異種金属界面に沿う疲労き裂進展挙動について

1. 緒 言

近年、破壊力学の観点に立った複合材料の疲労強度に関する研究が盛んとなり、理論と実験の両面からかなりの研究報告がなされてきている。著者らも先に、異種金属界面を垂直に横切る疲労き裂のならびに異種金属界面に平行な疲労き裂の進展挙動に及ぼす諸因子の影響についての報告を行ってきた。そこで、特に前報の結果を基に、異種金属界面の静的強さに関する研究(1)-(3)(4)、あるいは理論的に界面き裂のK値を評価したものの(5)-(7)についてはすでに報告されているが、問題の異種金属界面の疲労強度あるいは界面に沿う疲労き裂に関する報告はこれまでにないようである。

そこで、ここでは前報(1)と同様の拡散接合法により作製した純鉄と純銅からなる3層突き合わせ状複合板について疲労試験を行い、界面に沿って進展する疲労き裂の進展挙動に及ぼす諸因子の影響について調べた。また、実験結果は界面き裂に対して有限要素法により評価したK値と比較検討した。

2. 供試材料と実験方法

本実験に使用した複合板試験片は、しこ(芯)材の板厚hが約0.6mmと1.3mmの純銅-純鉄-純銅(CFC形)およびhが約1.5mmの純鉄-純銅-純銅(CFC形)の2種類の3層突き合わせ状複合板であり、構成素材としては前報(1)と同質の純鉄と純銅を用い、前報(3)と全く同様の拡散接合法により作製した。この場合、大半は圧力p=1kg/mm²のもとで接合を行っているが、CFC形試験片の場合には一部p=3kg/mm²のものも準備した。図1は得られた複合板試験片の形

状方を示しており、純鉄と純銅との界面にはき裂の発生を容易にするために同図に示すような片側切欠きをつけた。なお、最終的な熱処理として800℃で4時間保持後冷を行った。

疲労試験は、図1に示す形状の試験片の複合板試験片について、容量が約150kgの動電気引張圧縮疲労試験機を用い、約160Hzの共振波数で恒振りの公称応力が一定のもとで行った。また、き裂長さの測定には貫通付きの光物鏡顕微鏡を用い、逐次実験を中断することにより行った。さらに、界面き裂の様子を調べるため走査形電子顕微鏡による破面観察も併行して行った。

3. 実験結果

3.1 界面に沿う疲労き裂進展挙動 図2は、しこ材の板厚hが約0.6mmのCFC形複合板の界面に沿う疲労き裂進展曲線で示す。同図の縦軸は初期き裂長さとし、横軸は最大応力とし、y軸はき裂進展速度を示す。界面進展曲線は、き裂長さが1mm、相当き裂長さが3mm以上のところを示している。
ところで、本研究におけるき裂進行は、き裂が純粋に純鉄と鋼の界面を進展する場合、き裂が界面と平行に界面から20〜30μm程度離れた鋼中を進展する場合、さらにき裂が界面から大きく離れた鋼内を進展する場合には、以降それぞれのき裂を「界面き裂」、「鋼界面き裂」および「鋼内き裂」と略称し、その図示に当たってはそれぞれ白抜き、半黒および黒塗りのプロットで表示した。また、これらの3種類のき裂を総称して「界面に沿うき裂」と呼ぶ。なお、こうしたき裂の具体的な破面の走査形電子顕微鏡観察写真については3・2節で詳細に示す。

図2において、実験はσ=1kg/mm²で2本、σ=3、2.5kg/mm²で各1本の計4本の試験片について行い、σ=1kg/mm²の応力レベルにおいては疲労き裂は殆ど発生しないので進展しているのに対して、σ=3と2.5kg/mm²の応力レベルにおいてはき裂は界面から成長を始め、途中から鋼界面へと進展している。

図3はh=1.3mmのCFC形状複合板の界面に沿う疲労き裂の進展曲線を示す。実験はσ=4kg/mm²とσ=3kg/mm²で各々2本ずつ行っている。同様にみるように、C1およびC3試験片においてはき裂は常に界面から20〜30μm程度離れた鋼界面を進展しており、またC2試験片においては、最初き裂は界面から200μm程度離れた鋼内を進展するが、a=3.5mmにまで進展した時点で界面に近づく。さらにC4試験片においては、寿命の大部分が界面き裂であるが、最終的には進展はやはり鋼界面に移る。ここでは、同一応力レベルσ=4kg/mm²のC1試験片とC2試験片を比較した場合、鋼界面き裂に関しては両者の間に進展速度の差は見受けられないが、C2試験片の進展初期の鋼内き裂の進展がC1試験片の鋼界面き裂の進展に比べて遅いことがわかる。また、σ=3kg/mm²の応力レベルについてみた場合、C3試験片の鋼界面き裂に比べてC4試験片の界面き裂の方がはるかに進展が遅い。

