Low-Cycle Fatigue Properties for High Strength Steels

by Saburo MATSUOKA, Michinari YUYAMA, and Satoshi NISHIJIMA

Low-cycle fatigue properties were investigated for low-alloy steels differently heat-treated to obtain strength levels of 2,000, 1,500, and 1,000 N/mm². The results were compared with those reported in the previous works where 15 grades of carbon steels, low-alloy steels and stainless steels (σe = 470~1,100 N/mm²) were examined, on the basis of cyclic softening or hardening behavior, cyclic stress-strain relationship and strain-life properties. SNCM 439 steel was cyclically stable when tempered at 200°C, while those tempered at 400 and 600°C, as well as other tempered-martensitic steels, cyclically softened. The relationship between total strain amplitude, εu, and number of cycles to failure, Nf, was independent on material at the low-cycle region of Nf < 10⁶ cycles. The Coffin-Manson relation was not satisfied for all the tempered-martensitic steels. This behavior was explained by a model assuming that the plastic strain was concentrated at the ferritic portion in the tempered-martensitic microstructure.

Key Words: Fatigue, Metallic Materials, Low-Cycle Fatigue, Cyclic Stress-Strain Properties, Coffin-Manson Relationship, Tempered-Martensitic Microstructure

1. 結 言

低サイクル疲労は高温機器の熱ひずみによる疲労破壊防止の観点から研究が開始されるが、その後室温においても応力集中部分のき裂発生寿命や変動荷重下の寿命予測の基礎資料として重要であることが示された。

著者らは国産の機械構造用炭素鋼ならびに低合金鋼を主に、15鋼種、62チャージの材料を用いて低サイクル疲労に関する系統的な基礎研究を室温で実施し、その結果に基づき同鋼種の低サイクル疲労特性に関するデータシート作成を開始した。この一連の研究を通じて、振幅変動 (Incremental step) 法で決定した繰返し応力-ひずみ曲線はチャージ間のわずかな強度差をも反映する重要な繰返し特性であることを見出した。これに繰返しで求められる繰返し疲労回数に応力σuは引張強さσyと疲労強さσuと非線形と比例関係が存在することを明らかにした。

一方、低サイクル疲労寿命を表す基礎的な Coffin-Manson則

εuσ = Nf = C ……………………………(1)

は(σとCは定数)、燃焼させたフェライト-パールライト鋼と固溶処理したオーステナイト鋼のような低強度は単純化したが、焼きもどしマルテンサイト組織を有する高強度鋼では、焼もどし視野下にみたのを用いて低サイクル疲労の傾向となるが準."11) 本研究では、SNCM 439鋼に低温焼もどしを施した高強度の低サイクル疲労挙動を調べ、前報11)までにまで研究と比較するとともに、焼きもどしマルテンサイト鋼において Coffin-Manson則が成立しない点を材料の微視組織に起因する不均一変形と関連づけて考察する。

2. 実験方法

供試材は SNCM 439鋼で、これを焼入れ後200, 400, 600°Cの焼もどしを施した。また比較材として、フェライト-パーキット組織のS25C鋼は完全フェライト組織のASTM A203A鋼を用いた。表1に化学成分、表2に熱処理の詳細と機械的性質を示した。図1にそれぞれの微視組織写真を示す。

軸ひずみ制御試験は多数試験片 (Companion Specimens)法による寿命特性と振幅変動法による繰返し応力-ひずみ特性を求めることとし、75kN油圧サーボ
試験機、標点間距離 8 mm のひずみゲージ式伸び計を用い、室温でひずみ速度 5×10^{-4} s^{-1} で行った。データ集録はパーソナルコンピュータを用いて行った。試験片は丸棒形で、平行部長さは 16 mm であるが、直径は SNCM 439 鋼で 6 mm、その他の鋼で 8 mm である。高サイクル領域では 1～50 Hz の両振り荷重制御試験も一部実施した。実験方法の詳細は文献（7）と（11）に示す。

