静的および動的ひずみ速度によるせい性
プラスチック破面模様の変化*

藤本 昭夫**，高田 芳則**
小田 直樹**，吉松 敦宏**

Variation of Fracture Surface Marks due to Static and Dynamic Strain Rate

Akio TAKIMOTO, Yoshinori MASUDA, Naoki ODA and Atsushi YOSHIMATSU

Fracture tests of unsaturated polyester resin on large, single-edge notched-bend specimens were conducted under static and dynamic bend tests at room temperature. The velocity of a loading point in the three-point bending was changed from 8.3 × 10^-3 m/s to 7 × 10^3 times its value. The two types of fracture marks of the both-end-closed mark (like parabolas) and the one-end-opened mark (like ellipses) were observed and they were expressed by the equation of fracture marks. A rocket mark, defined here, was also often observed in the dynamic bending test and was well-approximated by the equation. The experimental number, percentage, relative interference appearing distance and the calculated relative critical distance of the marks changed with the crack propagation distance and the testing speed. The velocity of a primary crack propagation was measured and approximated by a mixed-condition relation proposed by us. This change and the gainer-lette relation between the velocity and a dynamic stress intensity factor K (or a dynamic strain energy release rate, G_d) gives the latter (K or G_d) as a function of the crack propagation distance. This provides a good theoretical explanation of the above variations of fracture marks.

Key Words: Fracture, Unsaturated Polyester Resin, Single-Edge Notched-Bending Test, Fracture Marks, Static Bending, Dynamic Bending, Test Speed, Crack Velocity

1. 緒 言

静的から動的負荷速度への移行は材料の変形・破壊挙動を変えることが知られており、研究面でも実用面でも興味深い問題である。金属材料では一般的に応力速度あるいはひずみ速度に増加と共に破壊性状が増加し、破壊じん性値はき裂伝ば速度と共に減少してのちに増加するという報告もある**。一方、プラスチック材料の破壊挙動は金属材料とは異なるがPMPAの破壊じん性値は低速域（約0.85m/s以下）では速度と共に増加し、高速域に入ると減少・増加をつつねに変化することの報告がみられる**。

したがって、変形し易い材料（Unsaturated polyester resin、UPと略す）の片側き裂を持つ3点曲げ（Single edge notched bend、SEN B）同一材試片を用いて、静的曲げ試験（Static bend test、SBT）から動的曲げ試験（Dynamic bend test、DBT）まで試験速度を変えた破壊試験をして、これらの試片の破面に現れる模様変化を解析した。SBT、DBTを問わずSEN Bに見られる破面模様の主たるものは、だ円などの等間隔間近模様（Both ends closed mark、BECM）と放物線の一端開示模様（One end opened mark、OEOM）からなっており、これらは破面模様の二次元定量式とよく近似できることがこれまでにも報告した**。ここではこれら模様の諸測定値を、すなわち破面模様数、破面模様率、相対き裂開始距離e/C_o、および相対破壊距離d/C_oなど**が静的から動的試験速度域に至る変化を検討した。

破面模様は一次および二次き裂伝ば速度の干渉によるものであり**，二次き裂伝ば速度は図体内を伝ばすため測定し難いが、一次き裂伝ば速度のき裂伝ば距離による変化を測定し、これら速度の曲直曲線から動的試験への変化を検討した。また、SEN Bにおける一次き裂伝ば速度変化の解は報告されていないため、ここでは、応力速度**、定ひずみ**伝ば解による混
条件を満たす静的および動的ひずみ速度によるずれの特性についての解析

2. 実験方法

供試材はUHPであり、硬質化、硬化促進剤を加えて注型により板状試片を準備した。長さ400mm、高さ80mm、厚さ9.5mmの曲げ試片の下端中央に4・6mmの穴を満たす型材を用意した。試料および試験片の曲げ試片下端の曲げ曲率半径の測定は、下端の曲げ曲率半径を2mmまたは5mmの間距離を2mmとし、上端中央部を0.5mmの曲率を持った線に沿って曲げた。試験速度を0.5mm/

