円弧断面を有する薄板の摺り

(昭和15年11月23日 懇意力学講演会に於て講演)

正員 小野鑑正

綱 要

混い直線断面（N×I）に対する Saint-Venant の摺りモーメントの式 $M = \frac{1}{3} G\theta I$ と同じ式を薄い円弧断面に用いる事は理論上皆に実験上一概通りで間のべきであると考へて断面断面の摺りに於て薄い断面断面の摺りに於て薄い曲面断面の摺りの両方面より理論上的検討を行ってこれ等の摺りに於ける摺りの値が一次の摺りとして導かれる事を述べた。又極板の円弧板を用いて行った摺り試験より得た摺り断面性係数 G の値は同材材料の平板の値よりも僅に大であつて且普通使っている材料の摺り断面性係数の値より多少多いである事を見出した。

1. 論 言

矩断面の辺の長さを l, h として比 l/h を非常大とすれば単位の長さに対する摺りを生ずる摺りモーメントは Saint-Venant の理論上の通りである。

$$M = \frac{1}{3} G\theta I$$

但し G は断面性係数。多くの断面例へは山形、工形、丁形、Z 形、脊部断面等に見える線直線断面はこれを幾つかの矩形に分けた各部の摺り用性を極めて短い矩断面に対する矩によりて計算してその和を求めて全断面の和性と看做し近似方法が A. Föppl に依って試みられた[1]。その後実験に依る補正が加べられた[2]。今補正係数を η として共々の近似計算式を書けば

$$M = \frac{1}{3} G\theta I\eta$$

η は普通 1 前後であつて大なるものにありては 1.3 を超える。

上の近似式は断面断面に相当する断を薄板に圧力を加へてこれを摺らせる時の断面の形が近似的な個々の矩断面に対する断面の摺りより計算すると云ぶに基づくものであるが断面断面の辺の短い円弧を摺り除く時、同様の事が考へられる故円弧の長さを l とし其の厚さを h とすれば式摺り第 1 的式が近似的に用いられる。此の事に従って断面断面性係数が

[1] Torsion of Thin Plate with Circular Arc-Section.
[2] Akimasa Ono, Member, Tōkyō Imperial University, 東京帝国大学、Sitzungsberichte der mathematisch- physikalischen Klasse der K. B. Akademie der Wissenschaften zu München, 1917, 5 篇。
[3] 第 7 卷, 第 29 号, (第 1, 2 篇)]

NII-Electronic Library Service
純粋に矩形と看做し易いためにも依るであろう普通相当の補正係数を必要とするためより見て因弧断面に対しても直において近似式を用いる前に適當なる意味を施してその精度を明かにすることが望ましい。然らに因弧断面を有する薄板の断面は次に示す様に別の方程式で解ける故これに依て因弧断面の事実を理論上明らかに示す事が出来る。又一般に板の厚さが進ければ因弧断面に屈するもののは進に除き因弧断面の真の形状を求めるのを目的として計算の要項及び実験の概要を述べよう。

2. 薄板の理論と薄板の弾性

前節に示した近似式を誘導する目的に対して先ず因弧断面に対する Saint-Venant 問題に不同する数値計算を著者の著書（前出）の中に示しておいた。その結果に依って適当周辺の平均を長さとする因弧断面に対して前節における近似式を適用した計算の結果は正確なる答を示し得る程度より多少の差異を示す。この程度の誤差の主なるものは因弧断面の数値が計算の比で 1 して等しい場合の方が 1.2 の場合におけるもろもろ近似を示せる。それで先ず断面の厚さを極端に小として Saint-Venant の理論に基づき単純因弧断面の弾性を計算しよう。

第 1 図を示す様に外径 2d, 内径 d の等しい因弧を取ってその中心角を 2θ とする。この断面に対する解は古く Saint-Venant 自身の計算もあり又他方判光氏の計算もある。これ等の文献は著者の著書中に示して置いたが同書に示した円筒モーメントの式に於て厚さ h = a - b を小とすれば次近似式が導かれる。但し \(r_m = \frac{1}{2} (a + b) \)。

\[M = \frac{1}{3} GB \theta h^2 r_m \theta \beta \] 　……(1)

\[2 \theta h r_m = l \] と書けば

\[M = \frac{1}{3} GB \theta l^2 \] 　……(2)

この式の導き方はその詳細を第 2 節に譲ってここに是及其の結果を詳細で見るとこれはその縁に於て全く前節の初めの式と同じである。従い \(\alpha \) の比が 1 に対して直線的に進む場合に必要なる補正は計算してゐない。然らに云へば因弧断面に於て \(h / h \) が大なる場合時は \(M \) の式における係数 \(1/3 \) を少し修正する必要がある。即ち Saint-Venant の計算結果に於ては \(h / h = 2.5 \) 以上の因弧断面に対して

\[M = \frac{1}{3} GB \theta h^2 \left(1 - 0.65 \frac{h}{h} \right) \]

