セラミックス製ガスタービンの信頼性評価システムの開発

浜中順一*, 橋本芳廣**, 伊東正道***, 渡部教雄***

The Reliability Evaluation System for Ceramic Gas Turbine

by Jyunichi HAMANAKA, Yoshihiro HASHIMOTO, Masamichi ITHO, and Norio WATANABE

The reliability evaluation system for ceramic gas turbine was developed. This system combined the results of a finite element stress analysis with a probabilistic analysis of ceramic structure. In this system, a new probabilistic method was used to estimate time or cycles to failure of multiaxially stressed ceramic structures.

Key Words: Gas Turbine, Ceramic, Probability of Failure

1. 緒 言

近年、その価れた耐熱性に注目したファインセラミックス製高温機器の開発研究が盛んになってきた。その中には、東京電力（株）を中心に進めている石炭ガス化用高温セラミックガスタービンの開発研究がある。本論文で報告するシステムはこのセラミックス製ガスタービンの信頼性評価システムの開発を目的としている。本システムの特徴は
（1）任意の形状をした部品に任意の荷重が負荷された場合の信頼性の解析を種々の破壊モード（時間依存、時間依存形破壊、破壊破壊）について行うことができる。
（2）特に時間依存形破壊、破壊破壊に関しては、多軸応力状態における信頼性評価パラメータの新しい系統解析手法を提案している。
（3）上記各種破壊モデルについて保証試験の影響を評価することができる。

2. システムの機能

本システムは汎用プログラム「NASTRAN」の弾性解析結果（静解析、動解析、熱応力解析）を用いてセラミックス部品の
（1）即時破壊評価パラメータ
（2）時間依存形破壊評価パラメータ
（3）疲労破壊評価パラメータ
（4）保証試験の効果
解析する機能をもつ。さらに次の機能を備えている。
（5）「NASTRAN」の構造解析結果を処理して上記評価パラメータ解析に必要なデータベースを作成する前処理機能
（6）解析結果をグラフィックディスプレイ、プロットに出力する図形処理機能

3. システムの構成

本システムの全体構成は図1に示す。ここで等高線図（破壊確率の密度分布を描く）を作成するのに、汎用
プログラム「FEMOS」の作画機能を用いているが、図形ファイルのフォーマットをもとに他の作画プログラムを用いても対応できない。図2に本システムの本体部分（G-FICES）の構成を示す。

4. システムの基本フロー

システムの基本フローを図3、図4に示す。まずユーザはNormal start modeかSpecial start modeのいずれかを選択することができる。

Normal start modeは「NASTRAN」の解析結果から信頼性解析に必要なデータベースを作成し、ひきつづいて信頼性解析を実施する通常の使用モードである。Special start modeはすでにデータベースの主要な部分が作成済の場合、直接信頼性解析を実施する使用モードである。なお図中のGFIP等は対応するモジュールのモジュール名を示す。

図1 システムの全体図

図2 G-FICESの構成図

5. 前処理モジュール

このモジュールは応力解析用プログラム「NASTRAN」の出力データから「G-FICES」の評価に必要な各種のデータを作成する機能をもつ。すなわち

（1）「NASTRAN」ポストファイルの要素データ、節点データ等から表面やエッジでの評価に必要な面素データ、線素データを作成する。

（2）「NASTRAN」ポストファイルの要素応力からトラピカルな平均手法によって節点における応力を算出する。またこの節点応力から評価に用いる公称応力を算出する。

「G-FICES」のデータベースは上記前処理モジュールで作成されるデータとユーザからの入力データ、および解析モジュールの出力データ等から構成される。
セラミックス製ガスターピンの慣性性評価システムの開発

6．即時破壊評価モデル

このモデルはセラミックス製のコンポーネントが過大な負荷を受け直後に破壊する破壊モードを評価するモードで、セラミックス製品はたとえ構造中の最大応力が同じであっても応力分布、体積の大小によってその「ねれやすさ」が異なる。すなわち設計に関しては応力分布を求める同時に材料の強度分布をもとに構造全体の破壊確率を計算する必要がある。本システムではセラミックス材料の強度分布はすべて2次元解析方法に従ってとして理論を組み立てている。本モデルで解析できる即時破壊評価パラメータは次の四つである。

