球と静止空気との間の熱伝達

(昭和15年4月30日 第4回工学大講演会及び昭和18年1月29日 朝日地方講演会に於て講演)

正員 山県 清

\[N a = \frac{P (Gr)}{2} \] \hspace{1cm} (1a)

|層の熱伝達は線で（突き合わせて）一定であって、独立に浮力が作用するものと仮定して相乗則を適用すれば、\(N a \)は Grashof数 \(Gr \)と Prandtl数 \(Pr \)との関数であると云ぶ結果が得られる。

\[Nu = a Pr (Gr) \] \hspace{1cm} (1b)

但し \(Nu = \alpha D (G) \), \(Gr = \rho^2 g a \theta \rho \), \(Pr = \mu a \rho \) \hspace{1cm} (2)

ここで \(\alpha = \) 熱伝導係数、 \(D = \) 球の直径、 \(\theta = \) 温度差、 \(\rho = \) 運動粘性係数、 \(a = \) 燃焼速度、 \(\beta = \) 体積収縮係数、 \(\gamma = \) 球の温度 \(\theta \) と流体の温度 \(\theta \) との差。 今約に流体を空気と仮定すれば \(Pr \) は大体一定と見られるから

\[Q = \frac{4 m k (T_r - T_0)}{r_a} \] \hspace{1cm} (2a)

上述の \(r \) 以外の数は \(\lambda \)一定であると仮定して相乗則から導かれたものである。\(Gr \)数である。\(Gr \)が \(Gr \)の中の \(\gamma \)と無限遠点の値を用いれば \(\beta \)は無限遠点と、反対に \(\gamma \)と相対的に平均値をもとれば \(\beta \)は無限遠点の値を用うべきである。関係がはっきりしない。

又粘性係数は流動している部分全体に関係を有し、更に \(Nu \)の中の \(\lambda \)は一見表面的巧に近い関係を有するものであるが、実はその部分の温度が支配で \(Nu \)は他の部分の \(\lambda \)とも関係されないものである。

\[Gr = \frac{D}{2} \left(\frac{T_1 - T_0}{T_0} \right) \] \hspace{1cm} (2b)

なる形を用ひ、式中の \(r \)及び \(Nu \)の中の \(\lambda \)は平均値を用ひることとすば \(\lambda \)が平均値を採用する他の一の形異に附記する。

2. \(Gr = 0 \)なる場合

\(Gr \)数は無次元浮力数である。これが \(0 \)なる場合とは、流圧のみで熱が移る場合である。

今半径 \(R \)、温度 \(\theta \)なる球と、それと同心で半径 \(R \)、温度 \(\theta \)なる球との間熱伝導係数 \(\lambda \)が定まった流体があり、

\[Q = \frac{4 m k (T_r - T_0)}{r_a} \] \hspace{1cm} (2c)

であり、一方の場合あるも無次元熱伝導係数 \(\alpha \)を

\[\alpha = \frac{4 m k (T_r - T_0)}{r_a} \] \hspace{1cm} (2d)
球と静止気体との間の熱伝達

と定義すれば、これ等式より

\[\frac{\alpha D}{\lambda} = \frac{2}{1 - R_0/R_1} \]

が得られる。(3)

但し \(D = 2R_0 \) である。特に \(R_0/R_1 = 0 \)と看做される場合には

\[\frac{\alpha D}{\lambda} = 2 \]

なる一定値をとる。この中間では第1表の表わし方と関係する。

\(Gr \) が 0 でなくてもそれが相対的に小さいところでは境界層が厚くなり対流よりも直接の伝導が優勢になって来て解析的には境界層の影響が \(Nu \) に影響を及ぼすようになって来る。実験ではこの点に注意する必要がある（後述の実験では \(Gr \) 数最小のものでは \(R_0/R_1 = 25 \) になつている。

同様に無限長の円柱面と、それと同心円筒面とで囲まれた

流体との熱伝導に対する等価熱伝達係数を求めて見れば

\[\frac{\alpha D}{\lambda} = \frac{2}{\ln(R_0/R_1)} \]

となる。 \(R_0/R_1 \) と \(Nu \) の関係を同じく第1表に示す。

第1表 球及び円柱の熱伝達係数と流体の寸法との関係 (\(\alpha D/\lambda \))