3. 結果および検討

3.1 試験速度と破面模様変化 銅管状試片を用いた SBTおよびDBT試験片の破壊挙動は、下端部に曲げた試片や下端部の曲げ曲率写真が観察される。図1(a)はSBT試片、0.5mm/min (1×10⁻³ V_{he}) での破面模様写真例であり、図1(b)はDBT、689V_{he}のものである。各図の下に記したのは破面模様の二次元変形量式から

\[\sqrt{a-1} + \sqrt{a-(n-1)} + n \left(\frac{a-1}{2} \right) \frac{1}{n(2-n)} = \beta \left(\frac{d+x}{C} \right) \]

により表現したものです。いずれもよく近似定数量のことができる。図1(b)左端の曲げ曲率を0.5mmのところが白黒した不能を表している。試験速度が75V_{he}から689V_{he}まで変化するとその電流は回復していることからここではロケット様式と呼ぶ。この模様も図示し示すと図(1)で近似定数量値することができる。図(2)の曲げ試験では試験速度の増加と曲げ曲率の増加に伴う模様の変化を観察した。これの模様写真の一次曲げ曲率が変化するのを防ぐために、これらの曲げ曲率が増加すると急激な変化を示す。これにより現れるようになる。これら

SBTおよびDBTによる曲げでは試片の曲げ曲率を増大に垂直および水平方向変位を生じ、ここで用いた試験条件ではUHP試片の曲げ曲率を変化する時間変動が非常に短く、かつずれ、たわみ現象を示すため、実験片の曲げ曲率成形の方向に影響を及ぼすことが目的である。この実験では試験速度が適当な曲げ曲率を変化するのを防ぐために、これらの曲げ曲率を増大するが、これにより現れるようになる。これら

SBTおよびDBTによる曲げでV_{he}の下端部に曲げた試片を用いた一次曲げ曲率が変化するのを防ぐために、実験片の曲げ曲率成形の方向に影響を及ぼすことが目的である。この実験では試験速度が適当な曲げ曲率を変化するのを防ぐために、これらの曲げ曲率を増大するが、これにより現れるようになる。これら

SBTおよびDBTによる曲げでV_{he}の下端部に曲げた試片を用いた一次曲げ曲率が変化するのを防ぐために、実験片の曲げ曲率成形の方向に影響を及ぼすことが目的である。この実験では試験速度が適当な曲げ曲率を変化するのを防ぐために、これらの曲げ曲率を増大するが、これにより現れるようになる。これ
静的および動的ひずみ速度によるせい性プラスチック破面模様の変化

値の速度]の結果である。$C_{01} = 6.4 \text{ m/s}$ と、前者より少し長いが（実験のばらつきの範囲内）、やはり模様数の最大値（両者の和）は $C_{11}/C_{01} = 5$ 近辺に現れており、ピーク値後の減少過程は急速である。この場合、一端開放模様数が非常に多くなり（1704個）、前者（682個）に比べ、一次き裂の到達速度で V_{h0} が一段と大きいことが予測される。なお、この試片は $C_{11}/C_{01} = 13.9$ で破断するが、$C_{11}/C_{01} = 11.6$ 以後に破面大な凹凸を生じ測定値はとれない。全模様数中 BECM および OЕОМの占める割合の試験速度による変化を図3に表した。試験速度が増加するにつけ、BECMは少し増加の後、急に減少し、逆に OЕОМは少し減少の後急上昇している。SBTの V_{h0} 値（500mm/sの速度）でOЕОМ数が減少するのは試験速度が $1 \times 10^{-3} V_{h0}$ から1000倍速くなることによる強度低下（静的曲げ破壊強度の V_{h0} が14.8NPaから5.3NPaへ）によるためであり、模様数も約4100個から3500個に減少している。DBTでは76 V_{h0} 143 V_{h0} と破面の増加にともない次々と模様数が増加する。この因で、静的試験の最大速度は V_{h0} すなわち500mm/s