（1）構造全体の破壊確率
（2）構造全体の平均強度と強度の標準偏差
（3）任意の負荷状態における構造の有効体積
（4）破壊確率を有する場合の中央安全率の上界値

ここで多軸応力状態を考慮した破壊確率の解析にはStanlayの方法①および松尾の方法②を用いている。また破壊が

（1）内部欠陥に起因する場合
（2）表面欠陥に起因する場合

をともに考慮することができる。また評価領域も全体部、応力集中部、近傍等ユーザが任意に指定することが可能で、中央安全率の上界値は式[3]によって提案された式を用いている。

7．時間依存形破壊評価モデル

セラミックス部材が即時破壊を起こさない場合でも荷重をそのまま負荷しており、時間短縮後に破壊を起こす場合がある。このような破壊モードを時間依存形破壊と呼ぶ。この破壊の機構メカニズムは粒界すべり、空孔の成長等单纯ではないが応力一ひずみ関係のスケッチ図を参照して理解することから、本モデルにこの考え方に基づいてロジックを組み立てている。本モデルで解析できる評価パラメータは次の三つである。

（1）コンポーネントが破壊時間 \(t_f \) 以内で破壊する確率を求めた場合、破壊確率 P が有する時間での期待値および標準偏差

（2）破壊時間の期待値および標準偏差

（3）破壊時間に関する平均値の上界値

またこれらのパラメータは即時破壊の場合と同様に内部欠陥に起因する場合と表面欠陥に起因する場合の両方について解析することができる。さらに積分領域も任意に選べるようにしてある。次に本研究で新しく導いた多軸応力状態における時間依存形破壊確率パラメータについて述べる。

いまき裂の進展則は一軸応力状態で

\[\frac{da}{dt} = B \cdot K^n \cdot K = C \cdot \sigma \sqrt{a} \]

と表すことができる。ここで \(a \) はき裂長さ、 \(K \) は応力拡大係数、 \(B \) と \(n \) は材料定数、 \(C \) が形状と負荷形式に依存する定数である。ここで初期き裂長さ \(a_0 \) がある確率分布をして、き裂面の方向は任意の方向に同じ確率で向きいているとすると多軸応力状態で与えられた時間以内に破壊する確率を求めることができる。いま内部欠陥としてベニシーイップのき裂を考え、半径 \(a_1 \) 以下の欠陥の存在確率を

\[P(a_1 \leq a) = 1 - \exp \left(-\frac{(a_1)^{m_1/2}}{V_0} \cdot \frac{t}{V_0} \right) \]

と仮定する。ここで \(a_0, V_0 \) は標準き裂長さと標準体積であり \(m_1 \) は内部欠陥モードで破壊する場合のワイルド係数である。いま応力拡大係数に関して等価な多軸応力状態の相当応力を \(b \) とするとき微小初期き裂長さ \(a_1 \) に対する破壊時間 \(t_f \) は次式で表すことができると

\[t_f = \frac{2}{(n-2)B \cdot C \cdot a_1^{n-2}} \cdot \left(\frac{1}{\sigma} \right)^{n-2} \]

なお上式で \(n \) は一般に大きいので \(n=2 \) とした。

いま破壊時間が \(t_f \) 以内である確率を \(P(t \leq t_f) \) とすると次式が成り立つ。

\[P(t \leq t_f) = P(a_1 \geq a_f) = 1 - \exp \left[-\frac{(a_f)^{m_1/2}}{V_0} \cdot \frac{t}{V_0} \right] \]

ここで \(a_f \) は破壊時間 \(t_f \) になる初期欠陥寸法である。式（3）より次のごとく求められる。

\[a_f = \left(\frac{2}{(n-2)B \cdot C \cdot a_1^{n-2} \cdot t_f} \right)^{1/(n-2)} \]