図4はh=1.5mmのFCF形状複合板の界面に沿う疲労き裂の進展曲線を示す。実験はσ=4kg/mm²および3kg/mm²で各々2本ずつ行っている。同図にみるように、σ=4kg/mm²の応力レベルでは、D1、D2試験片とも疲労き裂は鋼界面から成長し、き裂がそれぞれa=5.5mmおよび4.5mmに達したところで鋼内へ進展を遅め、その後D2試験片のき裂が破断まで鋼内を進展するのに対して、D1試験片のき裂進展はa=5.5mm前後で再び鋼界面に戻る。また、σ=3kg/mm²の応力レベルのD3およびD4試験片においてはき裂は一時的に界面から成長を始め、D4試験片の場合途中から進展が鋼内へ移ることがわ

図2 h=0.6mmのCFC形状複合板のき裂進展曲線（p=1kg/mm²）

図3 h=1.3mmのCFC形状複合板のき裂進展曲線（p=1kg/mm²）

図4 h=1.5mmのFCF形状複合板のき裂進展曲線（p=1kg/mm²）
かる。この場合も D1 および D2 試験片に見るように、進展速度は鋼内き裂よりも準界面き裂の方が速い。

以上は接合時の圧力が $p = 1 \text{kg/mm}^2$ の試験片に対する実験結果であるが、後に $p = 3 \text{kg/mm}^2$ の $h = 1.5 \text{mm}$ の FCF 形成合板の界面に沿う疲労き裂の進展曲線を図 5 に示す。実験は $a = 4 \text{kg/mm}^2$ の二つの応力レベルについて各々1本ずつ行っており、$a = 4 \text{kg/mm}^2$ の D5 試験片においてはき裂は準界面から成長を始め、途中 $a = 5.5 \sim 6 \text{mm}$ で鋼内へ進展するが再び準界面へとどることがわかる。また、$a = 3 \text{kg/mm}^2$ の D8 試験片においてはき裂は $a = 5 \text{mm}$ 前後で準界面を進展する以外は終始鋼内を進展している。

3.2 破面観察 3.1 節においては、界面に沿う疲労き裂進展の実験結果を「界面き裂」、「準界面き裂」および「鋼内き裂」に別れて示した。本節においては、こうした3種類のき裂の破面を実際に走査形電子顕微鏡によって観察した結果を示す。

3.2.1 疲労破面の全体的な観察 図 6 は疲労き裂が界面から準界面へ進展する場合の典型的な疲労破面の走査形電子顕微鏡写真を示す。（a）図は B4 試験片の相当き裂長さ a が約 5.3mm から約 7.7mm にわたる鋼側の破面を示しており、図1において $a = 8 \text{mm}$ までの平たんな部分が前側の準界面き裂であり、$a = 7 \text{mm}$ 以上のところがかなり進展した準界面き裂である。また、$a = 6 \sim 7 \text{mm}$ の範囲では両き裂が混在することがわかる。このように二つのき裂長さが混在することはまれであるが、混在する場合には、図2 ～5の図示において破面上での二つのき裂経路のうち、より断面積の多い方のき裂としてプロットした。（b）図は（a）図のく形部分に対応する鋼側の破面を示す。同様に見るように準界面き裂は逆でその破面がかなり支配的であることがわかる。

図 7 は D1 試験片の鋼内き裂を示す。図 4 でも述べたように、最初準界面を成長してきた疲労き裂は $a = 5 \text{mm}$ で鋼内へ進展し、その後 $a = 5.5 \text{mm}$ で再び準界面にとどまる。（b）図は（a）図のく形部分の拡大写真であり、疲労き裂が準界面から鋼内へ進行する様子を示している。また、同様に見るように、準界面き裂に対しては図 6 の（b）図の B4 試験片でも観察したように
3.3.2 界面および準界面き裂の微視的な観察

3.2.1 項においては、界面き裂、準界面き裂および鋼内き裂の疲労破面を走査形電子顕微鏡によりかなり巨視的に観察した。本項においては特に界面き裂と準界面についてさらに詳細な観察を行う。