(a) SBT $V_{h} = 1 \times 10^{-3} V_{h0}$ の例

(b) DBT $V_{h} = 699 V_{h0}$ の例

図1 試験速度の異なる曲げ試片に現れる破面模様とそれらの近似定義（Dimensions in μm）

(a) SBT $V_{h} = 1 \times 10^{-3} V_{h0}$ の例

(b) DBT $V_{h} = 699 V_{h0}$ の例

図2 破面模様数の相対一次き裂伝ば距離による変化
静的および動的ひずみ速度によるぜい性プラスチック破面模様の変化

上最小破長dなどのうち、一次き裂と二次き裂が初めて干渉し始める干渉開始距離eを二次き裂核（2Co）の大きさで除した値e/Coは個々の破面模様の重要な情報（大きさや形状）を反映している。この値のき裂伝ば距離による変化をSBT、1×10^{-2} V_{He}の場合について図4に示した。国はBECMのe/Coの変化であり、図2（a）に示したごとくC_{1}/C_{0} = 5近傍でピーク値に連して後ならばか減少過程をたどっている。この条件ではBECM数が主たる（≒80％）模様であり、この試験片の傾向をよく示している。また、e/Coのピーク値が近傍と小さい値であり、一過き裂速度V_{1}やK_{0}, σ_{0}の小さいことを裏づけている。また、OEOM（≒20％）のe/Co変化も（ここには図示していないが）同様にC_{1}/C_{0} = 5近傍でピーク値を表している。破面模様のe/Coがわかれば、式（1）から一次き裂が二次き裂核を活性化する相対临界距離d/Coで（一次き裂伝は速度の定数n_{1} = 1.96と仮定）が求まる。図5はSBT, 1×10^{-2} V_{He}, BECMのd/Coの変化であり、e/Coと同様な変化をしている。次にBECMの699V_{He}の試片におけるOEOMのe/Co変化を図6に示した。図2（b）や図3でも示したようにこの試片では

図3 試験速度による模様割合変化

図4 e/Co値の相対一次き裂伝ば距離による変化・変動（SBT BECM）

図5 d/Co値の相対一次き裂伝ば距離による変化・変動（SBT BECM）

図6 e/Co値の相対一次き裂伝ば距離による変化・変動（SBT BECM）

図7 d/Co値の相対一次き裂伝ば距離による変化・変動（SBT BECM）
OEOM数も多くなるため、この試片の傾向がよく表われているものである。また、ここには示していないが、BECMのe/Cooもと同様の傾向を示すことは言うまでもない。この試片は試験速度が前者の約7×10^{-8}倍の速さであり、一次き裂伝速度で急くなるとみなして、モデル頭部のe/Cooは16〜18近くまで大きくなっている（前者のOEOMのその値は6〜7倍近傍）。このe/Coo変化から、式(1)によりOEOMの相対臨界距離d/Cooを求めたのが図7である。試験速度が約7×10^{-8}倍に早くなるとe/Cooやd/Cooが急上昇して後、急下降を示すが、それらが現れるピーク値はやはりC1/C01=5近傍であり、この傾向は、図2(a)、(b)と同じである。なお、これらの図の上限近くのデータには後述の混合条件式(4、5)でVmax(mix)値を仮定しK0変化を仮定した例を参考までに点線で示した。ここには示していないが図4、5でVmax(mix)をより大きく仮定した曲線は当然初期立ち上がりのデータをよく近似する。

3-2 試験速度と一次き裂伝速度の関係 SBTの試験速度は静的試験機のクロスヘッド速度により制御したもので、曲げ試片下端の鋸一次き裂伝は各々約1.03％および3.04％でほとんど瞬間に（き裂伝は時間約470μsおよび510μs）伝ばした。DBTの試験速度はハンマーの位置Hが高い程大きくなる。図8に699Vhの場合に下落距離と速度の測定値を一点鎖線で示した。H=170mmから錠（質量=167.2g）を自由落下させたときの実で錠とガイド・シャフト間（錠にあたる13ミメの穴が12ミメのガイド・シャフトに案内されて自由落下する）の摩擦抵抗や空気抵抗を無視した関係Vh=√ρH（実線）に近いものを示している。他の条件でも同様な関係を求めているがここでは割愛した。