併し因弧断面に対しては一次の近似式にて因弧断面と合致することを示すに止まる。

次に因弧断面の薄より因弧断面の因弧断面を出せる中で

\[a = r_m + \frac{1}{2} h, \quad b = r_m - \frac{1}{2} h \]

とすれば因弧断面の因弧断面が \(\tau \) と同様の式が導かれる。即ち

\[\tau = \pm GB \theta h = \pm \frac{M}{2 \theta l^2} \] 　……(3)

従上計算と全く別の方法に依って因弧断面の挙動問題を解く事が出来る\(\xi \)。又板面の曲げの場合に於てその厚さ \(w \) を板面上に設けた矩形 \(x, y \) の簡単なる式即ち \(w = cy \) の関係にはばこれ等は断面の因弧に作用する力を同一の上下線に相対する力及び正負の力と反対して平衡した場合の因弧を表し且其の模式は丁度板の挙動より生ずる変形状態に一致する事が明で居る。従ってこの計算より挙動モーメントを求めるに於て拡張前後の因弧を導かれる。これ等に因弧断面の曲面板の計算より挙動上問題の更に如何なる結果が得るか。この計算の詳細は第 3 節にて述べる事としここに之を結果の摂択する事に止めるが因弧挙動に対しては挙動前後で示した (1) 又は (2) 同じ事が導かれる因弧挙動に対しては (3) 同じ式が得られる。丁度平面の曲げの論より導き方に挙動の式を導いたのと同様に因弧断面の曲面板の理論より Saint-Venant の挙動と一致する結果を導かれる事の出来るのは因弧板の形状と云へよう。

3. 実験

計算の結果を実際に試みるに至るため実験を行った。実験に用ひた材料は次の第 1 表に示す様な成分を有する真鋼板である。

<table>
<thead>
<tr>
<th>計算を示す 計算を示す</th>
<th>化学成分</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Mn</td>
<td>Si</td>
</tr>
<tr>
<td>0.05</td>
<td>0.08</td>
<td>0.32</td>
</tr>
</tbody>
</table>

第 2 表 機械的性質

<table>
<thead>
<tr>
<th>試験片</th>
<th>降伏点</th>
<th>引張強さ</th>
<th>断面積</th>
<th>伸長率</th>
<th>許容許れ</th>
<th>終結</th>
<th>繰返し</th>
</tr>
</thead>
<tbody>
<tr>
<td>厚mm, 高mm, 幅mm</td>
<td>kg/mm²</td>
<td>kg/mm²</td>
<td>kg/mm²</td>
<td>%</td>
<td>50mm</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>0.75 x 29.7</td>
<td>17.7</td>
<td>39.9</td>
<td>56.9</td>
<td>31.5</td>
<td>53.5</td>
<td>20 000</td>
<td></td>
</tr>
<tr>
<td>0.75 x 29.75</td>
<td>17.7</td>
<td>33.0</td>
<td>54.7</td>
<td>32.0</td>
<td>55.0</td>
<td>20 760</td>
<td></td>
</tr>
</tbody>
</table>

図3
試料は圧延後焼鍊した状態で日鐵八幡製鋼所より送られた。又製造時化学成分に共に報告された機械的性質は第2表に示す通りである。
薄板は一部平板の値を実験に供し又他の一部は波板の形に曲げたものを用いた。板は厚皮の値を踏み踏み間

凸を存じ得るか厚さの測定には
円錐形の曲線を有するマイクロメーター
を用いて各の部における寸法を清
その結果は順次下の表に示す通りで
あるが平板に於ては凡そ 0.74
mm, 波板に於ては凡そ 0.75mm
であった。波板より切取った円弧板
(仮に切っ飛び) の断面は無論正確
なる円弧ではないから比較的近い円
を置いてその半径を見出しこれを円
弧の半径とした。

実験の目的は前に述べた計算式を
用いて剪断弾性係数 G の値を見出
すもので、而して G の値が平板と円弧板と略、相等しい結
果を得べか如何かを知りたい。もし相等しければ計算の基
礎が平板と円弧板とに対して共通と云える。又 G の値が
普通知られている G と略、相等しいか如何かを知りたい。も
し等しくなければ計算の精度に於て欠けるところがあるか、

第3表 平板の実験

<table>
<thead>
<tr>
<th>実験番号</th>
<th>l</th>
<th>l</th>
<th>h</th>
<th>1/3 l</th>
<th>h/l</th>
<th>0.63 h/l</th>
<th>1-0.63 h/l</th>
<th>ωL</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200</td>
<td>46</td>
<td>160</td>
<td>0.740</td>
<td>6.235</td>
<td>0.01603</td>
<td>0.01010</td>
<td>0.9899</td>
<td>7323</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7400</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7265</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7207</td>
</tr>
<tr>
<td>平均</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7299</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>20</td>
<td>052</td>
<td>0.738</td>
<td>2.686</td>
<td>0.03680</td>
<td>0.02319</td>
<td>0.97651</td>
<td>7433</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7449</td>
</tr>
<tr>
<td>平均</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7444</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>10</td>
<td>019</td>
<td>0.740</td>
<td>1.353</td>
<td>0.07386</td>
<td>0.04653</td>
<td>0.95347</td>
<td>7372</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7376</td>
</tr>
<tr>
<td>平均</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7374</td>
</tr>
<tr>
<td>9</td>
<td>50</td>
<td>10</td>
<td>026</td>
<td>0.738</td>
<td>1.343</td>
<td>0.07361</td>
<td>0.04637</td>
<td>0.95363</td>
<td>7311</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7338</td>
</tr>
<tr>
<td>平均</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7325</td>
</tr>
</tbody>
</table>

