2)より小さくなる理由と考えられる。$R_s=2000$になるとしご模様の中に部分的に乱れの発生、消滅を繰返すようになる。A領域（$R_s=2730$〜3800）では層流部分と乱流部分の境界面はほぼ管軸に平行になる
が、図 11(e)のように乱れの強さは場所的にも時間的にも大きく変動し、トルクの値も同時に大きく変動する。領域 B1（R_e = 3,800〜6,000）になると層流と乱流の境界面は変動し、R_e を増してもその位置は変わらず、c_m は R_e の増加とともに減少する。しかし B2 領域（R_e = 6,000〜11,300）になると、乱流発生の境界面は R_e の増加にともない、図の方向に逆方向に移動して乱流部分が増加し、c_m が極大値をとる付近で全層が乱流となる。C 領域（R_e > 11,300）では全周にわたり完全に乱流となり、c_m は R_e の増加とともに減少する。

図 10(d)は m = 0.625 の場合である。R_e を増した場合、c_m が式 (3) の値より小さくなる割合は m = 0.5 より小さく、逆流場においては画面が現れた後 R_e = 1,650 で乱れが変わる。(e) で示される。

図 10(e)は m = 0.75 の場合である。R_e = 600 以下では c_m は式 (3) とよく一致するが、R_e をそれより増すと c_m は式 (3) の値より増加するが乱れは観察されないし、逆流方向に生じる層流層はかなり小さいようである。R_e が 780 付近で図 11(f) から見分けにくいが、逆流域の一部に層流層の中に乱れが見られる。領域 A（R_e = 1,100〜1,700）になると発生する乱れが大きくなくなり逆流方向に極大値をとるが、領域 B2（R_e = 1,700〜3,800）では逆流と乱流の境界が軸に平行となり位置も安定する。領域 B1（R_e = 3,800〜13,000）では R_e の増加とともに乱流部分が増加し、R_e = 13,000 付近で c_m が最大値に達すると同時に全周乱流となる。図 12 は c_m の値が R_e の変え方にによって異なることを示す。

8. 結 語

外管回転偏心二重管の摩擦モーメントと速度分布の測定および流れ方向の観察を通じて、結果を以下に示す。はげのような結論を得た。

(1) すきま比 β = 0.0952 の同心二重管の乱流の場合、無次元速度こう配は回転レイノルズ数 R_e を増やすとともないゆるやかになるが、R_e が 50,000 以上では逆に急になる。混合距離最大の位置は内管壁からすきまのおよそ 1/4 付近にあり。

(2) 同心の場合摩擦モーメント係数 c_m は、層流の場合からスパイラルタップに異なる場合に急に増加するが、さらに R_e を増してスパイラルタップの層流部が消えて全体乱流になる場合にも急に増加する。

(3) R_e 偏心率 m が共に小さい場合速度分布は慣性力に無視した式 (2) とよく一致すると思われる。

(4) m の大きい場合乱れが観察されより低い R_e において、逆流が生ずる付近に二次流れが発生する。またスパイラルタップスムース生じない。

(5) c_m は逆転レイノルズ数より低い R_e で m の大きさに応じて層流の理論値より大きくまたは小さくなる。乱れが最初に観察されるのは c_m が理論値から離れるときの R_e よりも大きい R_e においてである。

文 献

(1) 山田・ほか 2 名、機論、35-269 (昭 44-1), 89.
(2) 山田・中村、機論、33-273 (昭 44-5), 1038.
(5) 山田・中村、機論、32-231 (昭 42-10), 1609.
(6) 中村、機論、No. 194 (昭 43-3), 137.

討 論

【質問】 小茂島和生（慶應義塾大学工学部）

(1) 多数の c_m の測定結果に基づいて検討しておられるが、これらの結果は前報とほとんど変わらず、c_m-R_e 曲線についての説明を全く同一 といってもよいように思える。すなわち大規模装置による追試が小規模装置の結果と一致した点に意義があると考えてよいか、あるいは何らかの相違があるのか。

(2) スビンドル油を用いた場合層流域が拡大しており、流体の方向による c_m-R_e 曲線の違いについては前報でも指摘されている。これらについて今回の流速分布測定結果または可視化実験の結果から解釈が得られるか。

(3) 522 ページ左欄 14 行め以下において外筒の回転により流れが安定化すると言っているが、これはどのように機構に基づくのか。

(4) 528 ページ左欄 6 行めにてモーメントの測定精度が前報の測定にくらべ向上したとの述べているが、定量的にどの程度の向上を示していたったか。なお c_m に対してはロータリ半径の影響が大きく、M の精度向上はあまりきかないのではないか。