次にこれら試験速度の異なる同一試片形状の一次き裂伝速度変化を検討した。SBT、Coo=5.20mm試片、1×10^{-8}Vhのとき裂伝速度測定値を図9(a)に丸印で示した。一次き裂伝速度はC1/C01=5でピーク値（約320m/s）に達して後、急激に減少している。測定値は破片点線（約3mmの等間隔の破線）による振動も含まれているが、当然、速度の振動も含まれているものと考えられる。図9(b)は同様にC01=5.80mm試片、143Vhの測定値である。やはりC1/C01=5近傍で最大速度（約370m/s）に達して後、前者よりは速度が急に減少する。また、C01=6.10mm試片の699Vhにおける結果を図9(c)に示す。

図8 落下速度（試験速度）と落下距離の関係
図9 き裂伝速度測定値と混合条件解による近似
した。C₁ / C₀₁ = 6近傍で最大速度（430m/s）を示した後、速度が急激に減少している。

曲げ試験におけるき裂伝ば速度を定義式で表現したものは現在ほとんど報告されていないため、これらデータ点を類似解と比較することはできない。しかし、PMMAの3点曲げ静的破壊試験で、負荷応力による仕事とひずみエネルギー増加の差ΔE vs. Δεとき裂生成に必要とするエネルギーΔE vs. Δε*の関係（ΔE vs. Δε* がΔE vs. Δε* ）を基本とし、d (1/M) / d C₁ すなわち ΔC₁ / [Δ(1/M)] を FEM 織波解より求め（ここでMはBeam Modulus）、荷重・変位の関係を求めたものは実験とよく一致することが報告されている。この文献で一次き裂が伝ばして長くなると曲げ試験の荷重変位曲線が小さくなり、き裂の伝ばと共に試験片下の水平変位が大きくなり、荷重の減少する様子は単調減少曲線でよく表現されている。また、相対一次き裂長さ C₁ / C₀₁ と試験片下の水平変位 h の関係を求め、荷重と相対一次き裂伝ば距離の関係を求めてはより単調減少曲線が得られていると報告している。この事実、一次き裂長さ C₀₁ 、弾性係数 E とをもつ試験片でき裂が定応力条件で伝ばすと、少し進展して弾性係数 E と係り連携したとき変曲点に近づいたとき変曲点の荷重・き裂伝ば距離（または水平変位）の関係図10（実験値）と同様になる。この場合の速度変化はBereによる定応力および定ひずみき裂伝ば条件の混在で近似することがでできる。Bereの定応力条件でのき裂伝ば速度は次式で与えられる

\[\frac{V_l(e)}{V_{lmax}(e)} = \sqrt{\frac{1}{a_1} \left[1 - (m-1) \frac{1}{a_1} \right]} \]

\[V_{lmax}(e) = \sqrt{\frac{2 \pi}{E}} \sqrt{ \frac{E}{\rho} } \]

図10 ～図12～ S N B試験における荷重と相対一次き裂伝ば距離の関係のモデル

また、定ひずみ条件でのものは

\[\frac{V_l(e)}{V_{lmax}(e)} = \sqrt{\frac{m + 2 \sigma_1}{a_1^2}} \frac{1}{(m + 2 \sigma_1)} \times \frac{(m + 2 \sigma_1)(a_1^2 - 1)}{(m + 2 \sigma_1)} - n_1(a_1 - 1) \]

\[V_{lmax}(e) = \sqrt{\frac{2 \pi}{E}} \sqrt{ \frac{E}{\rho} } \]

で与えられている。したがってPMMA静的曲げ試験のとき荷重・き裂伝ば距離の変化を仮定すると混合条件の荷重・き裂伝ば速度Vlmaxはき裂伝ば速度C₁と共に定応力成分および定ひずみ成分の混合法則Y e により次式で与えられる

\[Y_e = \left(\frac{a_1 - a_1^*}{a_1^* - a_1^*} \right)^p \]

ここで、pは定数

\[\frac{V_l(e)}{V_{lmax}(e)} = \left(1 - \frac{x_1}{x_1^*} \right)^p \]

\[V_{lmax}(e) = \sqrt{\frac{2 \pi}{E}} \sqrt{ \frac{E}{\rho} } \]