3. 実験結果

3.1 緩返し軟・硬化挙動 図2と3に軸ひずみ制御試験中の応力振幅 σa の変化を緩返し比 N/N0 に対して示した。

図2は全ひずみ εa が約 1％のときの挙動を材料をパラメータとして示した。フェライト・パーライト組織の S 25 C 鋼ではわずかに緩返し硬化した。フェライト組織の A 203 鋼では εa = 1.4% で緩返しが起きて、εa = 0.6% で同様な挙動が得られた。焼もどしマルテンサイト組織の SNCM 439 鋼では焼もどし温度が 400℃ と 600℃ のとき明確な緩返し軟化が起こり、その軟化は 400℃ 焼もどしのほうが大きくなっていた。しかしながら、200℃ で焼もどしたさらに高

<table>
<thead>
<tr>
<th>Material</th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Ni</th>
<th>Cr</th>
<th>Mo</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>0.26</td>
<td>0.23</td>
<td>0.51</td>
<td>0.018</td>
<td>0.024</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>S25C</td>
<td>0.22</td>
<td>0.19</td>
<td>0.42</td>
<td>0.026</td>
<td>0.022</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>AJ</td>
<td>0.27</td>
<td>0.23</td>
<td>0.37</td>
<td>0.008</td>
<td>0.030</td>
<td>0.06</td>
<td>0.10</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>A203 A</td>
<td>0.014</td>
<td>0.25</td>
<td>0.72</td>
<td>0.010</td>
<td>0.004</td>
<td>2.51</td>
<td>1.16</td>
<td>1.16</td>
<td></td>
</tr>
<tr>
<td>SNCM439</td>
<td>0.40</td>
<td>0.33</td>
<td>0.77</td>
<td>0.008</td>
<td>0.004</td>
<td>1.88</td>
<td>0.83</td>
<td>0.26</td>
<td>0.02</td>
</tr>
</tbody>
</table>

表 2 熱処理条件と機械的性質

<table>
<thead>
<tr>
<th>Material</th>
<th>Heat treatment</th>
<th>σy (N/mm²)</th>
<th>σb (N/mm²)</th>
<th>εs (％)</th>
<th>σyc (N/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>885℃/0.5h, AC</td>
<td>420</td>
<td>507</td>
<td>37</td>
<td>0.150</td>
</tr>
<tr>
<td>S25C</td>
<td>890℃/1h, AC</td>
<td>440</td>
<td>527</td>
<td>36</td>
<td>0.147</td>
</tr>
<tr>
<td>AJ</td>
<td>200℃/CT</td>
<td>408</td>
<td>493</td>
<td>-</td>
<td>0.084</td>
</tr>
<tr>
<td>A203 A</td>
<td>870℃/0.5h, AC</td>
<td>420</td>
<td>507</td>
<td>37</td>
<td>0.150</td>
</tr>
<tr>
<td>SNCM439</td>
<td>400℃/CT</td>
<td>1506</td>
<td>1086</td>
<td>13</td>
<td>0.142</td>
</tr>
<tr>
<td></td>
<td>600℃/CT</td>
<td>1306</td>
<td>1526</td>
<td>13</td>
<td>0.163</td>
</tr>
</tbody>
</table>

図1 微視組織
(a) S 25 C 鋼 (b) A 203 鋼 (c) (d) (e) SNCM 439 鋼の 200, 400, 600℃ 焼もどし
高強度鋼の低サイクル疲労特性

強度の材料では、繰返し軟化はほんのわずかで、安定な挙動を示すようになり、むしろ低強度のS25C鋼の挙動に似ていた。

図3は400℃焼もどしのSNCM439鋼の軟化挙動である。σea=0.75%では1サイクルで降伏しておらず、この場合は強い繰返し軟化を示した。一方、σea=0.5%に対応する応力振幅σeaは静的降伏応力以下で、この場合の繰返し軟化は非常に弱くなった。600℃焼もどし材料ではσea=0.4～2.0%の範囲で試験したが、0.4%では降伏が起こらないが、すべて強い繰返し軟化を示した。残りの200℃焼もどしSNCM439鋼、S25C鋼、A203鋼ではすべての試験範囲で安定な繰返し変形挙動となった。