(5) 可視化実験の結果を c_m-R_e 曲線の曲がり変化と結びつけて議論しているが、本論文の重点である速度分布との関連に及ぼす影響は 1 節所だけ（528 ページ右欄下 5 行目）である。乱れなどの発生につき触れず測定した速度分布と対応させて議論できるか。
(1) $cm - R_a$曲線は流れ状態が層流、乱流、遷移域のいずれかに属しているかを示す上で重要なものであるので、速度計測を必要とする。流向判定のための、流れ状態の可視化実験においてその対象の流れを説明する必要がある。cmの測定結果を示した。
(2) スピンドル油を用いて層流域を拡大した場合、速度分布を層流の場合と一致させるように考えた。この場合可視化実験では流れが層流であることが確かめられたが、ビトー管をそう入すると乱流へと変換して層流状態をなすことがcmの測定および可視化実験から判断した。したがってこの場合の速度分布を得るには、たとえばレーザ速度計などを流れを乱さないように測定する必要がある。
(3) 外管回転内管静止の場合に微小させる流を考えて、まず半径方向の流れは周速度の小さい場合から来たため、速度が小さいと新しい場所の大きな圧力こう配によって押し出され、逆に内向きの流れは遠心力のほうが圧力こう配より大きいため同様に押し出される。乱流の場合でも同様にして流れが抑制されると考えられる。
(4) 本文で説明したように、トルク測定部の支えが両端の小形軸に重力のため、安定することも考えれば、過去測定で摩擦は非常に小さいが、発熱が小さいと摩擦が大きくなることが知られている。小形装置では半径に比べて全体が長いので、半径に対する小形軸の長さで支えられるため発熱止めきりまで接触してトルク測定ができないので、かえって軸受が余分に入れてある。この軸受は小さくできないためこの摩擦が大きくなり、測定の原因になっている。測定精度は実験条件により異なるので定量的に示すのは困難であるが、本実験のcmの測定結果はばらつきが少なく、再現性も良かった。ただ半径に比べて長さが短いため、無限長の場合と流れ状態が異なる影響を考えられるが、小形装置と同じように成り、同心の層流の場合理論値とよく一致することから、この影響はなかったと考えられる。なお二重管端の影響についての詳細な検討は未だ述べる予定である。
(5) 本報は流れ状態とcmおよび速度分布について一般的に述べたもので、流れの発生、乱れ強さなど詳細は今後検討する予定である。

【質問】小茂鳥和生
前質問（2）のご返答について、スピンドル油を用いた場合層流域が拡大した事実は貴実験により明らかになったと考える。スピンドル油と他の液体との差異は少なくともR_aに関係する物性。その他以外の流れの特性が関与していると考えられる。それにつき、なぜ層流域が拡大したか、それにどのような機構が関与しているかについてご見解を伺いたい。
【回答】外管回転の場合は質問（3）の回答で述べたように流れは安定化されるので、回転数の増加はこの安定化を増やすけれども、一方レイノルズ数の増加によって粘性による安定化が弱まり、結局後者の影響がききまして乱流へと変換すると考えられる。したがって変換付近の流れは外部からのわずかの乱れによって非常に大きく影響される。スピンドル油は使用した他の流体よりも粘性係数が大きいので、同一流体数では他の流体の場合よりも周速度が大きかった。したがって管を回転させたときに振動や回転により生じる乱れをこの周速度で無次元化した相対的乱れを考慮した場合、スピンドル油の場合は他の場合に比べて乱れが少ないのですでに層流域が拡大したと考えられる。なおスピンドル油を用いても回転数を急に変えた場合は、小さいレイノルズ数で乱流へ変換した。

【質問】田中憲勤（福井大学工学部）
1. 慣性力が無視できる流れは、一般に回転レイノルズ数が極めて小さい場合に限られているが、速度分布の測定値との関係を、たとえば図5(e)で図6では式(1)を用いず、あえて式(2)を用いて比較された理由について伺いたい。
2. 図5(e)で$0°$から$180°$の線に対比的対称になっていると述べられているが、偏心が大きい場合、質問者に対する実験値では非対称ではなくならない。図4(b)で、$\varphi = 90°$と$270°$で明らかに非対称である。この理由について伺いたい。
3. 図4(b)で、$\varphi = 90°$の場合に式(2)と一致し、それ以外で一致しない理由についてご意見をお聞かせ願いたい。
【回答】1. 測定値のβ, R_aが大きいか式(1)で与えられるところの慣性力を考慮した理論の取扱範囲を測定値の条件がはるかに越えている。そのため実測値と理論値との比較を行っていない、式(2)を用いたのは、慣性項無視の理論との差を考慮するために記入したものである。
2. 層流の慣性項を考えた理論結果では、等速度線図の非対称性がR_aの増大とともに増す。また慣性力が0.1, 0.25, 0.5の範囲では、慣性力の小さいほうが流れの慣性力効果が大きいため、この非対称性が強く現れる(1)。一方慣性項無視の理論では、等速度線図は対称である。本文において比較的特例と述べたのは、「層流の慣性力考慮の理論結果に比する比較的特例」という意味で述べた。図5(e)で$R_a = 50000$で流れが明らかに乱流であり、乱流では非対称性が弱くなるものと考えている。
3. 本稿は実測結果を述べたが、βおよびR_aが大きい場合の理論的考察を行っていない。今後明らかにする予定である。

(1) 中林、名古屋工業大学学報、18(昭42), 193.