<table>
<thead>
<tr>
<th>(R_0/R_1)</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>25</th>
<th>(\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Nu)</td>
<td>400</td>
<td>2.50</td>
<td>2.22</td>
<td>2.08</td>
<td>0.62</td>
</tr>
<tr>
<td>円柱</td>
<td>5.99</td>
<td>2.50</td>
<td>2.22</td>
<td>2.08</td>
<td>2.08</td>
</tr>
</tbody>
</table>

\(R_0/R_1 \) なる極限の \(Nu \) 値は

流体の円柱の寸法によって最小 0 まで変化し得るのであつて、微細な針金を用ひ \(Gr \) 値を極端に小さくさせた実験に於てはその結果がかなり不揃いになるものであるが、その原因の一部はなたごらとあるのであろう。これに対し球に \(Gr \) にては \(Nu \) の値は \(Nu \) に二つと一定の値を有し又寸法の影響を除き著しく無いためであるから、結果実験の誤りはより少ないと想定されるであろう。

従来流体の \(\lambda \) の温度の関数である場合には、(3) 及び (4) 式の \(\alpha D/\lambda \) の代わりに

\[\lambda = \frac{1}{\ln t_0} \int_{t_0}^{\infty} \lambda \, dt \]

なる平均値を用ひてよい事を容易に認め得し。かかる、\(Gr \) 値の小さな場合では \(\lambda \) には平均値を用ひるのが正しいのであるから、\(Gr \) 値の大きいものでの \(\lambda \) に berk にする値を用ひるよりも、前記の如く、

\(Gr \) 値に亘り一貫して平均値を採用する方が自然であろう。

3. 深い層流境界層の場合

\(Gr \) 値が 10^6 と 10^7 とか

3. 深い層流境界層の場合には、速度及び温度の境界層の厚さは薄く流れは層流である。この時の流理論は水平円柱に対する Hermann の方法でついて求めることが大である。

第1 図の記号を用い普通の省略を省じて、切線速度 \(u \)、

垂直速度 \(v \) 及び温度差 \(T - T_1 \) に対する微分方程式は

\[\frac{\partial u}{\partial s} + \frac{\partial v}{\partial n} = \frac{\partial u}{\partial n} \]

\[+ g\beta \sin \theta \frac{s}{K}, \]

\[\frac{\partial (\rho u)}{\partial s} + \frac{\partial (\rho v)}{\partial n} = 0, \]

\[\frac{\partial (\rho u)}{\partial s} - \frac{\partial (\rho u)}{\partial n} = \frac{\partial \theta}{\partial n} \]

となる。更に \(r = r_0 \) とすれば

\[\frac{\partial u}{\partial s} + \frac{\partial v}{\partial n} + \frac{\partial \theta}{\partial n} \cot \frac{s}{K} = 0 \]

となる。円柱の場合に比較すれば \(\cot \) と \(\rho \) を含む項だけ余分に加はつって出来る。

さて式 (10) を解くのに、Hermann に従つて、次の置き

\[q = g(x,y), \phi(x,y) = q(x,y), \tau(x,y) = \tau(q)(x,y)(11) \]

然る時は式 (10) は

\[\frac{\partial q}{\partial s} - \frac{\partial q}{\partial n} = 0, \]

\[\frac{\partial \phi}{\partial s} - \frac{\partial \phi}{\partial n} = 0, \]

\[\frac{\partial \tau}{\partial s} - \frac{\partial \tau}{\partial n} = 0, \]

となるから、若し

\[q + f(x) + g(x) \]

となるときは \(f(q) \) 及び \(g(q) \) なる二つの関数の一つに等しいものに決定されるならば、\(f(q) \) 及び \(g(q) \) は

\[\frac{\partial f}{\partial s} - a f \partial q = b f \partial q + c q, \]

\[\frac{\partial g}{\partial s} = 2 a f q \]

を解いて求められる事となる。

先づ (13a) 及び (13b) の式を変形し境界条件を求めて解く。\(x = 0 \)

\[q(x=0) = g(x=0) = f(x=0) = 0. \]

(15)
又直接 (13a) 式に $x=0$ と置けば

$$F(x) = g(x)/g_0, G'(x) = g'(x)/g_0 \quad \quad \quad (17)$$

なる関係が得られる。

$$F(x) = g(x)/g_0, G'(x) = g'(x)/g_0 \quad \quad \quad (18a)$$

と置けば、(13a), (13b), (13c) 式及び境界条件は次の如くなる。

$$F + F \csc x = G, \quad F' + b \csc x = 0 \quad \quad \quad (18a)$$

及び(18b)

$$F G' + F P G'' = (c^2/a^2g_0^2) \sin x \quad \quad \quad (18c)$$

及び境界条件は

$$F(0) = 0, \quad F'(0) = 1/2, \quad G(0) = 1, \quad G'(0) = 0 \quad \quad \quad (19)$$