さらにき裂面は任意の方向にランダムに拡大しているとするとコンポーネントが \(t_f \) 以内で破壊する確率は

\[P(t \leq t_f) = 1 - \exp \left[-\frac{V}{V_0} \cdot \frac{2}{\pi} \cdot \int_{0}^{\infty} \int_{0}^{\infty} \frac{d(\sigma)}{d\theta} \cdot \frac{m_1/2}{\theta} \cdot g(\sigma_0, 0) \cdot \sin \varphi \, d\varphi \, d\theta \right] \]

となる。ここで \(\sigma, \varphi \) は図5に示すようにき裂面に示した法線と主応力軸との関係を示す角度である。また上式の \(g(\sigma_0, 0) \) はベニシーイップのステップ関数であり、 \(\sigma_0 \) はき裂面に垂直な応力である。
セラミックス製ガスタービンの信頼性評価システムの開発

いま即時破壊のクリティカルを \(K = K_{ic} \) とし、基準体積 \(V_{ref} \) での平均引張強度を \(\sigma_{ref} \) とし \(m \) とおくと式(6)は公称応力 \(\sigma \) に対して

\[
P(t < t_r) = 1 - \exp \left[-a_1 \cdot a_2 \left(\frac{\sigma}{\sigma_{ref}} \right)^{m_2} \left(B \cdot K_{ic}^{2m_2} \cdot C^2 \cdot \sigma^2 \cdot t \right)^{m_1} \right]
\]

\[
\times \int_0^{\alpha_0} \int_0^{\alpha_0} \frac{Z}{\sigma} \cos^m \varphi \sin \varphi \cdot \varphi(d\varphi)(d\alpha)
\]

となる。ここで \(\Gamma \) をガンマ関数として \(a_1, a_2 \) は

\[
a_1 = \frac{2}{\pi} \left(\frac{n - 2}{2} \right)^{m_1} \Gamma \left(\frac{1}{m_2} + 1 \right),
a_2 = \frac{1}{V_{ref}},
\]

\[
a_2 = \frac{2}{m_1} \int_0^{\pi_2} \frac{1}{\sin \varphi} \left(\cos^2 \varphi + \frac{4}{(2 - \nu)^2} \left(\cos^2 \varphi - \cos^2 \varphi \right) \right)^{m_2} \sin \varphi \cdot d\varphi
\]

である。ここで相当応力 \(z \) は \(G \) クライテリウムに基づいた次式を用いる。裂面に平行なせん断応力を \(\tau \) とすると

\[
z = \frac{\sigma \alpha^2}{(2 - \nu)^2} \cdot (\alpha \tau)^{1/2}
\]

次に公称応力 \(\sigma \) におけるコンポーネントの平均破壊時間 \(\bar{t} \) は次式によって求めることができる。

\[
\bar{t} = \int_0^N t_r \cdot \frac{\partial P(t < t_r)}{\partial t_r} \cdot dt
\]

\[
= \Gamma \left(\frac{1}{m_2} + 1 \right) \cdot \sigma \cdot a_2 \cdot \left(\frac{\sigma}{\sigma_{ref}} \right)^{m_2} \left(B \cdot K_{ic}^{2m_2} \cdot C^2 \cdot \sigma^2 \cdot t \right)^{m_1} \cdot \int_0^{\pi_2} \int_0^{\pi_2} \frac{Z}{\sigma} \cos^m \varphi \sin \varphi \cdot y(\sigma, 0) \sin \varphi \cdot d\varphi \cdot d\alpha
\]

\[
a_1 = \frac{2}{(n - 2)} \int_0^{\pi_2} \int_0^{\pi_2} \left[g(t) \right]^{m_2} \cdot dt \cdot z^2
\]

\[
\times \frac{1}{N_r}
\]

