Notch Sensitivity in Fatigue of Flake Graphite Cast Iron

Toru NOGUCHI

Zero-to-tension fatigue tests were performed on flat and notched bars of three gray cast irons, and the notch sensitivity was discussed based on the stress distribution obtained by considering the nonlinear behavior of the material. In flake graphite iron, the notch factor for notches with form factors 1.6 and 2.8 was 1.1-1.2 near the fatigue limit, this is higher than the notch sensitivity in static strength, but lower than that at fatigue in ductile iron. Calculated stress under the notch exceeded the fatigue strength of flat specimen down to 0.6-1.4 mm depth depending on the number of cycles to failure, matrix ductility, and notch radii. The minimum depth was 1/2-1/3 of this value in static rupture, equal to 1-2 graphite eutectic cell diameters, and was considered a minimum stress depth for crack formation.

Key Words: Metallic Material, Cast Iron, Fatigue, Notch Effect, Graphite Eutectic Cell
片状黒鉛鉄鉄の疲労における切欠感受度

室素中では \(\rho, \theta \) にかかわらず \(\sigma \) は 1mm 以下であっ
た。鉄鉄の静的破断では、最大荷重前に深さが共晶セ
ル1〜2 個のき裂が生ずることから、\(\sigma \) の最小値はき
裂発生の要件、またこれ以上の \(\sigma \) はその伝は条件に関
連するパラメータと考えられた。本報では疲労におけ
る切欠効果に \(\sigma \) の概念を適用した場合について検討
した。

3. 実験

実験に用いた試料は FC 25 級のパーキャット地片状
黒鉛鉄鉄（FCP）およびその基質を焼純によりオーフラ
イ化したもの（FCF）ならびに比較のための FCD 60
級の球状黒鉛鉄鉄（FCD、フェライト化面積率約 50 %
のブレックス組織）の、計 3 種類の鉄鉄である。試料の化
学成分を表 1 に示した。

疲労試験用の試験片を図 3 に示した。底断面 \(h = 120
) mm のゆるい曲率を持つものを平滑材 (S) とする。切
欠材の切欠深さは 2 mm で、底断面は 2 mm (R 2) お
より 0.7 mm (R 07) の 2 種類である。いずれも底断面
直径は 8 mm である。形状係数は 1.6 (R 2) および
2.8 (R 07) である。平滑材の試験片および切欠材の
切欠部を図 1 のエメリー紙で仕上げ、鉄鉄切粉で
550℃ 90 min 焼純した後試験に供した。

試験機は容量 50 KN の電気油圧サーボ式疲労試験
機で、正弦波の片振引張疲労試験とした。荷重の下限
値は約 50 N で、最大荷重に対して無視できる。試験速
度は荷重レベルに応じて 2〜10 Hz とした。荷重を順
次低下させて破断繰返し数 \(N_r \) を測定し、5×10^6 で破
断しない場合はこれを疲労限度とした。

4. 実験結果

得られた S-N 曲線を図 4 に示した。応力 \(\sigma \) は最大
荷重を最小断面積で除した値である。パーキャット地の
片状黒鉛鉄鉄 FCP では S-N 関係が直線になるため、ま
でいいうような折れ点を示さない (18) のので、滑らかな曲
線を実験点を結んだ。フェライト化の FCD および球状
黒鉛鉄鉄 FCD では 10^8 ないし 10^9〜10^10 間でおおよ
ね直線関係が認められるので、この間は回帰直線によ
り実験点を結んだ。 \(N_r = 1/2 \) 上の点は静的強度であ
り、いずれも 4 本の平均値である。

各時間強度での切欠係数 \(K_t \) を次式で定義する (19)。

\[K_t = \frac{K_t}{(\text{平滑材の各時間強度})/ (\text{切欠材の各時間強度})} \]