図8は、B3およびB4試験片のa=4mm前後における界面き裂の鋼側破面の比較的高倍率な走査形電子顕微鏡写真を示す。破面には、図中矢印で示すように鉄の雲状の至るところに鋼が付着しているのが見受けられ、この付着する鋼の面積はB3試験片の方がB4試験片よりも多く、こうした鋼の付着面積が界面き裂の進展に影響を及ぼしていることは当然予想される。このことについては4章で考察する。

次に、D3試験片の界面き裂の鋼側破面の走査形電子顕微鏡写真を図9に示す。 (a), (c)および(d) 図は同試験片のそれぞれa=3, 3.8および4.5mmにおける破面である。 (a), (c)の図中の矢印は図8に於て鉄側破面に付着した鋼を示しており、同写真からも明らかにして、同一試験片においてもき裂長さにより鋼の付着面積がかなり異なることがわかる。特に (d)図においてはほとんど全面にわたって鋼が付着しているのに対して、(a)図の中央部を拡大した(b)図においてはほとんど鋼の付着が見受けられない。なお、(b)図における矢印で示す筋は鉄の粗粒と考えられる。

最後に、B3試験片のa=6.4mm前後における典型的な準界面き裂の走査形電子顕微鏡写真を図10に示す。 (b)図は(a)図の中央部を拡大写真であり、同写真より見られるように破面の全面にわたって不純物と思われる微粒子状のものが観察される。

4. 考察

3章においては、しん材の板厚hが0.6mmと1.3mmのCFC形成板およびhが1.5mmのFCF形成板の表面に沿う疲労き裂の進展挙動についての実験結果ならびに観察観察の結果を示し、界面前沿う疲労き裂の進展が界面き裂、準界面き裂および鋼内き裂に大別されることを述べた。本章においては、こうした界面に沿う疲労き裂に対して有限要素法を用い、K値をもとにき裂進展速度を評価し、界面前沿う疲労き裂の進展挙動に及ぼす第3層の影響ならびに上述のき裂路の相違の影響について考察を加える。

4.1 有限要素法による界面き裂のK値の評価

有限要素法による界面き裂のK値の評価として宮田の方法（11）を修正したものを用いた。図11はき裂先端の要素を示しており、今y > 0を鋼、y < 0を鉄とすると、宮田の方法に準じた形で各々の材料に対するK1値を次式で与えることができる。
ここで、γはモードIの破壊に対してT=0.331で与えられる定数である。また、μFeとμCuはそれぞれ鉄と銅のせん断弾性係数であり、σFeとσCuは平面応力状態に対してポアソン比vを用いて

\[\varepsilon = \frac{(3-v)/(1+v)} \]

で与えられる材料定数である。さらに、r0およびA0はそれぞれき裂先端要素の一辺と面積を、σFeとσCuはそれぞれ要素1と2のσを、さらにσFeとσCuは節点3を基準としたそれぞれ節点5のy方向の変位と節点7のy方向の変位を与える。ここでは界面き裂のK1値を式(1)式から得られるK1FeとK1Cuの相加平均として定義する。すなわち

\[K_1 = \frac{K_{1Fe} + K_{1Cu}}{2} \] \[(y > 0) \]

モードIIの破壊の応力拡大係数K2の導出に当たっては節点1と3の相対変位を求める必要があるが、界面においては同様に意味をもたず、宮田の方法によって界面き裂のK1値の評価は不可能である。

有限要素法による界面き裂のK1値の評価に用いたモデルのメッシュ分割を図12に示す。モデル材は図の上に示すように実験に供した試験片とほぼ同形状寸法のしん材の板厚が0.5mmおよび1.5mmのCFC形、FCF形複合板、ならびにその比較のためのFe単独材と鉄・銅2層突き合わせ板（FCF形）であり、解析は、平面応力状態でチャック部での変位が一様であるとして、3, 5, 7および9mmのき裂長さに対して行った。

図13 二重金属界面における疲労き裂進展挙動について

\[
K_{1Fe} = \frac{\sqrt{2\pi} \varepsilon_{Fe} + 1}{\sigma_{Fe} A_0 + 0.265} (y > 0) \]

\[
K_{1Cu} = \frac{\sqrt{2\pi} \varepsilon_{Cu} + 1}{\sigma_{Cu} A_0 + 0.265} (y < 0) \]

