角に沿う乱流境界層
（長方形断面の角柱の場合）

古屋善正**, 中村弥雄**, 宮田勝文**, 山 康博**

1. まえがき

工業技術の進歩に伴い、最近内側に軸方向のフィンをもつ管材の製造が比較的容易になったため、これらが熱交換器用の管材として従来の円形管と比較し、換熱カーブがよくなる可能性もあり、このような管の全体的な伝熱特性に関する研究も始められた。したがって、流れ方向のフィン形状が熱交換器の適性を知るため、工学上重要な問題と考えられる。

一般に、流れ方向のフィンが流れに平行な線をもつ角を形成する場合、そこに発達する乱流境界層はプラントールの第2種の二次流れを伴う複雑な三次元流れとなる。著者らは、長辺20×20mmの長方形断面の角柱を試験片に流れ的方向に置き、内向きの角（コーナ）と外向きの角（エッジ）の角柱が角柱から交流された二次元流速の境界層厚さに比して、比較的近接した壁面形状の実験において、さらに形成される乱流境界層の諸特性の測定を行い、その結果に関して報告した。

ここでは、角柱断面のアスペクト比の変化により、長辺60mm、短辺20mmの長方形断面の角柱を長辺が壁面に垂直となるように置き、20×20の角柱と比較二つのエッジ点距離（＝角柱の幅b）は同じでコーナ点とエッジ点間隔（＝角柱の高さh）を大きくした場合、および長辺が壁面に平行に置き、コーナ点とエッジ点間隔は同じでエッジ点間隔bを大きくした場合について測定を行った。また、等速速度あるいは等乱れ速度の形状から推測される二次流れの存在とその方向を確認するため、3枚の直線羽根をもつ簡単な風車による測定も行った。

さらに、角柱上面の流れの対称面における速度変動特性について検討を加え、その外層領域における自己保存表示について考察した。なお使用する記号は前報と同じであり、新たに用いた記号はそのつど定義する。

2. 実験装置および方法

実験に用いた風洞と測定部は前報のものと同一である。ここでは、角柱の必要とされる寸法および壁面速度の精度が単純なものでは得られなかったため、角柱を9個の角柱要素から成る構造として、各要素を図2に示したようにはめ合わせ、1本のまっすぐな角柱とし、これを持ち2.1m、幅1.0mのアルミ板での中心線に沿ってその上に固定した。なお、測定断面となるx=350、650、950、1400および1700mmの位置は、すべて図中のB部と同じ角柱要素が設けられる位置に対応しており、これらは測定孔設置など工学上の都合により黄鋼製とし、他はすべてアルミ製とした。

実験は、この角柱を高さh=60mm、幅b=20mmの突起とした場合（図2(a)、以下 60×20 の角柱と呼ぶ）と、これを横にして h=20mm、b=60mmの突起とした場合（図2(b)、以下 20×60 の角柱と呼ぶ）で行われた。

図1 角柱構造

図2 測定板

* 昭和49年8月26日 第84回講演会において講演。原稿受付昭和50年5月6日。
** 正員、名古屋大学工学部（名古屋市千種区名駅南町）。
*** 日本航空会社。

NII-Electronic Library Service
呼べ）について、流れ方向の圧力こう配がない状態で
単位レイノルズ数 U_1/ν を一定値 $1.40 \times 10^6 (1/\text{m}) (U_1 = 19～23 \text{ m/s})$ に保って行った。また、前報同様同条件の場合と同様、前報に示すと同様の木製前線部を取付け、$x=50 \text{ mm}$ の位置に 0.8°のトリップダウンを置いた。