全体の平均 | 7360 |
大まかなければ材質が薄板に於て異なるためであろう。

試験片を振り・モーメントを加へたため写真第 2 図及び 3 図
に示す様に試験片の一端に棒を取付けしてこれに直角に他の
棒をめぐってその両端に荷重を作用せめた。荷重としては二
つの端に合せた前後を用ひ、一方にはこれを直接棒に吊し他
は滑じて前後反対方向に作用する様にした。荷重を加へ
る横線は常にこれに水平に保ったための一端に幅軸を引く
その位置を一定にする様に木板に取付けた試験片の他の端を
測定した（写真第 4 図）。又実験番号 1-4（第 3 表）に於て
は平板と円弧板を各 1 箇所に於て木片にて結び（写真第
5 図）これ等を同様に挙げて振り角を測定した。断層に加
して両方に加えられる振り・モーメントの大きさは等しいと看做
される。

振り角を測定するにあつて各試験片の上に幅軸距離 L を鍛
で、2 間の棒を取付け裏反を一端距離に於て一端に幅軸の某
を取った。物質は薄い板として用ひたから試験から正確を
求めて角を見出した。

第 3 表

補填

第 5 図

試験片の寸法に関しては初め円弧の長さに等しい幅を有する
平板を用めし、印だ即ち第 3 表の実験番号 1-4 に用ひた試験
片の寸法の示す如くに L = 46.625 厚さ 0.754, H = 6.621
0.008088 7.424
0.008085 7.426
0.007981 7.523
0.008193 7.328
7.425
円弧板に対する G の計算には上と述べた様に h/L の比に
に対する補正を行って居る。この補正は補正の計算はなされ
て居ないためではあるが第 5 節及び第 6 節に於て著者等の
言及する様に写真の見習に相当の精密に該当する。この数値
の数字を変えるために断層面における振り角の計算式に於
て円弧板用の相当数を入れて計算を行った。奇数の板は
次の表に示す。弾性係数 G の値を取ってこれに 8000
kgs/mm² に比べて約 7% 小である。

実験に関して言及したことは弾性係数 E の値である。他
方には八角から纺錠を引く断層試験の結果をとるべきため他
方には E と G を比べる目的で平板面の曲げ試験片を作
でその両端を外中心に荷重を加えて曲げ試験を行って試験
片表面の断層面を通過して E を示した。試験片の寸法は幅
20 mm, 厚さ h 0.738 mm, 端面間隔 200 mm, 実験の結果は
E = 22020 kgs/mm² である。著者が行なつた丸木の断層試
験の平均値の結果に依れば E = 21170 kgs/mm² に依つ E の
数値は於て赤道断層面を居る均 5% 弱である。
この実験は全て塗錠波族の手で行はれた。興味ある事
に対して謝意を表したい。

4 数値計算

第 5 節に示す様に断層面を有する板の振り・モーメントの式
の一つは次の通りである。

\[I = \frac{G}{12} \left(\frac{a^2 - b^2}{4} \tan \frac{\pi}{2} - \frac{1}{\pi} \sinh \frac{\pi a}{2} \right) \]

括弧内の値の式に (a^2 - 4) を乗すればそれは次の形に
取り得る。

(* 注) 著者御論文、実験論文集、第 6 損第 24 号、1-25 頁。
\[f(\xi_0, \eta_0) = \frac{1}{2\pi a^2} \sum_{n=0}^{\infty} \left(\frac{n}{\alpha^3(a^2-\xi_0^2)^{2/3}} \right)^{-1} \]

この式を用いて計算を行った結果次の数値を取った。

\[a = 0.02277 \text{ mm}, \]
\[b = 0.021423 \text{ mm}, \]
\[h = 0.0754 \text{ mm}, \]
\[(a^2-b^2)/4 = 7.813 \times 10^3 \text{ mm}^2, \]
\[l = 1.96 \times 10^3 \text{ mm}. \]

次に

\[f(\xi_0, \eta_0) = \frac{1}{2\pi a^2} \sum_{n=0}^{\infty} \left(\frac{n}{\alpha^3(a^2-\xi_0^2)^{2/3}} \right)^{-1} \]

これを数値を基にして計算した \(n = 33 \) における \(f(\xi_0, \eta_0) \) を \(f_{93} \) とすれば

\[f_{93} = \frac{128}{n^2} \times 0.090972676 = 3.7067637. \]

従って

\[\tan 2\eta_0 - \tan 2\eta_0 - f_{93} = 3.7059112 + 3.7067673 = 0.008352. \]