表1 材料定数

<table>
<thead>
<tr>
<th>材 料</th>
<th>弾性率E [kgf/mm²]</th>
<th>ポアソン比v</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>207×10^11</td>
<td>0.33</td>
</tr>
<tr>
<td>Cu</td>
<td>110×10^11</td>
<td>0.33</td>
</tr>
</tbody>
</table>

一方、Erdoganらは図14(a)に示すように内圧・σを受ける内部き裂をもつ3層突き合わせの無限板に対する解析を行っており、図14(b)にその結果を定性的に示す。図14に見るように、高剛性率材料を用いたモデルの界面き裂のK1値は単独材のK1値よりも大きいために対して、高剛性率材料を用いたモデルの界面き裂のK1値は単独材のK1値よりも小さく、第1層と第2層とはさまざまな界面き裂のK1値が第3層の材料によって大きく左右されることが容易に理解される。
れに対して，図 14(a)において第3層が第1層と同一材料であるとき，みたれた2層交差板の境界き裂が負の内圧 -pを受ける場合の応力拡大係数は，
\(a=1 \)に対して
\[
K_1 + iK_T = \omega_0 - 2i\omega_0
\]
ここで，
\[
\omega = \frac{1}{2\pi} \ln \left(\frac{1 + \tau}{1 - \tau} \right)
\]
\[
\tau = \frac{(\mu_1 + \mu_2) - (\mu_2 + \mu_3)}{(\mu_1 + \mu_3) + (\mu_1 + \mu_2)}
\]
で与えられ，2層交差板の境界き裂の \(K_1 \) 値は単独材料のそれと等しいことがわかる。
図13の有限要素法の結果と図14のErdoganらの解析結果を比較した場合，CFC形複合板の境界き裂に対する \(K_1 \) 値が単独材料の \(K_1 \) 値よりも大き

4-2 界面および準界面を構成する材料の影響
4-1 部においては，界面き裂の \(K_1 \) 値を有限要素法により評価し，Erdoganらの解析結果と
の比較を行った。本節においては，3-1 節の実験結果を有限要素法により得られた \(\Delta K \) 値で評価するとともに，き裂進展の距離がき裂進展速度に及ぼす影響についても検討を加える。
図15は，図2～5の曲線の値から読み取ったき裂進展速度 \(da/dn \)と複合板を単独材料とみなして宮本
の方法により有限要素法から求めた \(\Delta K \) 値との関係を示しており，(a)と(b)の両図はそれぞれ図2と3に，
また(c)図は図4，5の両図に対応している。この
場合，両図のプロットの類別は図2で述べたとおりであ
るが，鋼内き裂については界面および準界面き裂に
比べてデータ数が少なく，進展速度に関する議論がかな
異種金属界面に沿う疲労き裂進展挙動について

難しいのと、界面に沿うき裂という本来の目的とは若干はずれることもあり、図面においては御愛した。

まず、図面において界面に沿うき裂と準界面に沿うき裂を比較した場合、B, C, DおよびEシリーズとも準界面に沿うき裂の方が進展が速いことがわかる。こうした準界面における迅速なき裂進展については、多くの研究が実施されており、図10の破面で観察されたような不整合が観察された部分が進裂するためと考えられる。また、図面において低応力・レベルでは界面に沿うき裂が多く、高応力・レベルでは準界面に沿うき裂が多いことより、低応力・レベルでは界面に沿う進展の方が安定しているのに対して、高応力・レベルでは準界面に沿う進展の方が安定していると言える。しかしながら、このように応力・レベルによってき裂進展の安定領域が逆転する原因については不明確ではあるが、今後さらに検討を加える予定である。ただ、図4, 5, 13などに見るように、実験結果において進展の安定な準面構成に基づき準面に沿うき裂が進展する原因については、準界面を基準値の内にすべきが発生し、その方向へ向け進展するためと考えられる。

次に、図面において準界面に沿う進展と台階状の比較として、しん切りの板厚はほぼ等しくタイプの異なる（b）図のCFC形複合板と（c）図のCFD形複合板についてみると前者においてよりも後者における方がき裂進展速度が速い。このことは、問題の準界面に沿う進展を20〜30μm程度の範囲にあり、解析的にはき裂とみなせることを考えに入れ、図14で、同じh/aに対してはCFC形複合板に相対するLHL形複合板におけるよりも、FCF形複合板に相対するHLH形複合板における方がKt値が小さいという解析結果とよく一致している。なお、（c）図における2本の一点線は（a）（b）図も含めた全試験片のき裂進展速度の上限と下限を与える。