図 3 は角柱のまわりに生じる二次流れの方向と強さを調べるために製作した。3 枚の直線羽根をもつ風車である。風車（a）はこの実験の当時使用したものを、回転数は直接測定により 2～3 Hz まで測定できた。風車（b）は（a）を改良したもので、羽根寸法を小さくするとともに、更に広範囲な回転数にわたって精度よく回転数を測定するため、熱線プローブを風柱の直後に、熱線が半径方向に一定に配置することによって取付けたものである。この場合、熱線の出力信号は、羽根が熱線プローブを含む面を慣性するとき並びに、それをカウントし用いて計数すれば、ストロボなどによるよりも精度よく熱線回転数を求めることができる。また、平均速度分布の測定には外径 0.6 mm の注射針を使用し、壁面せん断応力の測定には外径 1.0 mm のプレストン管を用い、乱れの強さを定速度形熱線風速計により測定した。

3. 実験結果とその考察

3.1 静圧分布

測定部静圧はアルコール柱で約 1 mm 気圧よりも高く保たれ、流れ方向の静圧の測定範囲における平均値からその差を主動動圧の ±0.5% 以下で、圧力こう配はないと見なされる。

図 4 は 60h×20b, 20h×60b の角柱近傍の上流側と下流側の 2 断面における静圧の横方向の変化を示す。20h×20b の角柱の場合同様に角柱表面の静圧は全体的にそのまわりの静圧よりもやや低く、コーナ点近傍および角柱上部中央付近で極大、エッジ点近傍で極小値を示す。これらは、ここで用いた角柱の場合にも 20h×20b の角柱の場合と同じパターンの二次流れの存在を示唆している。後述するように 20h×60b の角柱の上流断面では、角柱表面の流れが他の断面とやや異なるが、これに対応した静圧の変化は明確では認められなかった。

3.2 速度分布、等速度線図および等乱れ線図

前述したように、このような壁面上の流れは本質的に三次元的であるため、流れの断面の様子を知るには多量の測定を要した。ここでは主として $x=1700 \text{ mm}$ の断面について説明を行う。

角柱上半、側面および平板上の速度分布の主要例として、図 5(a)～(c) に示す $60h \times 20b$ の角柱の $x=1700 \text{ mm}$ における結果を示す。図 6 はこれにより得られる等速度線である。等速度線の形状は定性的に $20h \times 20b$ の角柱の場合とほぼ同様であり、本実験の壁面形状についてもコーナ部でコーナ点に向かい、エッジ部ではエッジ点から遠ざかる図中の、彼線で示した二次流れが存在することが推測される。図 5(a)、(b) から分かるように、60h×20b の角柱の場合、二次元領域の境界層厚さ d_2 もより上に突きでしている角柱側面以上の境界層（図中 $y=36.0$ および 57.0 mm）は、その厚さは二次元領域のものとはほぼ同じであるが、境界層内の速度はいずれも二次元のものより大きい。一方、角柱上半においては境界層厚さを d_2 より厚いが、しかし壁面近傍の速度は二次元領域のものに比べかかわらず大きい。これらはエッジ部に生じるエッジ点から主流に向けた二次流れにより、壁面近傍の速度の小さな流体が絶えず取り除かれためである。また、この二次流れによる上方への吹き上げ効果により、角柱上半の境界層厚さが増すものと考えられる。

流れ方向の各断面における流れの様子は異なりえない。表1に示すように 60h×20b の角柱の $x=550 \text{ mm}$ においては、エッジ点とコーナ点の間隔は d_2 の約 4 倍も離れている。このような場合には、コーナ角
二等分面とエッジ角等分面ではさまれる領域に生成される二次流れは複数個になると予想されるが、等速度線からは一つの二次流れのみが示唆された。同様なことは図6の$x=1700\ mm$でも見られる。このようにコーナ点とエッジ点が比較的離れているにもかかわらず、そこに生成される二次流れが一つの二次流れとしての性格を示すのは、後述のようにエッジ部の二次流れが相対的に強く、かつこれがコーナ部すぐ上の二次流れと同じ回転方向であるためと考えられる。