(1) より

\[M = 7.813 \times 10^3 \text{ mm}, \]
\[G = 0.00908523 \times 10^3 \text{ mm}. \]

(3) の計算において \(n = 35 \) 以上の数値が与えられて居るからこの影響を考慮に入れ、\(M \) の式における \(G \) の項の係数は多少小となるが、その大きさは知るために次のような計算を行った。

\[n \] が增加した後で \(\alpha \) 大となれば (2) 式に於いて次の様々な数値が差行する。

\[\cosh 2(\alpha x) \xi_0 \approx \frac{e^{2\alpha x}x}{\alpha x}, \]
\[\cosh 2(\alpha x) \xi_0 + \cosh 2(\alpha x) \xi_0 = e^{2\alpha x} \text{cos} \theta \]

従って

\[\cosh 2(\alpha x) \xi_0 + \cosh 2(\alpha x) \xi_0 + \cosh 2(\alpha x) \xi_0 = e^{2\alpha x} \text{sinh} \theta \]

この第1式は \(\xi_0 \) が無限大以上に於ける値に拘らず \(\alpha \) の大小によるため大であるからこれに対して 2 を省略すれば \(f_{93} \) の代わりに一般に \(f_{93} \) と書く

\[f(\xi_0, \eta_0) - f_{93} = \frac{128}{n^2} \sum_{n=1}^{\infty} \frac{1}{\alpha^3(a^2-\xi_0^2)^{2/3}} \]

\[= \frac{128}{n^2} \left(\frac{\text{coth} 4\xi_0}{\text{coth} 4\xi_0 - 2} \right) \frac{1}{\alpha^3(a^2-\xi_0^2)^{2/3}} \]

(4) 式の中である二つの無限級数の第 2 つのものはこれを簡単なる式に書き直せる。このために先ず

\[\frac{1}{\alpha^3(a^2-\xi_0^2)^{2/3}} = \frac{1}{4\alpha^3(a^2-\xi_0^2)^{2/3}} \]

第 7 卷 第 29 号 (第 1 報)]

\[a = a \circ b, \quad b = b \circ c \]

となるが、両半径が殆ど等しく即ち \(a/b \approx 1 \) なるときは \(\xi \approx 0 \) である。又半径の両端における半径の間の角を \(2\Theta \) とすれば第 2 モーメントの式は次の通りになる。(1)

\[
M = G\Theta^{a^2 - b^2} \quad \text{ただし} \quad a = a \circ b, \quad b = b \circ c
\]

となる。計算の際には\(\xi \approx 0 \) なることから、両半径が等しいとき、\(\xi \approx 0 \) である。又半径の両端における半径の間の角を \(2\Theta \) とすれば第 2 モーメントの式は次の通りになる。(1)

\[
M = G\Theta^{a^2 - b^2} \quad \text{ただし} \quad a = a \circ b, \quad b = b \circ c
\]

となる。計算の際には\(\xi \approx 0 \) なることから、両半径が等しいとき、\(\xi \approx 0 \) である。又半径の両端における半径の間の角を \(2\Theta \) とすれば第 2 モーメントの式は次の通りになる。(1)

\[
M = G\Theta^{a^2 - b^2} \quad \text{ただし} \quad a = a \circ b, \quad b = b \circ c
\]

となる。計算の際には\(\xi \approx 0 \) なることから、両半径が等しいとき、\(\xi \approx 0 \) である。又半径の両端における半径の間の角を \(2\Theta \) とすれば第 2 モーメントの式は次の通りになる。(1)

\[
M = G\Theta^{a^2 - b^2} \quad \text{ただし} \quad a = a \circ b, \quad b = b \circ c
\]

となる。計算の際には\(\xi \approx 0 \) なることから、両半径が等しいとき、\(\xi \approx 0 \) である。又半径の両端における半径の間の角を \(2\Theta \) とすれば第 2 モーメントの式は次の通りになる。(1)

\[
M = G\Theta^{a^2 - b^2} \quad \text{ただし} \quad a = a \circ b, \quad b = b \circ c
\]

となる。計算の際には\(\xi \approx 0 \) なることから、両半径が等しいとき、\(\xi \approx 0 \) である。又半径の両端における半径の間の角を \(2\Theta \) とすれば第 2 モーメントの式は次の通りになる。(1)

\[
M = G\Theta^{a^2 - b^2} \quad \text{ただし} \quad a = a \circ b, \quad b = b \circ c
\]

となる。計算の際には\(\xi \approx 0 \) なることから、両半径が等しいとき、\(\xi \approx 0 \) である。又半径の両端における半径の間の角を \(2\Theta \) とすれば第 2 モーメントの式は次の通りになる。(1)

\[
M = G\Theta^{a^2 - b^2} \quad \text{ただし} \quad a = a \circ b, \quad b = b \circ c
\]