となる。すると繰返し数 \(N_r \) 以内で破壊する確率

\[
P(N \leq N_r) = P(0 \leq N_r)
\]

\[
= \frac{1}{(n - 2)} \cdot B \cdot C^2 \cdot \Gamma \left(\frac{1}{m_2} + 1 \right) \cdot \sigma^2 \cdot \int_0^{\pi_2} \int_0^{\pi_2} \frac{Z}{\sigma} \cos^m \varphi \sin \varphi \cdot y(\sigma, 0) \sin \varphi \cdot d\varphi \cdot d\alpha
\]

である。式中の \(g \), \(n \) は各々応力 \(n \) における応力および計面垂直応力である。7 章の場合と同様に

平均破壊繰返し数 \(N_r \) は

\[
(1) 繰返し数 \(N_r \) 以内で破壊する確率または破壊
\]

\[
(2) 破壊繰返し数の期待値および標準偏差
\]

\[
(3) 破壊繰返し数に関する安全率の上界値
\]

これらはパラメータも他のモジュールと同様に内部欠陥、表面欠陥両方の欠陥について評価することができる。また積分領域も任意にとることができる。

\[
\sigma_b = \sigma_{u} \cdot g(t)
\]

図 5 き裂と応力空間
セラミックス製ガスタービンの信頼性評価システムの開発

$$\bar{N}_f = \frac{1}{m^2} \cdot \frac{1}{2} \cdot a_s \cdot \left(\frac{a_s}{B} \right)^m \cdot \left(B \right)^{m-1} \cdot \left[\sigma_{eq} \right] \cdot \frac{1}{\sigma_{eq}}$$

となる。以下同様に破壊反則数の標準偏差、破壊反則数に関する中央安全率の上界値を求めることができる。

9. 保証試験評価モデル

許容寸法を超える欠陥が存在する部品のみを取り除く直接的な方法の一つに荷重保証試験がある。すなわちセラミックス部品に衝荷重と同じモードであるレベルの荷重を负荷し破壊した部品をすべて取り除く。さらに上記荷重レベル（保証試験荷重レベル）に対応する欠陥寸法以上の欠陥を含む部品はすべて取り除かれる。残ったセラミックス部品の母材の平均強度等は一般に改善される。本モジュールでは即時破壊、時間依存形破壊、動的破壊に対する保証試験の効果を定量的に評価することができる。例として保証試験後の時間依存形破壊と考え、いわゆる保証試験レベルで保証試験を実施し、破壊しなかった部品の信頼応力$$\alpha_s$$を負荷する。するとこの部品が時間$$t_f$$以内で破壊する確率$$P(t \leq t_f)$$は

$$P(t \leq t_f) = \begin{cases} P(t_f) & 0 \leq t_f < t_p \\ 1 - P(t_f) & t_f \geq t_p \end{cases}$$

となる。ここで$$P(t_f)$$ は保証試験前の部品の公称応力$$\sigma_0$$で時間$$t_f$$、$$t_p$$以内に破壊する確率を表す、また$$t_p$$は

$$t_p = \frac{2}{(n-2) \cdot B \cdot C^2 \cdot z_{max}} \left(\frac{1}{\sigma_0} \right)^{(n-2) \cdot z_{max}}$$

である。$$z_{max}$$は保証試験荷重レベルにおける相当応力の最大値である。

10. タービンディスクの解析

システムの機能を確認するために小形ガスタービンディスクの試験解析を実施した。

10-1 解析モデルおよび物性値

解析モデルを図6に示す。ここで内径、外径は各々5mm、60mmである。荷重としては遠心力とガス流による熱荷重を考える。最大回転数は10000rpmであり、ディスク先端のガス温は常温から30秒で1300℃に昇温する。またウェブ周辺のガス温は300℃一定とし、シャフトとの接合部では200℃の強制温度を与えた。ディスクの先端での熱伝達係数は581W/(m²·K)、ウェブ周辺の熱伝達係数は233W/(m²·K)とした。