図7(a)，(b)は200×60の角柱の$x=650, 1700\ mm$の断面における等速度線図である。流れのパターンはこれまでとはほぼ同様であるが、この場合エッジ点間接が大きいため、吹き上げによる角柱上面の境界層の厚さの増大はエッジ点近傍に顕著に現れている。図7(a)のエッジ点間隔がδ_nの約4倍となる$x=650\mm$の断面の結果においてより明確に見られるように、二次流れの影響はエッジ点からほぼδ_nの領域に限られており、上前面中央部付近の等速度線は壁面にほぼ平行である。そこにおける速度分布は壁法則はもちろん欠陥法則表示も二次元のものに近く一致する。これは、下流部では欠陥法則表示が、前述のように二次元のものと著しく異なるのと対照的である。しかし、壁面せ
応力値は二次元領域に比べ約7%大きく、その意味で二次元のものに完全に一致してはいない。

図8（a），（b）は20h×60θの角柱のx=650,1700mmにおける乱れ線図である。ここで図の\(\sqrt{u'^2}\)は1形プローブをx方向に置いて測定したものです。確認にはx方向の乱れ強さではないが、\(V, W\)成分が小さいので近似的に\(\sqrt{u'^2}\)の分布を示していると考えてよいう。\(a\)図が見られるように二次流れによる乱れ線の変形はより局所的であり、等速度線のひずみに比べ大きいため、二次流れの様子をより端的に示す。\n
3-3 風車による測定

等速度線のひずみと二次流れの方向との対応に関して、Hinze\(^{(3)}\)は等速度線のひずみの方向と二次流れの方向は必ずしも対応させず、ある種の壁面形状については、等速度線の形状から予想される方向と逆向きの二次流れが生じ得ると述べている。そこで、これまで述べた等速度線および等乱れ線から推測される二次流れの方向を確認し、その強さの定性的傾向を明らかにするため、前述の風車による測定を行った。図9は60h×20θの角柱のまわりにおける風車（a）の回転数の分布である。図は、下流側から上流側に向かって見たもので、白丸は時計方向、黒丸は反時計方向の回転を示す。風車の大きさは有限であるが、その等回転数線図から二次流れの流線を推定することが行われている\(^{(4)}\)。そこで、ここででも等回転数線図を描いてみた。図10（a），（b）はx=650,1700mmにおける20h×60θの角柱のまわりの風車（b）の等回転数図である。図中に等乱れ線も示した。これらの結果は、ここで述べるような壁面形状については、等速度線、等乱れ線から推計される二次流れの方向が、実際の二次流れの方向と一致することを示している。特に、等回転数線は等乱れ線の変形をよく対応している。\n
風車回転数の大きな領域は、いずれの場合にもコーナ、エッジ部の壁面近傍にみられ、境界層外端に行くにしたがい急速に減少する。また、図10（a），（b）にみられるように二次流れのスケールは境界層の発達に伴って増大し、その強さは次第に減少している。しかし、個々の二次流れの中心のあるところの速度はほとんど変化せず、\(U/U_1=0.80\sim 0.85\)となっている。
またエッジ部の二次流れの中心の位置は、角柱面上面および側面の延長面には一致している。
一般に、ここに用いたように風車の回転数、二次流れのスケール、二次流れのうずとしての性格、すなわち強制うずと自由うずの組合せの状態あるいはその流れの形状にも依存すると考えられ、直接x方向のうず度ベクトルの大さくに比例するものではないが、図9、10の結果は、エッジ部における最高回転数はいずれもコーナ部のそれとより約2倍となっており、エッジ部生じる二次流れがコーナ部のものより強いことを示すものと考えられる。

3.4 壁面法および速度欠陥法則について　壁面法では前報同様コーナ、エッジ点の見方近くまで対数直線部が認められ、プレストレス管により求めた摩擦速度
を用いた壁面法則は、二次元のSarneckiの定数を用いたものによく一致した。図11に60ハ20bの角柱の面部z=1700mmにおける角柱上面、側面および平板下における速度分布の示性図を示した。