となる。計算の際には\(\xi \approx 0 \) なることから、両半径が等しいとき、\(\xi \approx 0 \) である。又半径の両端における半径の間の角を \(2\Theta \) とすれば第 2 モーメントの式は次の通りになる。(1)

\[
M = G\Theta^{a^2 - b^2} \quad \text{ただし} \quad a = a \circ b, \quad b = b \circ c
\]

となる。計算の際には\(\xi \approx 0 \) なることから、両半径が等しいとき、\(\xi \approx 0 \) である。又半径の両端における半径の間の角を \(2\Theta \) とすれば第 2 モーメントの式は次の通りになる。(1)

\[
M = G\Theta^{a^2 - b^2} \quad \text{ただし} \quad a = a \circ b, \quad b = b \circ c
\]

となる。計算の際には\(\xi \approx 0 \) なることから、両半径が等しいとき、\(\xi \approx 0 \) である。又半径の両端における半径の間の角を \(2\Theta \) とすれば第 2 モーメントの式は次の通りになる。(1)

\[
M = G\Theta^{a^2 - b^2} \quad \text{ただし} \quad a = a \circ b, \quad b = b \circ c
\]

となる。計算の際には\(\xi \approx 0 \) なることから、両半径が等しいとき、\(\xi \approx 0 \) である。又半径の両端における半径の間の角を \(2\Theta \) とすれば第 2 モーメントの式は次の通りになる。(1)

\[
M = G\Theta^{a^2 - b^2} \quad \text{ただし} \quad a = a \circ b, \quad b = b \circ c
\]

となる。計算の際には\(\xi \approx 0 \) なることから、両半径が等しいとき、\(\xi \approx 0 \) である。又半径の両端における半径の間の角を \(2\Theta \) とすれば第 2 モーメントの式は次の通りになる。(1)

\[
M = G\Theta^{a^2 - b^2} \quad \text{ただし} \quad a = a \circ b, \quad b = b \circ c
\]
5b. 扁形断面の他角

前節の解の後を受けて次に極座標に依る計算結果を述べれば問題の解は次の如き式で表される(11)。

\[M = G G \frac{a^4 - b^4}{4} \left(\tan 2\theta_0 - 2\theta_0 - \frac{128}{\pi} \frac{a^2}{a^2 - b^2} \right) \sum_{n=1}^{\infty} \frac{f(b/a)}{n \alpha(a^2 - 4b^2)(1 - (b/a)^{2n})} \]

この式に於て前と同様に \(\alpha = n \pi/2 \theta_0 (n = 1, 3, 5, \ldots) \) 又

\[f(b/a) = \frac{1}{\alpha + 2} \left(1 - \left(\frac{b}{a} \right)^{2n} \right) + \frac{1}{\alpha - 2} \left(\frac{b}{a} \right)^2 \left(\frac{1 - \left(\frac{b}{a} \right)^{2n}}{\alpha - 2n} \right)^2 \]

(2)

\(b/a \) は1に近い数なる故 \(b/a = 1 - x \) とすれば \(x \) は小なる正の数である。これを用いて \(f \) の近似値を計算する。即ち

\[1 - \left(\frac{b}{a} \right)^{2n} = \frac{(a + 2)x - (a + 2)(a - 1)x^2}{2!} + \frac{(a + 2)(a + 1)x}{3!} - \frac{(a + 2)(a - 1)(a - 3)x^3}{4!} + \frac{(a + 2)(a + 1)(a - 1)(a - 3)(a - 5)x^4}{5!} \]

\[1 - \left(\frac{b}{a} \right)^{2n} = \frac{(a + 2)x - (a + 2)(a - 1)x^2}{2!} + \frac{(a + 2)(a + 1)x}{3!} - \frac{(a + 2)(a - 1)(a - 3)x^3}{4!} + \frac{(a + 2)(a + 1)(a - 1)(a - 3)(a - 5)x^4}{5!} \]

\[\frac{1}{\alpha + 2} \left[1 - \left(\frac{b}{a} \right)^{2n} \right] = \frac{(a + 2)x^2}{2!} + \frac{(a + 2)(a + 1)x}{3!} - \frac{(a + 2)(a - 1)(a - 3)x^3}{4!} + \frac{(a + 2)(a + 1)(a - 1)(a - 3)(a - 5)x^4}{5!} \]

この第2式に \((a/b)^2 = (1 - x) \) を乗じて

\[\frac{1}{\alpha - 2} \left[1 - \left(\frac{b}{a} \right)^{2n} \right] = \frac{(a - 2)x^2}{2!} + \frac{(a - 2)(a + 1)x}{3!} - \frac{(a - 2)(a - 3)x^3}{4!} + \frac{(a - 2)(a + 1)(a - 3)(a - 5)x^4}{5!} \]

\[\frac{1}{\alpha - 2} \left[1 - \left(\frac{b}{a} \right)^{2n} \right] = \frac{(a - 2)x^2}{2!} + \frac{(a - 2)(a + 1)x}{3!} - \frac{(a - 2)(a - 3)x^3}{4!} + \frac{(a - 2)(a + 1)(a - 3)(a - 5)x^4}{5!} \]