3.2 繰返し応力-ひずみ曲線 図4に繰返し応力-ひずみ曲線を示す。実線は振幅変動法で求めた結果である。各記号は多試験片法の結果で、荷重制御による結果を示した。

ひずみ側においてはすべての材料で振幅変動法の結果と多試験片法の結果は非常によく一致した。低ひずみ側においては、S25C鋼とA203鋼の場合は多数試験片法の結果が振幅変動法の結果より低応力側となったが、400℃と600℃焼もどしSNCM439鋼では全く逆の傾向となった。しかし、200℃焼もどし材では他の焼もどし材で見られる挙動は薄く、両試験法による結果はよく一致した。

振幅変動法による繰返し応力-ひずみ曲線を次式

\[\sigma_a = K \cdot \varepsilon_{pe} = \sigma_{pe} (\varepsilon_{pe}/0.002)^n \]

で表したときの指数n'ならびにσ_{pe}=0.2%に対応する繰返し降伏応力\(\sigma_{pe} \)を表2に示した。

3.3 疲労寿命特性 図5から7に疲労寿命N_fをそれぞれ静ひずみ振幅\(\varepsilon_{fa} \)、変性ひずみ振幅\(\varepsilon_{pa} \)、応力振幅\(\sigma_a \)との関係で示した。ひずみ記号は荷重制御の結果で、S25C鋼の場合には10^4回で破断しなかった試験片には伸び計を取付け、ひずみ測定を1Hzの速度で行った。SNCM439鋼においては高サイクル側の転荷重試験を行わなかったので、回転曲げ試験結果を単体で図5と7に示した。\(\varepsilon_{fa} \)は高強度鋼では高サイクル域で変性ひずみを生じないと仮定し、\(\sigma_a/E \)で与えた（E：ヤング率）。実験、前報の結果によると\(\sigma_a=900(N/mm^2) \)以上の高強度側では転荷重と回転曲げの疲労特性はほぼ一致する。図5から7の結果をまとめてみると次のようになる。

(1) \(\varepsilon_{fa}-N_f \)関係は\(N_f \leq 10^4 \)回では\(\sigma_a=464 \sim 1986(N/mm^2) \)と強度レベルが著しく異なるにもかかわらずほとんど一致した。一方、\(N_f \geq 10^4 \)回ではこの関係は高強度ほど低ひずみ側となった。

(2) \(\varepsilon_{pa}-N_f \)関係はフェライト・パーライト鋼
S 25℃の場合、Nf ≤ 10^4 回で Coffin-Manson 則がよく成立しており、10^7 回においても約 0.03% 限界塑性ひずみ振幅が存在した。フェライト鋼 A 203 もほぼ同じ傾向となった。一方、高強度の焼もどしマルテンサイト鋼 SNCM 439 では、直線関係が成立せず、高サイクル域ほど低ひずみ側に折れ曲がった。この傾向は焼もどし温度が低い高強度材ほど顕著であった。

(3) σr-Nf 関係は試験法によらず、ほぼ滑らか曲线（点線）で表すことができた。なお回転曲げ試験（矢印付きの点線）は 10^8 回までこのまま変化していない。400℃と 600℃焼もどし材では全数が試験片表面から破壊し、起点には介在物などの欠陥は特異見当たらなかった。一方、200℃焼もどし材では、Nf ≤ 10^7 回の時には表面破壊であったが、これ以上の高サイクル域では内部の介在物から破壊が起こり、しかも 10^7 回以上で破壊するものもあった。

4. 前回までの実験結果との比較

前報 4) では、振幅変動法により求められ、試験曲線の有用性を明らかにすることがに力点を置いて研究した。その結果、この曲線上で定義される破壊

図 5 全ひずみ振幅 εsa と疲労寿命 Nf の関係

図 6 塩性ひずみ振幅 εsa と疲労寿命 Nf の関係

図 7 応力振幅 σsa と疲労寿命 Nf の関係
高強度鋼の低サイクル疲労特性

5. $\varepsilon_{pa} - N_f$ 曲線

図6のSNCM 439鋼の場合のように、Coffin-Manson則が低ひずみの高サイクル領域で成立しないする
挙動は非鉄金属も含めた高強度で低延性の材料において多く見出されている。鋼の場合、高強度・低延性は低
温焼もどし材で生じることが多い。