速度欠陥法則については、前報で角柱面における速度分布の示性図を特異性について示した。すなわち、この示性図において角柱面上の速度分布の対数直線部は二次元の場合に比べ、下方に平行移動し順圧力こう配のある二次元平面との対応を示した。図12は60ハ20b、20ハ60の角柱上面中央z=0における速度分布の欠陥法則表示であり、20ハ20bの角柱の場合同様に下方への平行移動を示している。図にみられるように20ハ60の角柱の場合、z=650mm付近では二次元のものによく一致しており、下流に行くにしたがい平行移動量が増加しているが、同じxの断面における60ハ20bの場合に比べて小さく、これらはこの

平行移動が二次流れの影響により生じていることを示すと考えられる。
ここで、壁面法の対数直線分布は

\[
U/\nu = A \log (U/\nu) + B
\]

\[
= A \log (U/\nu) + B + A \log (U/\nu) \cdots \cdots \cdots \cdots \cdots (1)
\]

と書かれ、欠陥法則が同時に成り立つ領域が存在するためには右辺第3項は

\[
A \log (U/\nu) = U_1/\nu + C
\]

と表されなければならない。いま、二次元の場合のCの値をCaとし

\[
C = C_a + C'
\]

とおくとC'の正、負に対応して欠陥法則表示における対数直線部は二次元の場合に比べてそれぞれ下方、上方への平行移動を示す。二次元平板の場合にもCaは一定でなく、一般にはU1/\nu の関数であるが、通常のレイノルズ数の範囲ではその影響は極めて小さく、実験誤差内に入ってしまうののでここでは一定値をと考えない。C'>0すなわち下方への平行移動は、同じU1を与える二次元速度分布に比べ排除厚さδ*が大きいことに対応している。このように、角柱上面における主流から壁面に向かう二次流れは、δ*を減少させU1を増大させるものであるが、しかしそのδ*に対応する二次元の場合のU1の値以上まで増大させることが示す。

ここで、二次流れを伴う三次元境界層の流れの対称面における外層領域の自己保存表示は、二次元の場合を拡張して次のようにして導くことができる。

\[
\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} + \frac{\partial W}{\partial z} = 0 \cdots \cdots \cdots \cdots \cdots (4)
\]

\[
\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} + \frac{\partial W}{\partial z} = 0 \cdots \cdots \cdots \cdots \cdots (5)
\]

式（4）、（5）は三次元乱流境界層に対するx方向の運動方程式と連続の式を、外層領域を考えるため式（4）で粘性応力項を無視した。式（4）、（5）では、もちろんすべての量はx、y、zの関数である。圧力こう配のな
場合（$U_1=1$），式（4）は式（5）を利用して次のようになる。

\[
(U_1-U) \frac{\partial}{\partial x} (U_1-U) - U_1 \frac{\partial}{\partial x} (U_1-U)
\]

\[
- \int_0^1 \frac{\partial}{\partial y} (U_1-U) dy - \int_0^1 \frac{\partial}{\partial y} (U_1-U) dy
\]

\[
- W \frac{\partial}{\partial x} (U_1-U) + \frac{\partial}{\partial y} (uw) + \frac{\partial}{\partial x} (uw) = 0
\]

（6）

ここで、速度および長さのスケールとして、それぞれ

\[
u_T = u_T(x, z), \quad A = A(x, z)
\]

を導入し、自己保存条件を次のように仮定する。

\[
U_1-U = u_T (x, z) f(\gamma, \zeta), \quad W = u_T (x, z) h(\gamma, \zeta)
\]

\[
\frac{\partial w}{\partial x} = u_T^2 (x, z) g(\gamma, \zeta), \quad \frac{\partial w}{\partial x} = u_T^2 (x, z) g(\gamma, \zeta)
\]

（7）

ただし、$\gamma = y/A, \quad \zeta = z/A$ である。式（7）を式（6）に代入し、対称面における条件

\[
\frac{\partial f}{\partial \zeta} |_{\zeta=0} = 0, \quad h(\gamma, 0) = 0
\]

\[
\frac{\partial A}{\partial \zeta} |_{\zeta=0} = 0, \quad \frac{\partial u_T}{\partial \zeta} |_{\zeta=0} = 0
\]