\(K_t \) と \(N_r \) の関係を図 5 に示した。片状黒鉛鉄鉄の疲
労切欠係数はいずれもほぼ 1.0 であり、切欠きによる強
度低下がほとんどない、FCFR 07 では強度が約 6 %増
加した。一方疲労では応力の減少、\(N_r \) の増加とともに
\(K_t \) が増加し、疲労限度（5×10^6 時間強度）近傍では \(K_t \)
= 1.1〜1.2 で、切欠による強度低下がある。

球状黒鉛鉄鉄では、いずれの切欠でも静的強度が増
加するが、\(N_r \) より \(K_t \) の増加が急で、疲労限度近傍
で約 1.3 (R 2) および 1.6 (R 07) となり、片状黒鉛鉄
鉄より切欠感受度が高い。

5. 切欠断面の応力分布

実験で得られた鉄鉄の低い切欠感受度について考察す

<table>
<thead>
<tr>
<th>表 1 試料の化学成分 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>FCP</td>
</tr>
<tr>
<td>FCF</td>
</tr>
<tr>
<td>FCD</td>
</tr>
</tbody>
</table>

図 1 鉄鉄の切欠引張りおよびはりの曲げの応力分布

図 2 種々の試験条件における \(\sigma \)

図 3 試験片の形状、寸法
片状黒鉄鉄の疲労における切欠感度

そのため、切欠断面の応力分布を求めた。鉄鉄の応力-ひずみ曲線（図6、いずれも4本の平均）は低応力からゆるやかに曲るので、これをσ=A(C+εp)^n (A, C, n: 定数) で近似し(56), 山田による有限要素法弾塑性応力解析プログラム(49)を用いた。ただし塑性ひずみ εp=ε(全ひずみ)-ε(引張) とみなし、弾性率 E は一定とした。

Nf=10^6~5×10^6 の各時間強度に相当する応力 σf での軸方向応力の分布を図7に示した。また各 Nf における平滑材の疲労強度のレベルを横線で示した。切欠角の最大応力 σf はいずれの材料、切欠角でも平滑材の疲労強度を超えている。

応力が平滑材の疲労強度を超える範囲 δ を図7に○印で示した。その値は表2のようにまとめられる。δ は応力レベルの低下、Nf の増加とともに減少し、疲労限度近傍では、FCP で約0.6 mm、FCF では約0.8 mmとなる。静的破断では1.4~1.9 mmであるから、疲労における δ はその1/2~1/3であり、図2の静的 δ の最小値より小さい。フェライト製鉄の δ はパラサイト鉄鉄よりも大きく、基質の延性の影響が示唆される。また、切欠半径 ρ の影響については、Nf=10^6 での ρ の小さいほうが δ が小さいが、疲労限度近傍での差はわずかである。

一方球状黒鉄鉄鉄では Nf=10^4 で 0.6~0.7 mm であり、FCP と大差はないが、Nf の増加とともに減少し疲労限度近傍では約0.4 mmである。

材料の非線形を考慮せず弾性応力分布から算定した δ を () 内に示した。δ は δ 以外小さな Nf=10^6 ではその差は0.1~0.2 mmである。応力レベルおよび切欠半径の影響は δ の場合と同じである。
6. 破壊過程の観察による考察

鉄鋼の疲労は(1)黒鉛片からの微視き裂の発生、(2)微視き裂と隣接黒鉛片の連結による主き裂の形成、(3)主き裂の伝ば拡大および最終破断、の三つの過程を経て進行する(4)。本実験では疲労試験を中断した試験片の切片面で断面を顕微鏡で観察した。それによれば片状黒鉛鉄鋼では寿命の約10%で切欠底近傍の黒鉛片に微視き裂が観察された。寿命の60〜70%ではき裂が多数になり、黒鉛片を連結するき裂が形成された(図8)。明るような連結き裂は寿命の約90%で観察され(図8),その深さはおおむね0.5〜1mmであった。5×10⁶で破壊しなかった試験片にも多数の微視き裂が見られたが明るような連結き裂は観察されなかった。