図16は、BシリーズのCFC形複合板においてはh=0.5mmとし、CシリーズのCFC形およびDシリーズのCFD形複合板においてはh=1.3mmとして、（1）（2）式の定義に従って実験の複合板に対して有限要素法から求めたΔK値によりき裂進展速度を評価したものをである。この場合、準界面に沿うΔK値は同キ裂を処理して求めた値であり、準界面に沿うΔK値は同基準として求めた値である。また、図15（c）図における2本の一点線は、図15（c）図における同様（a）、（b）図も含めた全試験片のき裂進展の上限と下限を与える。図15、16の図（c）図の2本の一点線ではき裂の基準値を超えた場合、基準値におけるよりも後者における方が狭いうち1節でも述べたように準界面に沿うΔK値の評価法自体にも若干の問題はあるが、（1）（2）式で与えられるΔK値により準界面に沿う進展速度はかなりよく評価されることがわかる。

一方、図16の準界面に沿うき裂についてみると、依然き裂進展のばらつきは大きい。図中の準界面に沿う基準値は、図8あるいは図9に示した準界面に沿うき裂の基準値の45度破面の基準値を示している。図16の図b、図cの3試験片間で比較すると、
鋼の付着割合が 80～90% の B3 試験片における進展が最も速く、同割合が 35～45% の C4 試験片における進展が最も遅い。結局、界面き裂については鋼の付着割合が多いほど進展速度が低くなることがわかる。また、D3 試験片については図 9 でも見るように、き裂長さが増すにつれて鋼の付着割合が急激に増加している。他の試験片の界面き裂に比べて同試験片における界面き裂の進展速度の傾き m がかなり大きいのは、こうした鋼の付着割合の増加に伴って進展速度が増加するためと考えられる。

5. 結 言
拡散接合法により作製した純鉄と純鋼とからなる 3 層き裂を含む状複合板について引張圧縮疲労試験を行い、界面に沿う疲労き裂の進展挙動に及ぼす諸因子の影響について調べた。また、有限要素法により界面き裂に対する A 値を評価し実験結果と比較検討した。得られた結果を要約すると次のとおりである。

(1) 界面に沿う疲労き裂は、純鋼部分を進展する「界面き裂」、界面に平行して界面から 80～30 μm 離れた鋼中を進展する「鋼界面き裂」、および界面から大きく離れた鋼内を進展する「鋼内き裂」に大別される。

(2) 疲労き裂安定成長領域では準界面き裂の進展速度は界面き裂の進展速度よりもかなり速い。こうした準界面き裂の進展速度の進展速度については先に報告した接合表面の切欠き形状に影響されているため、界面から若干離れた側壁が弱化し、それを疲労が進展するためと考えられる。

(3) 界面き裂の進展速度は試験片ごとにかなりばらつくが、これは界面き裂の鋼側部分に付着する鋼の割合が試験片ごとに異なることに原因し、この付着割合が多いほど進展速度は速い。

(4) CFC 形複合板の準界面き裂については、h/a が小さいほど、すなわち鋼側の板厚 h が小さくき裂長さ a が長いほどその進展速度は速い。また、h が等しい CFC 形複合板と FFC 形複合板の準界面き裂を比較した場合には前の方が進展速度は速く、この傾向は a が大きいほど著しい。こうした結果は Erdogan らの解析結果と一致するものである。

(5) 界面き裂の K1 値を、実験方法を用いて界面をはさむ鉄と鋼に対してそれぞれ求めた K1 値の相加平均として定義した。これによれば、界面き裂の K1 値は FC 形 2 層複合板に対しては非常によく評価されるが、FFC 形および CFC 形複合板に対しては若干問題があり、この点については今後さらに検討を加える。

終わりに、本研究の遂行にあたり終始熱心に協力された当時立命館大学理工学部生産工学科、高橋俊道、西村正俊および福富誠の諸君に謝意を表する。

文 献
(1) 田中、昭二，論文，45–500，A（昭 54），155。
(2) 田中、昭二，論文，46–403，A（昭 55），264。
(3) Enjyo, T.,ほか 3 名, Trans. JWEI, 41-1 (1977), 123。
(4) 川田、進二，金属学会誌，40-1（昭 51）, 96。
(12) Srivatsava, K. N., ほか 3 名，Int. J. Fract., 13–1 (1977), 12。
(13) 室田・ほか 2 名，論文，36–356（昭 52）, 26。
(14) 平, 現代材料力学, （昭 46）, オーム社。