（8）

を利用すると次式が得られる。

\[
(U_1-U) dA_1, \quad \frac{\partial f}{\partial \zeta} |_{\zeta=0} = 0, \quad h(\gamma, 0) = 0
\]

\[
\frac{\partial A}{\partial \zeta} |_{\zeta=0} = 0, \quad \frac{\partial u_T}{\partial \zeta} |_{\zeta=0} = 0
\]

（9）

ここで添字 s に流れの対称面における値、すなわち

\[
f = f(\gamma, 0)
\]

などを示すものとする。式（9）の下記を展開し、右より順次 $1 - 8$ 項とする。各項のオーダーを Tannekes ら（17）にしたがって比較すると、第 3,

\[
x = 1
\]

4 項が第 1 項に比べ、また第 5 項が第 2 項に比べ

\[
f_s (U_1 / U_T) / dA_1
\]

のオーダーであり、かつ第 1 項が第 2 項に比べ

\[
u_T / dA_1
\]

のオーダーとなり次式を得る。

\[
U_1 / dA_1 \frac{\partial f}{\partial \zeta} |_{\zeta=0} + \frac{\partial g_s}{\partial \zeta} |_{\zeta=0} = 0
\]

（10）

式（10）において（$\delta g_s / \delta \zeta |_{\zeta=0}$）は小さいと予想されるので無視した。一定ならず動粘性係数 ν_T を次のように入力する。

\[
g_s = \nu_T / dA_1
\]

（11）

これを代入して式（10）は次のようになる。

\[
\frac{\partial f}{\partial \zeta} |_{\zeta=0} + \frac{\partial g_s}{\partial \zeta} |_{\zeta=0} = 0
\]

（12）

ここで、自己保存条件として

\[
\frac{\partial f}{\partial \zeta} |_{\zeta=0} + \frac{\partial g_s}{\partial \zeta} |_{\zeta=0} = 0
\]

（13）

とおくと式（12）は

\[
\int_0^1 \int_0^1 \left(\frac{\partial h}{\partial \zeta} \frac{\partial f}{\partial \zeta} |_{\zeta=0} \right) d\zeta d\gamma + \frac{\partial f}{\partial \zeta} |_{\zeta=0} = 0
\]

（14）

となり、これを容易に積分されて

\[
f_s (\gamma) = k_s \int_0^1 \exp \left[- k_s \gamma \right] \frac{\partial f}{\partial \zeta} |_{\zeta=0}
\]

（15）

となる。ここで、境界条件 $\eta \to 0, \quad f_s (\eta) \to 0$ を用いまた、k_s は定数である。式（15）は $k_s = 0$ のとき二次元流れに対して Townsend（16）が求めたものと形式的に一致する。式（13）にいて

\[
\frac{2k_s}{\nu_T} = \int_0^1 \frac{\partial f}{\partial \zeta} |_{\zeta=0} d\zeta
\]

（16）

であり、$A_1 = f_s (0, \eta)$ とおくと式（16）右辺は実験結果を用いて(U_1 / u_T) (dA_1 / dx) は 0.55 の値が見られることがわかる。k_s に二次元流れに対する値 1.77（9）を用い、さらに実験結果（9）より

\[
\frac{\partial h}{\partial \zeta} |_{\zeta=0} = 0.04 (2\pi \eta - 1)^3 \sin 2\pi (\eta - 1)
\]