平滑材では表面部に限らずしばしば全域にわたって微視き裂が観察されたが、寿命の90%で連結する主き裂は、SEMで観察した破面の基質に疲労の特徴(18〜20)が見られる部分の分布(図9, 中断後微視鏡下で破断・スケッチ図から, 深さ0.5〜1mmで長さ5mmにわたると判断された。これらは回転曲げによる西谷の観察結果(18)とも一致する。

<table>
<thead>
<tr>
<th>表2 各時間強度におけるδ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

7. 結言

片状黒鉛鉄鋼の疲労における切欠感度について考察するため、数種類の鉄鋼の平滑材および切欠材による引張試験を行った。実験によれば形状係数1.6および2.8の帯状切欠に対し、片状黒鉛鉄鋼の静的切欠係数Kcはほとんど1または1以下であったが、疲労では応力レベルの低下、破断繰返し数の増加

図9 平滑材の疲労破面

図8 切欠底近傍のき裂

図10 黒鉛共晶セル組織

Fatigue facet

FCF
Nf \leq 5 \times 10⁵
N/Nf = 0.9

(a)
(b)
片状黒鉛鉄の疲労における切欠感受度

にともなって切欠感受度が増し、疲労限度 (5×10^6 時間強度) 近傍で K_f = 1.1 〜 1.2 になった。

算定される切欠応力の応力は材料の非線形挙動を考慮してもなお平面材の疲労強度を大幅に超える。その深さ δ は母材組織、切欠半径および応力レベルによって 0.6 〜 1.4 mm の値であったが、破断繰返し数 N_f の増加とともに減少し、疲労限度近傍では黒鉛共晶セル 1〜2 倍分の 0.6〜0.8 mm であった。これらは同じ切欠の静的破断における δ の 1/2〜1/3 であり、液体窒素温度での値とほぼ等しい。切欠感受度が片状黒鉛鉄より大きい球状黒鉛鉄では約 0.4 mm であった。

片状黒鉛鉄の疲労限度近傍での δ は、寿命の約 90 %で形成される主き裂の深さと同程度であり、き裂形成に必要な最小領域と考えられた。静的破断の場合と同様に疲労においても、黒鉛共晶セルを破壊する組織上の最小単位とみなすことによって、低い切欠感受度が理解される。

本研究は北大理学部学生・気賀澤恒宏君（現在日立ライルム（株））の承認の下で行なったものであり、ここに謝意を表する。

文献

(2) 中西, 機論, 21 (昭26). 103.
(3) 石橋, 機論, 18 (昭27). 87.
(4) 野口, 機物, 45 (昭48). 11.
(5) 野口, 材料, 28 (昭54). 308.
(6) 野口, 材料, 29 (昭55). 387.
(7) 野口, 材料, 32 (昭58). 509.
(10) 高尾・西谷, 材料, 36 (昭62). 1069.
(11) 西谷, 機論, 49, A (昭58). 1535.
(12) 川田・ほか3名, 材料強度工学ハンドブック, (昭51). 427, 朝倉書店.
(13) 前川, 機誌, 74 (昭46). 1393.
(14) 西田, 应力集中, (昭42). 80, 岩波出版.
(15) 文献(14)の617, 620ページ.
(16) 西谷・田中, 機論, 51, A (昭60). 1442.
(17) 日本機械学会編, 疲労強度の設計資料IV. (昭58). 150, 日本機械学会.
(18) 山田, コンピュータによる構造解析講座II-2 A (昭50). 173, 培風館.
(19) 水野, 鋼鉄鉛鉄の脆性変形, (昭43). 151, 日刊工業新聞社.
(20) 武田, 材料, 36 (昭62). 455.
(21) ボイチェック, A., 機械の損傷, 特別号, (昭54), 27.
(22) 日本機械学会, 鋼鉄の材料, (昭22). 28, コロナ社.
(23) 野口, 機論 (北海道支部12回), (昭43). 61.