著者らと12、13は高強度材の焼もどしマルテンサイト鋼では伸び率で測定される荷重が圧延の塑性ひずみをも
大錠な塑性ひずみが規模内にある部分に集中し、それが破壊を起こすと考え、図6の
SNCM 439鋼に見られるようなねじ曲したlog ε_{pa}
log N_f 相関を表示する実験を提案した。一方、山田
ら14は、回転曲げ高サイクル試験においてではある
が、高周波焼入れされたS15C鋼ではマルテンサイ
トで囲まれた残留フェライト部から破壊が生じたと報
告している。また、浅見ら15の600℃焼もどし
SNCM 439鋼の回転曲げ試験では、焼もどしマル
テンサイト組織の中で熟成のない広いフェライト帯が破壊の起点となった。以下では、
これから基礎にして図6のSNCM 439鋼の
$\varepsilon_{pa} - N_f$
曲線について考えてみる。

簡単のために図10に示すモデルを考え、破壊の起
点になると思われるフェライト部(F)とその他の部分
(M)に定義して、ε_{pa}の全ひずみを加えたとき、F 部のみに塑性变形 $\varepsilon_{pa,F}$ が生じたとしたとき、次式が得られる。

$$\varepsilon_{pa} = f \varepsilon_{pa,F}$$

ここで、$\varepsilon_{pa,F}$ と ε_{pa} は弾性と塑性ひずみ、添字 F はフェ
ライト部を示し、f はフェライトの体積率である。

$$\frac{\varepsilon_{pa} - \varepsilon_{pa,F}}{\varepsilon_{pa,F}} = \frac{C_0 - C_M \varepsilon_{pa,F}}{C_0 - C_M \varepsilon_{Pa,F}}$$

図8 練返し降伏応力 σ_{yc} と引張強さ σ_b の関係

図9 疲労限 σ_b と σ_{yc} の関係
点線は実験結果の傾向をよく説明している。
また、上記で得られた一連の特性ひずみ振幅 \(\varepsilon_{pa} \) と
\(\varepsilon_{pa} \) の関係から式(5)を用いて \(f \) 値を求め、これを
式(6)に代入すると、SNCM 439 鋼の \(\varepsilon_{pa} - N \) 関係が
得られる。図7の実験が求められた予測結果で、実
験結果より高い傾斜を有しているが、低サイクル域で
は実験値はほぼ一致している。念のため、\(f \)を
SNCM 439 鋼の各焼もどし材における塑性ひずみ振幅
\(\varepsilon_{pa} \) に対して図11に示す。\(f \)ははじめにフェライト部
の体積分数となったが、式(3)の形および後半の議論から
1/\(f \)がフェライト部での塑性ひずみの局在化率と考え
ることができる。図11で提案した実験式と比較する
と、1/\(f \)=1+(1/\(\beta \))e^(-x)となり、図1から上記と関係
で\(f \)=1-e^(-x)となる。ここで\(\beta = \varepsilon_{pa} / \varepsilon_{pc} \)は、巨視的
的な塑性ひずみ振幅 \(\varepsilon_{pa} \)と局在化ひずみ振幅 \(\varepsilon_{pc} \)の比
で決まる係数で、実際には理論曲線が実験結果をよく
一致するように決める係数である。また、\(\gamma \)は材料定
数である。

6. 結論

SNCM 439 鋼を 600, 400, 200℃で焼もどした高強度
・低延性の焼もどしマルテンサイト鋼、ならびにこ
れらの比較材として低強度延性の完全フェライト鋼
A 203、フェライト・パーライト鋼 S 25 C を用い、臨
ひずみ低サイクル試験を行った。得られた結果は次の
ようにまとめられる。

(1) SNCM 439 鋼を 400℃と 600℃で焼もどし
したときには著しい線返し軟化を示したが、200℃で焼
もどすと安定な線返し変形挙動となり、強度レベルは
異ならないけれども A 203, S 25 C 鋼の線返し挙動と似ていた。