次に

\[1 - \left(\frac{b}{a} \right)^{2n} = 2ax - \frac{2(a - 1)(a + 1)x^2}{2!} + \frac{2(a - 1)(a + 1)(a - 2)x^3}{3!} - \frac{2(a - 1)(a + 1)(a - 2)(a - 3)x^4}{4!} \]

\[\frac{1}{1 - \left(\frac{b}{a} \right)^{2n}} = \frac{1}{2ax} \left[1 + (a - 1)x - \frac{(4a - 1)x^2}{12} \right] \]

\[\frac{1}{1 - \left(\frac{b}{a} \right)^{2n}} = \frac{1}{2ax} \left[1 + (a - 1)x - \frac{(4a - 1)x^2}{12} \right] \]

従て又

\[f(b/a) = \frac{1}{1 - \left(\frac{b}{a} \right)^{2n}} = x - \frac{3}{2} x^2 - \frac{(a^2 - 4b^2)^{1/2}}{12} + \frac{(a^2 - 10b^2)x^4}{24} \]

\[\frac{1}{1 - \left(\frac{b}{a} \right)^{2n}} = \frac{1}{2ax} \left[1 + (a - 1)x - \frac{(4a - 1)x^2}{12} \right] \]

\[\frac{1}{1 - \left(\frac{b}{a} \right)^{2n}} = \frac{1}{2ax} \left[1 + (a - 1)x - \frac{(4a - 1)x^2}{12} \right] \]

\[\frac{1}{1 - \left(\frac{b}{a} \right)^{2n}} = \frac{1}{2ax} \left[1 + (a - 1)x - \frac{(4a - 1)x^2}{12} \right] \]

(11) 前出 375 頁。

(12) 前出 375 頁。
6. 薄板の計算

前に述べた Saint-Venant の振り理論に基づく計算結果と比べるために薄い円筒板の計算に依って得る結果を求める。この目的で円筒板の荷重に x 方向に x 軸を取って円周方向の微小な長さを ds = rmdθ とて示す。此処で r は円筒の平均半径である。又 z 軸を円筒の半径方向に沿って中心に向かって取る。板の厚さを L としてドメネック hdxds に作用する第 6 図の直取りの半径に関する条件をもて考える。T₁, T₂, T₃ は周辺の荷重の長さに対する力の密度を示し即ち

\[T_1 = \int a_1 (1 - \frac{z}{r}) \, ds, \quad T_2 = \int a_2 \, ds, \quad S_1 = \int a_1 (1 - \frac{z}{r}) \, ds, \quad S_2 = \int a_2 \, ds \]

積分は \(z = \pm h/2 \) の間にある。又円筒の半径方向における剪断力を \(N_1, N_2 \) としてこれ等の力の平衡の式を結びて
円弧新面を有つ厚板の振り

\[
\frac{dW}{ds} - \frac{W}{r_m} = 0.
\]

従てこれ等同様より

\[
\frac{dW}{ds} + \frac{W}{r_m} = 0.
\] \(\cdots\) (4)

この微分方程式の解は

\[
W = A \cos \frac{s}{r_m} + B \sin \frac{s}{r_m}.
\]

\(W\) は \(s\) の奇数関数なるべき故 \(A = 0\) として

\[
W = B \sin \frac{s}{r_m}.
\] \(\cdots\) (5)

この \(W\) を用って \(V\) を求めれば

\[
V = \int W ds = C - B \cos \frac{s}{r_m}.
\] \(\cdots\) (6)

さて周辺の単位の長さに対する引張りの力は

\[
T_1 = \frac{2Gh}{m-1} \left(m_1 + e_2 \right) U_1 = \frac{2Gh}{m-1} U_1,
\]

\[
T_2 = \frac{2Gh}{m-1} \left(e_1 + m_2 e_2 \right) U_1 = \frac{2Gh}{m-1} U_1.
\] \(\cdots\) (7)

又たわを \(\theta\) とすれば

\[
\theta = \frac{\partial W}{\partial x} + \frac{\partial V}{\partial r_m} + \frac{dW}{ds} = C.
\] \(\cdots\) (8)

(6) に示すように \(V = C - B \cos \frac{s}{r_m}\).

さて \(T_1, T_2, S_1, S_2\) を力の平衝式 (2) に入れる時は

\[
B \frac{\sin s}{r_m} + \frac{dU}{ds} = N_\theta - \frac{C}{gh} = 0.
\]

\[
\frac{1}{N_\theta} \left(\frac{\partial N_\theta}{\partial x} + \frac{\partial N_\theta}{\partial s} \right) + \frac{2}{gh} U_1 + 2 \left(C - B \cos \frac{s}{r_m} + \frac{dU}{ds} \right) \frac{C}{r_m} = 0.
\] \(\cdots\) (10)

次に権力のモーメントを作て

\[
\int \sigma_x z (1 - \frac{s}{r_m}) dz = G_1, \quad \int \sigma_y z z dz = G_2,
\]

\[
\int \tau_y z (1 - \frac{s}{r_m}) dz = H_1, \quad \int \tau_y z dz = H_2.
\] \(\cdots\) (11)