（17）

を仮定する。図 13 に実験結果との比較を示すが、二次元の場合に比べ二次流れによる壁面近傍での増加が著しいことが著しく示されている。図中の実線は $k_s = 12.0$ に対するもので、下流部の実験結果は $y = 0$ の領域でこれとよく一致している。また、破線は $k_s = 0, \quad k_s = 13.5$ で二次流れに対するものである。これらの結果は、特に実験値が妥当なものであり、このような二次元流れ境界層の流れの対称面においても、上述のような自己保存条件が実現されるものを示すものと考えられる。ここに述べた自己保存条件は、式（4）、（5）を基礎にしたもので、これらはこれまでの実験結果より十分下流まで流れを記述するものであ
3.5 壁面せん断応力および摩擦抵抗係数 図14,15 はそれぞれ 60h×20b, 20h×60b の角柱のまわりの壁面せん断応力 τw の分布を示す。τw は前報同様に外径 h のプレストン管を用い、Patel の式により算出した。また、先に 20h×60b の角柱の x=650 mm においては二次流れのスケールに比べてエッジ点間隔が大きいため、他の断面と流れの様子がやや異なることを述べた。図15（b）はこのときのτw の分布を示し、図にみられるように τw は他の断面で極大となる角柱上部中央で極小となり、エッジ点よりは△h/2 の位置で極大となる。このように二次流れの存在する壁面上の τw の分布は、二次流れの性質に強く依存する。

20h×60b の角柱の場合、コーナ部における τw の二次元領域における値 τw|| の減少分にはほぼ等しい増加分がエッジ部に存在するが、角柱の影響範囲 δ を平均間隔とした流れの各断面における τw の平均値は τw|| とよく一致することを見いだした。

图16 は流れの各断面における局所摩擦抵抗係数 C_f の平均値

\[C_f = \frac{1}{2(\delta h+b/2)} \int_{-\delta h}^{\delta h} \left(\frac{\tau_w}{1/2 \rho U_1^2} \right) ds \]

図14 壁面せん断応力分布 (60h×20b)

図15 壁面せん断応力分布 (20h×60b)

を \(R_s = U_1 x / \nu \) に対してプロットしたものである。ここで、\(\delta h \) は (20h×60b) の角柱の場合 τw|| が極大値 s の位置とした。いずれの場合にも 20h×20b の角柱の場合 τw|| はいずれの場合にも 20h×20b の角柱の場合 τw|| とはほぼ一致し、このことから幅 \(S(\delta h+b) \) の平板中央線沿って、高さ h、幅 b の角柱を置いた壁面の全摩擦抵抗係数 C_f が幅 \(S+2h \) の二次元平板の C_f として求められること。

また、前報においてこのような壁面上の三次元乱流境界層に対する運動量積分式を導き、その第一次近似として \(x' = \delta h \) 面における運動量交換を無視した近似式

\[\Theta / Bx = \frac{1}{2Bx} \int_{-1/2}^{1/2} \int_{-1/2}^{1/2} \left(\frac{\tau_w}{1/2 \rho U_1^2} \right) dsdx \]

(18)

の有効性について述べた。ここで、2B=2(△h+b/2) は角柱の影響が及ぶ範囲でのねれ線であり、

\[\Theta = \int_{-1/2}^{1/2} \int_{-1/2}^{1/2} \left(\frac{U_1}{U_1} \right) dydz \]

である。式 (18) を前報付近を除いた \(x_1 \sim x \) の範囲について適用すると

図16 平均局所摩擦抵抗係数

図17 運動量厚さと摩擦応力
(θ_2 - θ_1)/B(x - x_1) = \frac{1}{2B(x - x_1)} \int_{x_1}^{x} \int_{x_1}^{x} \left(\frac{1}{2} \frac{1}{2} \right) du^t dx_1 \quad \cdots \cdots (19)

となる。図 21 は式 (19) の左辺、右辺をそれぞれ速度分布および壁面せん断力の分布から算出し比較したもので、60h x 20h の角度については x_1 = 650, 950 mm の場合に 20h, 60h の角度については x_1 = 650 mm の場合を示した。同様に示されるように両者はほぼ一致し、本実験の壁面形状についても式 (18) は有効である。

4. 結 論

アスペクト比 3 の長方形断面の角度を平板上に流れる方向に異なった無次元乱流境界層について調べた。実験は角度を変えて場合と横にした場合について行い、以下の結論を得た。