(2) 振幅変動試験で求めた SNCM 439 鋼の線返し
応力-ひずみ曲線上の線返し降伏応力 \(\sigma_{p} \) と振幅 \(\varepsilon_{pa} \)の結果を含めて
400℃焼もどし材では \(\sigma_{p} = 0.625 \sigma_{a} \) の関係が成立したが、200℃焼もどし
材では \(\sigma_{p} = 0.8 \sigma_{a} \) の関係となった。また、\(\sigma_{pc} \) と疲労
強度 \(\sigma_{a} \) の間にも 600℃焼もどし材では \(\sigma_{a} = 0.873 \sigma_{pc} \) の関係があったが、200℃焼もどし材および
400℃焼もどし材の \(\sigma_{a} \) は絞り放す傾向となった。

(3) 疲労寿命関係では、低寿命域 \(N_{f} \leq 10^{4} \) では
\(\varepsilon_{pa} - N \) 関係は材料、焼もどし温度に依存しなかった。
一方、\(\varepsilon_{pa} - N \) 関係は A 203 と S 25 C 鋼では Coffin-
Manson 関係が成立し、SNCM 439 鋼では \(\varepsilon_{pa} \) の減
少とともに低寿命側に曲がり、この傾向は焼もどし
温度が高くなるほど著しくなった。

(4) SNCM 439 鋼の \(\vareference
高強度鋼の低サイクル疲労特性

討論

（質問）村上敏宜（九州大学工学部）
（1）10μm程度のき裂が発生して破壊までに要する繰返し数は全繰返し数の何％程度か。
（2）図6のデータを縦軸に全ひずみをとって整理しないと意味しないのですか。
（3）最近の研究によれば低サイクル疲労過程は微小き裂の伝ば過程と等価と考えられることができるとして、本研究で使用した材料の微小き裂が伝ば過程が全寿命のほとんどの部分を占め、5章で考察されているように塑性ひずみの原因となるフェライト部についてCoffin-Manson則を適用して破断寿命を考えるのは実際の現象に合った考え方でないのではないか。なぜならば、き裂はフェライト部のまわりでマルテンサイト部を伝ばして破断するからである。

（回答）（1）き裂発生寿命と位置、その後の伝ば寿命を調べることは重要であると考え、レプリカ法を用いて観察を行っているが、低サイクル域においては低強度材の場合多数のすべり線のために小さいき裂を確認できず、高強度材の場合はき裂の成長が著しく小さく、小さい実験結果が得られていなかった。そこで、この質問には現在回答できない。

（2）図5がe_{m}-N関係である。N=10^8回の結果を$e_{m}=C_{m}N^{-a_{m}}$で整理した結果を付表1に示す。

（3）山口ら（付1）とPriceら（付2）が低サイクル試験で得た結果によると、Stage II（またはMode I）形き裂の伝ば寿命は全破断寿命（またはe_{m}）に依存し、伝ば寿命/全寿命の比は長寿命域ほど小さくなる。

またCTやCCT試験片を用いて、き裂伝ばの観察、小規模試験片で求めたStage II形き裂に対するda/dN-dK関係は中间dK領域以上では材料の微視組織の変化や強度に依存しないことが知られている。低サイクル試験におけるき裂伝ば特性の組織や強度依存性はまだ明確ではないが、幅広い図3の結果によるとda/dN-dJ関係またはda/dN-dK_e関係は組織と強度に依存していない。

以上の二つの実験結果を合せると、本報の5章ではフェライト部におけるき裂発生寿命を基礎に、その後の伝ば寿命は組織に依存しないと考えることで、去くなる点はそれほど無理なく解決できると思う。

（質問）幡中寛治（山口大学工学部）

興味深く拝見しました。以下のようなお教えいただければ幸いである。

（1）結論（3）については質問者よりもすでに指摘している（付3）（付4）の予稿においていただいかお教えいただきたい。

（2）結論（4）についてであるが、$ε_{p}-N$関係のわん曲す原因がマルテンサイト組織中のフェライト部分に破壊が生じるためであると表現を改めるとこう思える。例えば図6でR型の圧延後の疲労寿命には高塑性ひずみ域においても明確な差が認められる。そこで、もしこれが正しいとすると、$dε_{p}-N$=CにおけるCと破断延性との関係はどうなるのか。また、両者間の関係についての一般的な結果をお示しいただければ幸いである。