とすれば

\[
G_1 = -D \left(e_1 + e_2 \right) U_1,
\]

\[
G_2 = -D \left(e_1 \right) U_1 = 0.
\]

従て

\[
H_1 = -D \frac{m-1}{m} \left(\theta + \frac{\theta}{2r_m} \right)
\]

\[
= -D \frac{m-1}{2r_m} \left(C - B \cos \frac{s}{r_m} + \frac{dU}{ds} \right.
\]

\[
H_2 = -D \frac{m-1}{m} \theta = -D \frac{m-1}{m} C.
\] \(\cdots\) (12)

円弧板の偏かたに作用するモーメントの平衡式を作れば

\[
N_\theta = \frac{\partial H_1}{\partial x} + \frac{\partial G_2}{\partial s}, \quad \frac{\partial N_\theta}{\partial x} + \frac{\partial H_2}{\partial s}.
\] \(\cdots\) (13)

従て

\[
N_\theta = 0, \quad N_s = 0.
\] \(\cdots\) (14)

故に力の平衡式 (10) より

\[
\frac{d^2 U}{ds^2} = -\frac{B}{r_m} \sin \frac{s}{r_m},
\]

\[
\frac{1}{m-1} U_1 + \left(C - B \cos \frac{s}{r_m} + \frac{dU}{ds} \right) = 0.
\] \(\cdots\) (15)

第 (1) 式を一度積分して

\[
\frac{dU}{ds} = C' + B \cos \frac{s}{r_m}.
\]

原点 \(x = 0, s = 0\) に於て \(\frac{dU}{ds} = 0\) とすれば \(\frac{dU}{ds} = 0\) なるを要し従て \(C' = -B\). 即ち

\[
\frac{du}{ds} = C' - B \left(1 - \cos \frac{s}{r_m} \right).
\]

更に積分して

\[
U = C'' - B \left(s - r_m \cos \frac{s}{r_m} \right). \quad \cdots\) (16)

原点 \(x = 0, s = 0\) に於て \(u = 0\) とすれば \(U = 0, C'' = 0\). 従に

\[
U = C'' \left(s - r_m \sin \frac{s}{r_m} \right).
\]

次に又 (15) の第 2 式より

\[
\frac{1}{m-1} U_1 = B C \cos \frac{s}{r_m} + B C \left(1 - \cos \frac{s}{r_m} \right) - C^2.
\]

\[
= C (B - C). \quad \cdots\) (17)

故に (16), (17) を (3) の第 1 式に入れて

\[
u = (m-1) C(B - C) x - B \left(s - r_m \sin \frac{s}{r_m} \right). \quad \cdots\) (18)

期後に

\[
\tau_x = V + \frac{du}{ds} = C - B \cos \frac{s}{r_m} - B \left(1 - \cos \frac{s}{r_m} \right).
\]

\[
= C - B. \quad \cdots\) (19)

故に (9) より

\[
S_1 = G h (C - B) + \frac{D}{m-1} \left(\frac{e_1 + e_2}{m_1} \right),
\]

\[
S_2 = G h (C - B) - \frac{D}{m-1} \left(\frac{e_1 + e_2}{m_1} \right).
\]

若し \(S_2 = 0\) なるように \(B, C\) の関係を定めれば

\[
C = \frac{B^2}{12 r_m^2} C \quad \text{又は} \quad B = C \left(1 - \frac{B^2}{12 r_m^2} \right). \quad \cdots\) (20)
従って
\[n = -(m-1) \frac{\hbar^2}{12r_m^4} C \left(\begin{array}{c} \left(\frac{1}{1 - \frac{\hbar}{2r_m}} \right) \left(s - \frac{r_m}{s} \right) \sin \frac{s}{r_m} \\
\cos \frac{s}{r_m} \\
\sin \frac{s}{r_m} \end{array} \right) \] と \(q = \frac{C}{1 - \frac{\hbar}{2r_m}} \left(\cos \frac{s}{r_m} \right) \) （21）

面して
\[T_1 = -G \eta h \frac{\hbar}{6r_m^3} C, \]
\[T_2 = -G \eta h \frac{\hbar}{6r_m^3} C, \]
\[S_1 = G \eta h \frac{\hbar}{6r_m^3} C, \]
\[S_2 = 0, \]
\[G_1 = G \eta h \frac{\hbar^3}{27r_m^3} C, \]
\[G_2 = 0, \]
\[H_1 = -G \eta h \frac{\hbar^3}{6r_m^3} \left(1 + \frac{\hbar^2}{24r_m^2} \right) C, \]
\[H_2 = -G \eta h \frac{\hbar^3}{6r_m^3} C. \]