角柱断面のアスペクト比の変化による流れの様子は、角柱を立てた場合にはほとんど変わらず、角柱を横にした場合の前線付近でのみみられた。

風車による測定は等速度線、等圧力線のひずみから推定される二次流れが実際に生じていることを、二次流れのスケールは境界層の発達に伴い増大し、その強度を減ずる傾向にあること、およびエッジ部の二次流れがコーナ部のものよりもやや強いことを示唆する。

角柱上流の流れの対称面の外観面における速度分布の自己保存性を、二次元の場合を拡張して導き、そこにおいて自己保存の流れが実現されすることを示した。

角柱の影響領域よりも広い領域を考えた場合の全摩抵抗圧は、いずれの場合にも正方形断面の角柱の場合同じに同じ面積をもつ二次元平板のものに等しい。

文 献

(2) 古尾・ほか3名, *機論*, 41-500 (昭 50-10), 2787.
(9) 山口:早稲田大学機械工学修士論文 (昭 50-30).

討

【質問】西 道 弘（九州工業大学）

（1）平板上に置かれた角柱周りの流れにおいては、境界層厚さと角柱直径との関係がアスペクト比と共に関重要であると考える。これに関するご見解を伺いたい。

（2）全圧で測定した速度分布はいかなる性質のものか、論文中に示されているように、コーナやエッジ付近の境界層は3次元乱流境界層であるから、2孔管又は3孔管を使用すべきではないかと思われるがいかがか、また速度を求める際のどの静圧を使用したか。

（3）図 11 において二次元の実験値が Sarnecki の式（A=5.5, B=5.4）からずれているのは、プレストン管に Patel の式（A=5.5, B=5.45）を用いて ut を求めたためか。

（4）結論に、風車による測定から「その強度を減ずる傾向にある……」(2098 ベージ 右欄 1 行目) という記述があるが、いかなる意味か、うずの強さ（循環）がたとえ一定であっても、うずの中心と風車の中心に応じて風車回転数を変化するのがあるかが、うずの大きさを一定的に調べる場合、壁面流れての流れ角度がわかる程度に図示された。油膜法などの結果でもかまわないが、測定されているならば教えていただきたい。

【回答】（1）ご指摘のとおり、角柱の高さ h, 幅 b と境界層厚さ δ との比は重要と考える。

前報②において簡単に触れたように、b/δ がエッジ部の二次流れの、また h/δ はエッジ部とコーナ部の二次流れの干渉の程度を示すパラメータになると思われる。

ここで考える壁面形状のうちで重要と思われるのは h/δ ≈ 1 あるいは h/δ ≈ 1 のそれぞれについて b/δ ≈ 1, δ ≈ 1 の 6 種類である。本研究では、二次流れの干渉が顕著に現れると推測される h/δ = 1, b/δ = 1 の場合を主として調べている訳だが、その差のエッジの二次流れの干渉の程度がどのようにに変化するかを明らかにすることも、本研究目的の一つである。