（3）1836ページ左欄14行め〜16行めに示されている$β$=$ε_{p}-ε_{pc}$における$ε_{pc}$と$ε_{pc}$との関係はどのようになっているのか。

（4）SNMC439鋼の200℃焼もどし材が繰返し軟化しない理由についてお教えがあればお示しいただきたい。

（回答）（1）本報の結論（3）は著者ら（付3）と質問者およびその他の研究者によってすでに報告されているが、本報では$σ_e=2.00MPa$の高強度鋼まで拡張して確認したところに意義があると思う。

（2）$ε_{p}-N$関係がわん曲する理由が材料中の不均一変形によるものは著者らと質問者らの間で相違はないと思う。本報では山田ら（付3）と私らの（付4）の実験結果をもとに破壊の生じる不均一変形部がフェライト部にあると仮定し、$S_{25}C$鋼の実験結果をもとに

付表1 $e_{m}=C_{m}N^{-a_{m}}$の定数

<table>
<thead>
<tr>
<th></th>
<th>C_{m}</th>
<th>a_{m}</th>
</tr>
</thead>
<tbody>
<tr>
<td>200℃CT</td>
<td>0.0576</td>
<td>0.2467</td>
</tr>
<tr>
<td>SNMC439</td>
<td>0.0909</td>
<td>0.3004</td>
</tr>
<tr>
<td>600℃CT</td>
<td>0.1263</td>
<td>0.3438</td>
</tr>
<tr>
<td>S25C</td>
<td>0.1430</td>
<td>0.3716</td>
</tr>
<tr>
<td>A203</td>
<td>0.1420</td>
<td>0.3793</td>
</tr>
</tbody>
</table>

（付1）山口・金沢、鉄と鋼、64-14(昭53)、2317。
（付2）Price、A. T. and Elder、W. J.、J. Iron Steel Inst.、204(1966)、594。
（付3）幡中・藤吉・渡辺、機論、51-463、A(昭60)、790。
（付4）幡中、機論、50-453、A(昭59)、831。
高強度鋼の低サイクル疲労特性

SNCM 439 鋼の \(\varepsilon_{\text{pl}}-N_p\) 関係を予測したところ、予測と実験がほぼ一致したので、あえて結論（4）を書いた。

図6で高ひずみ側における寿命が200℃焼もどしSNCM 439鋼（○印）とS25C鋼（●印）の間で差がある点であるが、高ひずみ側のSNCM 439鋼の200℃焼もどし材の変形状態は400や600℃焼もどし材の低ひずみ側のそれと同質であると考えれば矛盾なく説明できると思う。

最後の点であるが、Cと破断延性の関にはフェライト鋼やオーステナイト鋼のように均一組織を持つ材料では良い相関がある可能性があると思うが、焼もどしマルテンサイト鋼のように不均一組織の材料まで含めると必ずしもよい相関はないようである（文献8の付図3を参照）。

（3）前報（2）では次式を提案した。

\[
(\varepsilon_{\text{pl}} + \varepsilon_{\text{pl}} \cdot \exp(-a\varepsilon_{\text{pl}}))N_p^{\ast} = C_p \quad \cdots \cdots (i)
\]

ここで、\(C_p\)は巨視的塑性ひずみ \(\varepsilon_{\text{pl}}\)がゼロのときに局存化している塑性ひずみ、\(a\)は定数である。いま、式（i）で \(\varepsilon_{\text{pl}} = 0\)の極限状態を考えると \(\varepsilon_{\text{pl}} \cdot N_p^{\ast} = C_p\)となり、本報の式（3）と（5）を考え合わせると、\(\varepsilon_{\text{pl}} = \varepsilon_{\text{pl,0}}\)となる。

（4）焼入れ変態のマルテンサイト組織では炭素は結晶の各格子点の間に入っているが、焼もどしを行うと、その温度が高くなるにつれて、①均一に分布した\(\varepsilon\)炭化物の析出、②セメントサイトの析出、③セメンタイトの成長という過程を経ると考えられるのが、200℃焼もどし①、400℃焼もどし②または③にあり、この差が繰返し変形状態に反映したものと思う。