ディスクの材質はホットプレスSi3N₄であり、熱伝導率は19W/(m·K)、比熱は0.92kJ/(kg·K)、比重は3.26×10³kg/m³とした。またヤング率、ボアソン比、線膨張係数は各々3×10⁻⁶MPa、0.27、3.7×10⁻⁴/°Cとし、ウェブの厚さは6.2mmにし、図7に示すようにKₑを10MPa·m¹/²とし式(1)中のC、B、nを

図6 タービンディスクの等応力線図

図7 荷重係数と即時破壊確率

図8 破壊確率と積分領域
セラミックス製ガスタービンの信頼性評価システムの開発

各々1.13, 8.17×10^{-1}, 20とした。ただしBは長さにm, 時間にsec, 応力にMPaを用いた場合の値である。

10-2 即時破壊モードの解析
図7にディスク全体の即時破壊モードによる破壊確率の解析結果を示す。ここでload factorは設計荷重（回転数100 000 rpm, ガス温度1300°C）に対する荷重倍率を表す。この図から応力の影響による破壊確率が非常に小さいにもかかわらず、遠心力と応力を同時考慮した場合が遠心力のみを考慮した場合より頭著な大きさな破壊確率を示しているのがわかる。これは遠心力場に圧縮の部分が含まれること、一方引張りの部分は遠心力によって応力の大きいところで重なっていること、応力場M（内挿係数）乘で破壊確率に影響すること等によるものと思われる。いずれにしてもセラミックス製品の場合は金属の弾性設計の場合は異なり、荷重種類毎に応力を求め、それらを分類処理して部品の信頼性評価を行うことができない。

図8は破壊確率を計算する場合の積分領域を積々かえて解析した結果である。すなわち最大応力の2倍の応力域までが破壊に寄与するとして積分したものである。この図から本解析例ではβ=0.7 までは全領域積分した場合と同様な結果を得ることがわかる。

10-3 時間依存型破壊モードの解析
図9にディスクの破壊時間とその破壊時間以内に破壊する確率との関係を示す。この図は図7と異なり破壊確率曲線が変曲点をもたない。これは式(7)のmの指数がm>1でありm=9, n=20に対してm<1となるためである。また同図より即時破壊の場合と同様に荷重をわけて破壊確率を計算するのは正しくないことわから。さらに本解析例では時間依存形破壊の場合でも積分領域をβ=0.7程度とすれば全領域で評価した場合と同程度の結果が得られることがわかる。

11. 結 言
ファインセラミックス製ガスタービンなど、セラミックスで作られた部品の信頼性評価、信頼性評価に必要な各種の評価パラメーターを解析する汎用システムを開発した。このシステムにより任意形状のセラミックス部品の任意応力場における即時破壊評価、時間依存形破壊評価、疲労破壊評価を行うことができるようになった。またこれらの損傷モードについて信頼性の評価を行うことが可能になった。

この研究は、東京電力（株）技術研究所が中心になって進めている「石炭ガス化高圧ガスタービン用のセラミックス開発と適用研究」の一環として行われたものである。

文献
（2）松尾, 機論, 49-437, A (昭58), 46.
（3）関武, 機械の研究, 35-11 (昭58), 1225.

討 論
（質問） 松尾 陽太郎（東京工業大学）
以下の二点についてご教示願いたい。
（1） 時間依存型破壊評価モデルは、内部欠陥と表面欠陥に起因する破壊に対して解析できるか、および二重モードワイプル分布を用いることが意味するのか、もしもそうならば、理論式を提示していただきたいたい。
（2） 混合モード下のき裂進展が、初期き裂面に対して屈曲することはよく知られており、その応力拡大係数は単純な式で表すことができない。また、き裂の進展方向は最大応力（引張応力）に垂直な方向に向か近するため、もはや等価垂直応力εは定義できない。
（回答）（1） 現在本システムでは内部欠陥と表面欠陥について二重モードワイプル分布を用いた評価は行いない、すなわちき裂の一つだけの損傷モードを指して評価を行っている。ただし次式の二重モードワイプル分布で定式化することも可能と考えている。
セラミックス製ガスタービンの信頼性評価システムの開発

\[P(t \leq t_r) = 1 - \exp\left\{ - \sum_{n=1}^{N} R_n \right\} \]