に定めた常数 a, b, c 及び g_0 の中で、$b/a g_0^4$ なる比は、(18b) の F 及び G を x の級数に展開した左右辺の第 1 項の係数を比較する式により、

$$b/a g_0^4 = \frac{1}{2} \quad \quad \quad (20)$$

なるべき常が分る。

ところで肝腎の (18b) 式より F 及び G の二関数が崩壊的に決定するか否かを決定するが、これは角度の尚何と同様に崩壊に直ちに導きならないのであるが、近似的には十分ある事実を認める得る。代表的な解としては物理的に矛盾の無いものといふ形から (18a) 及び (18b) （その右辺の係数値としては (20) 式を用ひるもの）を用ひる。 依って此等条件より F を消去すれば (19)

$$G'(x) - (2/3) G \cos x + (2/3) G^3 = 0 \quad \quad \quad (21)$$

となる。条件 (19) を満足するこの解は

$$G(x) = \left[\frac{8}{3} \int_0^x \left(\sin x - \frac{\theta}{\sin \theta} \right) d\theta \right]^{1/4} \quad \quad \quad (22)$$

であり、従って

$$F(x) = \frac{1}{a g_0^4} \left(\sin x - \frac{\theta}{\sin \theta} \right) \quad \quad \quad (23)$$

となる。此等の式によって計算した結果を第 2 表に示す。

<table>
<thead>
<tr>
<th>α_d/λ</th>
<th>$0.546 G_m G_r^{1/3}$</th>
</tr>
</thead>
</table>

第 2 表 仮数 $F(x)$ 及び $G(x)$ の値

<table>
<thead>
<tr>
<th>x</th>
<th>0°</th>
<th>30°</th>
<th>60°</th>
<th>90°</th>
<th>120°</th>
<th>150°</th>
<th>180°</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F(x)$</td>
<td>0</td>
<td>0.265</td>
<td>0.555</td>
<td>0.917</td>
<td>1.489</td>
<td>2.995</td>
<td>5.928</td>
</tr>
<tr>
<td>$G(x)$</td>
<td>0</td>
<td>0.980</td>
<td>0.990</td>
<td>0.992</td>
<td>0.997</td>
<td>0.999</td>
<td>0.999</td>
</tr>
</tbody>
</table>

次は (14a) 及び (14b) を強立に置いて $g(q)$ 及び $k(q)$ を求めれば、更に次で、u, v 及び θ を決定できる。(14a, 14b) 式中の常の応有数の大小の関係を (20) 式を用ひ、のことで

$$c = \frac{1}{3} a g_0^4 \quad \quad \quad (24)$$

なる関係（これは前記の如き (18a) 及び (18b) より求めた F

(10) 付の式には Hermann も前等同式に林田する式を示している

(11) 記載 (6) と同じ。
球と静止気体との間の熱伝達

3. 実験

1. 概要 以上のように、境界層が厚くて薄い場合に
は通常 Gr における Nu 値は垂直面を水平面がとの中間
にあること（但しその差は大した事なし）、及び Gr 値が減少
するに従い薄さ $Nu=2$ なる極限値に接近すべきことが明ら
かになった。よって次にその値への接近の模様を実験によっ
て明らかにしたいと考えたのである。

Gr 値を小さくするには直径を小さくするのが一番よく効
く。円柱の場合それは自身が熱源とし、小希の針金を用いれ
ばよいという解析的解法であるが、球にあっては、その内部に
熱の発生装置を設けなければならぬから、極端に直径の
小さいものは使用できない。従ってそのままで上記の目的に
かなぶ程 Gr 値の小さい実験は難しいと云う事になる。然る
に幸いに Gr なる量は熱伝達の圧力の 2 乗に比率する。故に圧
力を低くして実験をすれば、その結果は見掛け上小希の球を使
用したものと等値なる事であると雲ふのがこの実験の根拠
の考である(12)。