SBTおよびDBT試験の速度ゲージによる速度測定結果図9（a）、（b）、（c）にこの定義解（実線）を加えて検討した。なお、図中m* はき裂長さに関する定数m[=A/(π C₀₁) A：表面積]と同様に求めた値で、中央の曲線はデータ点を近似表現したものであり、その上下の曲線は±25%の速度振動を考慮して描いたものである。近似曲線は実験値をよく表現している。なお、各図の曲線を描くのに用いた限界速度VlmaxはSBT、1x10^{-2}Vhで350 m/s、DBT、143Vhで410m/s、659Vhで480m/sであり、試験速度の増加と共に限界速度値が当然少しずつ大きくなっている。また、初期の測定点は不安定な値を示すこともあるが、時々検討しているのでここでは後者2者のこれらの点は重要視しがたいものと判断した。

3.3 一次き裂伝ば速度と干涉開始距離および臨界距離 前項に述べたようにSBTおよびDBTの一次き裂伝ば速度は相対き裂伝ば距離と共に最大値に達してから下る。その変化の様子はき裂伝ば長さによってのS N BのModulus変化などを近似した解析^{24,25}を参考にした定応力・定ひずみ混合条件解^{26}をよく
近似しろうことを示した。この試験と同一寸法の Homalite-100 を用いた DBT の結果でも一次き裂伝は速度は上方のをとく上昇、下降変化をもなうが他にも報告されている[4]。各試験結果測定における平均的な最大到達速度 \(V_{\text{max}} \) （同一試験速度の 3 本以上の結果の平均）を求め \(V_k \) 値による変化を表したのが図 11 である。\(V_{\text{max}} \) 値は試験速度の増加と共に上昇することが分かる。次に破面模様の内定値のうち、破面模様の大きさや形状を支配している模様模様の相対干渉開始距離の平均値 \(e / C_{\text{Oz}} \) の試験速度による変化を図 12 に示した。BECM および OECM 両者のに \(e / C_{\text{Oz}} \) は \(C_{\text{Oz}} \) のみと図 4 および 6 のごとく変化・変動するが、ここでは各試片の平均値を求め一覧片につき一平均値で表現している。BECM （三角形）および OECM （丸井）共に試験速度の増加と共に増加している。次に破面模様の干渉開始距離と式（1）より一次き裂が二次き裂発を活性化し始める相対臨界距離 \(d / C_{\text{Oz}} \) を求めると個々の試片については図 5 および 7 のように \(C_{\text{Oz}} \) と \(C_{\text{Oz}} \) とに変化する。この値の平均値 \(d / C_{\text{Oz}} \) を求め、試験速度による影響を図 13 に示した。一次き裂が二次き裂発を活性化する臨界距離も試験速度の増加と共に上昇することが明らかである。なお図 11、12 および 13 で静的試験の試験最大速度 \(V_{\text{max}} \) と動的試験の最小速度 \(16 \times V_{\text{max}} \) の間は静的から動的へ移行する範囲であり、前述したように必ずしも線形曲線で結べるものではないと一点線で結んだ。