ここで

\[R_n = a_{r,n} \cdot \alpha \cdot \left(-\frac{\partial \delta}{\partial \sigma_{r,n}}\right)^m \cdot \left(\frac{B \cdot K \sigma^2}{C_1 \cdot \sigma_{r,n}^2} \right)^{n-1} \]

\[\times \int_0^{t_n} \int_0^{t_{n-1}} \left(\frac{2}{\sigma_{r,n}} \right)^{n-1} \cdot y(\sigma_{r,n}, 0) \]

\[\times \sin \phi \sin \theta \rho \mathrm{d}k \mathrm{d}t \]

\[R_1 = a_{r,1} \cdot \alpha_1 \cdot \left(-\frac{\partial \delta}{\partial \sigma_{r,1}}\right)^m \cdot \left(\frac{B \cdot K \sigma^2}{C_1 \cdot \sigma_{r,1}^2} \right)^{n-1} \]

\[\times \int_0^{t_1} \int_0^{t_{n-1}} \left(\frac{2}{\sigma_{r,1}} \right)^{n-1} \cdot y(\sigma_{r,1}, 0) \]

\[\times \sin \phi \sin \theta \rho \mathrm{d}k \mathrm{d}t \]

（2）さらに、ご質問のように混合モード下では、き裂が直進することが予想される。しかしセラミックスにおける混合モード下での三次元き裂進展挙動に関する研究はほとんどされていない。そこで本システムではき裂が直進することを仮定した式（5）を定性的に用いている。ただし、き裂の進展速度が遅く寿命の新しく部分を分析すると考えられる曲線したばかりのき裂先端では\(\sigma \)を用いた等値\(K \)値で特異性を表すことが可能と考えられる。また曲線き裂がかなり進展して最大主応力に直角に進展している場合には

（a）\(\sigma \)を\(\sigma_{r,1} \)に等しくなる

（b）式の\(a_f \)のわかりに\(\sigma \)に直角な面への投影長さ

\[a_f = |f(\sigma, \phi)| \cdot \left(\frac{(n-2) \cdot B C_1 \cdot \sigma_{r,1}^2 \cdot t_r}{2^{n-2}} \right)^{1/(n-2)} \]

を代入する

ことによって同様に評価することができる。

（質問） 徳永 純一郎（三井造船（株）玉野研究所）

セラミックス部材の実用化に際して不可欠な強度評価システムを開発されたことに対し敬意を表す。

（1） 質問者では、多軸応力状態でき裂が直進することを前提に、式（1）において応力\(\sigma \)を相当応力\(\sigma_{r,1} \)に置き換えき裂進展則を用いて進展挙動を行っているように見受けられる。多軸応力状態に対して、この前提が成立する理由を補足説明願えれば幸いである。

（2） セラミックスを応力下で長時間使用した場合、スロー・クラック・グローサーにより材料強度の劣化（疲労現象）が起こる。したがって、セラミックスの即時破壊強度は、疲労による材料強度の低下を考慮して評価する必要がありますと考えられるが、この点についてはご教示いただけた方々にお示し願いたい。

（回答）（1） ご質問は松尾先生の質問（2）と重複しているので松尾先生の質問（2）に対する回答をご参照願いたい。

（2） ご指摘のとおり本報告の即時破壊評価では静的疲労による強度劣化の影響を考慮していない。実際には強度劣化は必ずあると考えられるのでその影響は解釈できるようにしたいと考えている。基本的にはき裂寸法の分布を仮定して即時破壊強度を評価しているので、初期き裂寸法の分布と、き裂進展則とから過大荷重を評価する時点でのき裂寸法の分布がわかればその時点での即時破壊強度を評価できると考えている。