2. 設置及び方法 球はアルミウムの中空の細に仕

(12) Hermann の値は 0.372 となっている。従来の無

(13) 今 Programming 生成者が計算した数値を用い

て、以下 F 及び G に有する式は

$G=\sin^{1/2}\left(\frac{1}{2}g_r \sin \theta r \sin \theta r dx \bar{dx}
ight)$

であり、これを用いて計算すれば $G_m=0.373$ となる。

4 本の針金を 1 本宛取出す。第 4 図が外観で、これを左右か
ら少しずらして完全に密着するのである。

球は 4 種類で外径は 200, 100, 50, 及び 40 mm を目標と
した。実験上球の外径の平均値は室温に於て夫々 200, 100, 50, 40 mm であった。実験した温度範囲と
材質の影響を考慮して、計算には

$D=201, 100'5, 40, 20, 40$ mm

なる値を用ひた。以下簡単のために各球を小さの順に球 $I,$
II，III及びIVと呼称する。

球I及びIIは、凡その寸法が幅2m×奥行3m×高さ3mの距離した白の試料に吊し、大気圧の下で実験した。必要な適応は総面積を測定して計算し、無用の誤差を避ける様に心掛けた。

球III及びIVは減圧タンクを用いて実験した。第5図が実験の外観である。Aがタンク本体で内部の直径1m、高さ約1/4mである。内部には破壊材を封入した。実験中となるから、(1/2)\sin\phiを個々につつて測定値をプロットし、曲線を測定して平均値を求めた。

球III及びIVについては、下に多数の等電位の放置と容量が一致であるか否か、及び第2に減圧タンクに封入して気密を良く保つ必要があることにことに、その数を一致にする事が望ましかった。よって第I及びIIの実験結果に就いて平均値を出し実験を試みたところ、球Iでは\phi=12°30'、球IIでは\phi=11°00'の周期に発表した。従も第

第6図 球Iの構築及び熱電対の検討位置

器壁の温度が一様になる様に外部は流線で渇がれる様につくっている。竪の裏側に測定器を設ける。これにより熱損失を避けるために、線布を経てエアロミクロ縫で熱電対の中心に吊した。熱時には多くの小孔があけてある。

Bは気圧測定装置である。Cは圧力測定用エアタンク内の圧力測定器で、気密のための圧力測定用に一つ宛用針金6本と、電圧用電線2本を別々に通すたるものである。Dの細さに孔のある栓をねじ込み気密と電気の接続を保たせた。

球の表面温度を測定するために、球Iに対しては第6図の如く8ヶ所に熱電対を植えた。図の左上角にある3箇所はGaussの方法で平均温度を求めようとしたものであるが、最上部の一つが余りに電気的接点を欠いて、後には方針を変えて、右半分で平均温度を出し、他は左右の対称性を検討するための参考とした。球IIでは右下1ヶ所と左は中央の1ヶ所だけとした（第7図）。

各熱電対は内部からあたたかい孔の底（外表面から約0.5mm）に高圧接点を置きアルミウムの均に挿へた。熱電対は直径0.3mmの鋼コンスタンタンで、エナメル塗装絞りである。

これ等の熱電対の挿入を以てその点の表面温度を考えて十分正確である。その測定例を第8図に示す。再現の如く表面温度の差は小さい。これから次の如く重さを付して表面の平均温度を求めた。即ち球心を通る水平面から測って中心角\phi（上の方を正とする）の点の温度を\thetaとすれば、平均温度は

\[
\theta = \frac{1}{4\pi R^2} \int_{-\pi/2}^{\pi/2} R^2 \cos \phi \cdot R \, d\phi = \int_{-\pi/2}^{\pi/2} \left(\frac{1}{8} \sin \phi \right) \, d\phi = \left(\frac{1}{8} \sin \phi \right)^{\pi/2}_{-\pi/2}.
\]

\[
\varepsilon = \varepsilon_0 - \frac{Q_a - Q}{4\pi n L_{0}^{100} - (2/100) A_0}
\]

ただし、\(A_0\) は黑い部分の表面積 \(m^2\) である。又、\(\varepsilon_0\) は
電極の反射係数である。普通充えられている値よりやや小さく
\(\varepsilon_0 = 0.99\) とする。以上の計算を用い計算した結果

\[
\varepsilon = 0.075
\]