（2）上述の二次流れの強さは極めて小さく、その後の 2 孔管による測定（付 2）によれば、速度ベクトルの方向からその偏角はたかだか 2～3 度である。し

（付 1）西・末尾, 機論, 39-323 (昭 48-7), 2102.
（付 2）古尾・ほか3名, 機論, No.753-5 (昭 50-7), 65.
たがって、その方向特性から考えて全圧管はこの速度ベクトルの全圧を示し、X方向の速度Uを求めるには補正を要ずが、それは極めて小さく問題にならないと思われる。
また、静圧はx方向に置いたビトース管指向管からの変調に約1mm、x方向にビトース管先端から上流側3〜5mm点における懸浮静圧を求めていて。
（3）Patelの定数とSarnekeの定数による差はわずかであり、ご指摘の主な原因とは考えられない。
前報(6)で述べたように、本実験のR数の範囲において、使用した公称外径1mmのフォーストン管に対するPatelの式は、対数直線領域とべき乗指数関数領域の移行領域に対するものであるが、剛を皮で速度分布はこの領域の1点で普遍壁面のものであるとされている。これに対しても対数直線領域は、この移行領域に対するPatelの式の不完全さを示すもので、外径の大きなフォーストン管を使用し、対数直線領域に対応するPatelの式を用いれば、Sarnekeのものにはとんど一致すると考えられる。
（4）本文で、二次流れの川は循環の意味ではなく、羽根車に回転を与える所向き流成分の大きさの意味で用いた。
（5）油膜法は試していないが、壁面せん断応力の方向を見るため、静圧孔を利用してそこから染料を噴出させることを試みた。しかし、鮮明な結果を得ることはできなかった。二次流れの定量的測定は2孔管によって行い、その結果は文献(付2)に報告した。
[質問]
小橋安次郎（北海道大学工学部）
コーナおよびエッジのある壁面影響に関する問題は、いかが想像されているか、特に絶対重要性の問題を挙げ上げられておられるところに深く敬意を表す。
ただこの問題では、曲率の影響で生じる二次流れの生長過程が現状の壁面様式をどのように干涉し、またコーナとエッジに生じたうずが相互干涉によってどのような群をまとめるかを明らかにすることが大きな課題であると思われるが、論文ではこれらの点が明確であるため、いくつかの混乱を感じる。
その一つは、曲線側面に現れる二次流れで、これらは発生の初期には当然コーナとエッジとそれぞれ一対のうずとして現われるわけだから、これがエッジ側に見られたうず１個のうずになる理由が明らかになければならないし、またこの合体によって他のうずがどのような変化を受けるかを知りたいと思う。著者らは「コーナうずが強いエッジうずをひかして合体する」と解釈しておられるが、曲率の影響としてはこれらの二次流れの適さはむしろ低いはずで、局所的な横方向圧力こう配のため、コーナうずが流れでエッジうずを合体したため、その強さが増したものと考えるべきではないか。
次に半摩擦抵抗が同じ表面積をもつ二次元境界層の場合と同じであるという結論は、二次流れとの干渉を考えるときには得られない。コーナでせん断応力が減る、エッジで減ることが一般的に考えられるが、コーナはエッジ側に合体してエッジ側に寄せるわけだから、摩擦応力も増加するはずではない。
この結論の基になっているプルストン管は、果たしてこのような強い圧力こう配（横方向）のある場合でも適用できるものか。
最後に60H×20Hのばあいについて中心断面上速度分布の自己保存性（図13）を述べておられるが、その中で示す式（17）は異なり幅の角柱についてもそのまま適用できる関係式で、質問者はそれらの場合に対して何らかの自己保存関係が存在するだろうとと思うが、横方向速度成分Wがエッジにおけるうずによって誘起される限り、その流方向分布はエッジから中心までの距離（b/2）によって左右されるはずであり、角柱上面に沿っての境界層とエッジうずの発達過程が同じであるとしても、中心断面でのW分布は角柱幅によって変わると考えるのが自然のように思う。
[回答]
エッジ部とコーナ部の二次流れの干渉について、本文では次の3点を述べたつもりである。すなわち、
（1）エッジ部とコーナ部にそれぞれ二次流れが生じている。
（2）それらの中間領域では互いに直方向の流れが考えられ、等速度線、等乱れ線で明確、これが互いに打ち消されている。
（3）そのため、二次流れが一つの二次流れの相互作用を示すこと、である。なおこれらが完全に一つの二次流れにとどまっているか否か、は特に詳しく述べる必要があると思われるので、この領域における二次流れの形成を計画している。
またご指摘されたように、本文で定義した壁面せん断応力の平均値cm' とその二次元領域における値cm とが厳密には異なることは考えられるが、著者らはcm' とcm がほぼ一致することに対する二次流れの影響は二義的であると考えている。
cm' とcm の厳密な比較を行うには、ご指摘のようにプルストン管使用の妥当性が問題になる、この点については、著者らも壁面のよい壁面せん断応力の測定法の必要性を痛感している。
最後に、角柱上面の流れの対称面における速度分布の自己保存性に関して、式（17）はご指摘のように角柱の幅に依存すると考えられるので、この幅による影響については今後検討する必要があると思う。