(22) に於て \(C = \partial u / \partial s \) と混在がの数であるがこれは \(1 \) に\(\)較べて小なる故 \(C \) を含む \(T_1, T_2 \) は一層下位の数としてこれを含む下位でして差支えを含む \(G_1 \) も左列である。又 \(\eta h r_m \) が小なる関係上 \(H_1 \) の式を括釈内に第 2 項を省略して差支えがない。従って \(H_1 = H_2 = H \) と述べて (22) の代りに
\[T_1 = T_2 = S_2 = G_1 = G_3 = 0, \]
\[H = -G \eta h \frac{\hbar^3}{6r_m^3} \theta, \]
\[S_1 = -G \eta h \frac{\hbar^3}{6r_m^3} C. \] (23)

同じような省略が (21) における \(T_1, N_1, G_1 \) は零とみなして差支えのない \(S_1, N_1, H \) である。

\(H \) はその定義の示すように円周の切線方向に作用する剪断力 \(\tau_{xy} \) の生ずる側力の \(\tau_{xy} \) のモーメントを表すものであるが、微小部分 \(ds \) における \(H ds \) の代りに円周に垂直な向きに作用するモーメントを示すものである。第 7 図に実際に示した二つの \(H \) の合力がこれである。而してこの目的の \(H \) は \(S_1 \) に反対の向に作用する剪断力の方向に作用する力 \(S_1 - H r_m \) に等しい。又 \(H \) はこの剪断方向の力の外円弧の端に於て孤立した力 \(H \) を示す。第 8 図、7 図の円弧の周辺に於ては周辺に沿う力は作用しないので単に \(H, H \) が作用するのみであるから直線板の周辺には \(2H, 2H \) が図の示すように作用する。さて \(S_1 \) の \(r_m \) は \(-2H/r_m \) と成つてこれを円弧の対称点の方向及びこれに直角の方向の二つの成分に分けてその総和を求めれば前者のものは明かに零となり又後者のそれは全円弧の半径を \(2 \) に対する次式のようになる。

\[-\int_0^\pi 2H \cos \theta d\theta = -2H \sin \theta. \]

これは円弧の一端における力 \(2H \) の対称成分の加算である。

従って図2を含む円周端の力は単に斜力のみとなる。

それ故この側力のモーメントの大きさを \(M \) にて表は \(s_2 = r_m \theta \) とすれば中心の周りの力のモーメントを取つて
\[M = \frac{2H}{r_m} \cdot 2s_m r_m = 4H s_m. \]

この式に (23) の \(H \) を代へば
\[M = -\frac{2}{3} \frac{G \eta h}{r_m} \theta. \] (24)

\(2s_2 = \ell \) と

\[\int_0^\pi 2H \cos \theta d\theta \] とおければ \(\theta \) の絶対値をとれれば符号に関せず

\[M = \frac{1}{3} G \theta h \ell \]

第 8 図

第 7 図

第 8 図

7 総括

三角形の形式の規律の計算結果を

薄い円弧板に作用して断面の厚さを極端に小するすれば薄い

三角形の形式と長さの形式で断面の点の振れ及び剪断力を

見出し得る事が明るcularと

薄い曲げ板の等の計算を行いこれを円弧板の振れに応用

用する事に至る可及の形式が同一の結果になる。これは前後薄い平面

板の曲げの形式から振れが計算されるものである。

薄い曲げ板の平面板及び曲面板より作りうる試験片を就て

振れ試験を行ひて剪断弾性係数を見出した結果普通して居
回転中のダービン気翼の或强制振動

昭和16年5月26日 神戸地方講演会於て講演

准員 高橋利衛

I. 導 論

著者筆者は回転状態におけるダービン翼根、即ち気翼には遠心力、又シュラウドには熱力の働く翼根の円周方向の自由振動を解析的につき取扱った。本論文に於ては同機中のダービン翼翼角の仮断振動を含んだとして考察の軸改方向の強制振動につき考えた。即ち翼断と円周方向の強制振動によって軸改状態の状態にあるものと考察する。軸改状態における直ち気翼の寸法が翼の対称性より考察して考えられる。従って本論文は主として高圧タービン翼は高圧段落のダービン気翼を対象とするものである。

前記如くダービン気翼の円周方向の振動に於てはシュラウドの対称性が著しい弾性振動となるから、軸改とシュラウドとより成る翼根の構造を単層多開架梁の如く考えてその振動を論ずる必要がある。然らに現在の軸改方向の振動に於てはシュラウドは弾性振動を示す。単に集中質量としての翼根と考察されるか、単に1節の気翼に注目してその振動を論ずる必要がある。

又翼根及び翼根の固定振動数は回転によって生ずる遠心力の影響を受け、従て同機数の数値があるから、翼根の曲げ振動によって振動させる気翼の軸改方向の振動数が曲げ振動に達すると共振の状態に陥ると考えられる。共振状態の気翼は振幅を増大し、噴出力は翼根等を振動を起こし軸に切削に至る等、重大な事故の原因となるから設計に際して

注解

(1) 広島高等工業学校。(2) On a Forced Vibration of a Rotating Turbine Blade。(3) Toshi TAKEHARA, ASSOCIATE MEMBER, Inst. Phys. Chem. Res. 境界化学研究所。(4) 名古屋 3 名、應用力学講演会 (昭和15年3月23日) にて講演、論文は発表。