となった。先ず説明を簡単にするために、絶対の実験に対し
この値を用いることにした。

4. 熱流体係数 実験の結果

実験に用いた最高温度は、\(40\)\(^\circ\)C
mm の球における \(0.015\) ata
であった。この時、\(Gr\) 値 9.4
は、これと同一温度で大気圧
における実験に換算されれば、直径
5 mm の球を使用した場合に相
当する。

\(l\) 及び \(\rho\) には温度に関係
あるべきことは既に述べたが、
計算に用いた \((\alpha + \mu) / 2\) にお
ける値を用いた。

第 9 図に実験結果の中 \(Gr =
10^3 ~ 10^6\) の範囲内のものを示
す。直径の異なる球に対する点
の連続よく一つの曲線上に乗っ
ている。この図の範囲内の \(Gr\)
に於ては、垂直平面積は水平円柱
の \(Nu\) は \(Gr^{1/4}\) に比例する
ことが実験的にも確認されて
あるのでであるが、球に於てはこ
の極限の比例を成立させと見られ
る理論が証明され、例えば \(Gr\)
の小さい方は \(Gr = 10^3\)
で既に外壁開始することはない。
これは
\(Gr\) が少し小さいと層流境界
層層の厚さを小さくと見做し得
ない部分の面積が急に大きくなら
なり、又反対に \(Gr\) が少し大き
くなると上の所見が現れて存在し
る乱れ部が見にくってその影響
が著しくなって来るこれを示す
と解すべきであろう。

理論式 (28) が適用できると
考えられる \(Gr\) における実験値
をこの式と比較するために、実験か
ら出た \(\alpha\) が \(10\) 位大き
くなってくる。理論式は完全に
平衡な理想気流における \(Nu\)
に於ては、平衡な理想気流における \(Nu\)
第 9 卷 37 号 (第 2 部)
下って \(Gr = 4 \times 10^6 \) に於て始めて両曲線は交又し、以下 Saunders の曲線は水平円柱に対する速度差の Hermann の曲線（第 10 図参照）の少し上をそれに並べてゐるのに 対し、球に対 する曲線はさ れより相違上 に向つて進ま でゐる。第 10 図に実験 した各範囲の 結果を示す。 これ等の點を 通ねる曲線の 左の方の行先 は、予想通り \(N_{\alpha} = 2 \) に渐 近する傾向に あり、この \(Gr \) の範囲に於ても水平円柱従て又垂直平面に対するものより著 しい上位にある。

4. 総括

高温の球と媒介との間の自由対流向の熱伝達を研究した ものである。この場合は平均の Nusselt 数は Grashof 数 の数値であるが、\(Gr \) 数としては \((D'g\alpha(r^2)_0 - r^2)_1 / r^3 \) なる 形をとる。この中の中の \(r^3 \) 及 \(N_{\alpha} \) 数の中の \(r^3 \) には \(r^3 \) と \(T_1 \) との間の平均値を用ひる方が合理であることを示した。か くすれば \(Gr \rightarrow 0 \) では \(N_{\alpha} = 2 \) なる極限値をとるべきこと になる。この \(N_{\alpha} \) 数は球以外の物体に関する在来の実験結果 よりは想像できない大きな極限値である。 反対に \(Gr \) 数が 非常に大きくなり境界層が層流で薄いと見做される場合にも 解析が可能であり、計算の結果 \(N_{\alpha} = 0 + 421 \times Gr^{1/4} \) なる式を 得た。右辺の係数値は垂直平面に対するものより 12\% 小さく、水平円柱に対するものより 14\% 大きい。

次で実験によって上記両極端における理論の妥否を吟味し、 更にそれ等の中間における \(Nu \) と \(Gr \) との関係を見出しを ことを試みた。実験に用いたのは内部より電気で加熱されたア ルミニウムの中空球であつて、外径は約 200、100、70、及び 40 mm の 4 種である。従 りの二つの球 は内径 1 m の減圧容器内 に封入し、そ の気圧を低下 することによ り \(Gr \) を小さ くする方法を とつめた。実験 結果は第 10 図に見られる如く よく 1 本の曲 線上に乗つた。 境界層が層流 で薄いと考え

更に \(Nu \) の増加は \(Gr \) の平方根に比例し、 \(N_{\alpha} \) は \(2 \) に漸近し、 \(Gr \rightarrow 0 \) \(\) の場合に \(N_{\alpha} \) 数の極限値をとる傾向があることを示した。

昭和 18 年 9 月 6 日受付

昭和 18 年 11 月