図 4 から図 7 のき裂伝は距離による破面模様定義値の変化でも少し検討したように、一次き裂伝は速度の増加・減少過程にき裂伝は速度と \(K_0 \) 値の \(V \) 関係 \(k \times V^n \) との関係 \(k \times V^n \) を組合わせると動的応力拡大係数と静的ひずみエネルギー解放率の \(C_{\text{Oz}} / C_{\text{Oz}} \) による変化を予測することができる。いま、試験速度 \(1 \times 10^{-3} \) \(V_{\text{max}} \)、143 \(V_{\text{max}} \) および 699 \(V_{\text{max}} \) のき裂伝は速度変化測定値を混合条件解で図 9 のごとく近似し、\(V_k \) と \(K_0 \) の \(V \) 関係を組合わせて、\(K_0 \) \(K_0 \) （\(K_0 \) は静的破壊じん性値、約 0.45MPa·m \(1/2 \) とする）と \(C_{\text{Oz}} / C_{\text{Oz}} \) の関係を描いたのが図 14 である。いずれの曲線も \(C_{\text{Oz}} / C_{\text{Oz}} \) が一定に最大値をもつ増加・減少曲線を表しており、その近似で動的応力拡大係数が最大値に達することが分かれる。伝ばするき裂先端を考えるとその \(K_0 \) により活性化され生成する破面模様の最大の \(e / C_{\text{Oz}} \) および \(d / C_{\text{Oz}} \) の最大値、それ以下で \(e / C_{\text{Oz}} \) および \(d / C_{\text{Oz}} \) を有する破面模様が生成されることになる。
したがって、699VHの模様の方々が1×10^{-8}VHの模様より大きなe／Co2およびd／Co2を持つものまで生じることがある。実際、図4から7のこれらの場合ではない699VHの値の方が大きい。また、K0の大きい破壊条件の方がe／Co2およびd／Co2の大きな模様、すなわちOEOMを多く生じ（図2、3参照）。K0の小さな条件にはBECMが主なこれを明らかで、これらの関係はこれまでの報告と全く同じ傾向を表している。なお、それには図示していないが、このK0によりFreundの関係を用いて動的ひずみエネルギー解放率を求めても同様に関係を得る、試験速度変化による変化的K0と同様、破面模様やき裂伝ば速度による変化傾向に関与していることが分かる。

4. 結言
不飽和ポリエステル樹脂板状3点曲げ試片（400mm長さ×89mm幅×9.5mm厚さ、鋳鉄製き裂状）を用いて静的および動的曲げ試験を行い、試験速度を1×10^{-8}VHからその約1×10^{-8}倍まで変化させて破面模様の数、対称模様の割合、相対破壊開始距離や延長距離など、変化を調べるとともに一次き裂伝ば速度測定結果などにより検討した結果、次の結言を得た。

（1）破面模様の主たるものは円などの円誘導をよく模様され破面模様の二次元形式でよく近似できる。

（2）動的曲げ試験速度の大きさによる変化が顕著であり、各模様のうちき裂伝ば速度より上、下にえぐれ込み、影響して見えるロケット模様が観察され、これらも二次元形式で近似できる。

（3）試験速度の違いは円く模様と傾斜模様の数が多く、その違いは円模様の一次に増加する傾向が見られる。いずれの模様数も相対一次にき裂伝ば距離C1／C01=5近傍で最大値に達して後、減少する。

（4）円誘導を模様は試験速度と共に最初軟やかに增加し動的試験速度域では急に減少する。逆に環状模様は静的試験域では速度と共に軟やかに減少し、動的試験域では急上昇する。

（5）一次き裂伝ば速度は増加・減少過程をともなって変化し、いずれの場合もC1／C01=5近傍でその最大値を示す。実験による最大速度はVx=2000mm/secの値は試験速度の増加と共に大きくなり、動的曲げ試験域で急上昇する。

（6）破面模様の干渉開始距離e／Co2および臨界距離d／Co2は相対一次き裂伝ば距離と共に増加・減少をともなって変化し、それぞれの最大値はC1／C01=5近傍に現れる。

参考文献

(1) Cedric, W.G., Engineering Materials Science, (1941), HAIGHT, W.F.
(2) Dinter, G.E., Mechanical Metalurgy, (1976), McGRAW-HILL.
(3) 川田, 田中, 塗りインジェクション, (昭54), 東京出版.
(4) 日本金属学会本会学術委員会, (昭65), 東京出版.
(7) 藤本・ほか2名, 機論, 49-443, A(昭65), 802.
(8) 藤本・吉村, 機論, 52-476, A(昭65), 818.
(9) 藤本・ほか4名, 機論, 53-478, A(昭65), 808.
(12) Takiwama, A.S., McEvily, A.J., JAPAN, 脳内, 塗料材料法の強度と硬度 2, (昭55), 139.
(15) 藤本・ほか2名, 機論, No.481-1(昭59-9), 34.
(16) 藤本・ほか2名, 機論, No.475-1(昭58-2), 31, 投稿中。
(21) 藤本・ほか2名, 機論, 80-491, A(昭60), 1322.
(23) 藤本・田村, 機論, 52-487, A(昭62), 490.