An Experimental Study on Membership Functions in a Fuzzy Reliability Analysis of Structures

Hiroyasu USHIGOME

It is obvious that not only statistical data, but also human subjective judgments play an important role in determining the reliability index of a structure. For this reason, the author previously proposed a reliability analysis method in which subjective values were treated in the calculation using the concept of a fuzzy set. In this paper, the experimental relation between the subjective evaluation data and objective data is discussed. Carbon fracture test pieces were prepared, whose surface roughness was varied continuously. And their strength were preceded evaluated in linguistic expressions, then 4-point bend tests were conducted. Using the subjective evaluation data, the membership function of the surface roughness was determined, and then the membership function of the strength was presumed by comparing the membership function and the statistical data on the strength. Finally, the relationship between two membership functions were argued. This result can be applied to obtain a fuzzy reliability index.

Key Words: Reliability Analysis, Fuzzy Set, Membership Function, Kernel, Possibility Function, Surface Roughness, 4-Point Bend Test

1. 論言

構造物の信頼性解析を行う際に、専門家の主観的評価やその信頼度を左右するデータのひとつである、電気部品などのような多量生産品では統計データだけで信頼度を推定できるが、大規模構造物のようにその生産量が極めて少ないものでは、個々の要素に関する統計的データのほかに、設計や製造などその構造物固有の状況に関する専門家の主観的判断も含めた信頼性解析を行うことが必要となる。このことから客観的データと主観的データを併用して構造物の信頼性解析を行う方法は著者ら(1)(2)によって提案されている。

さて、主観的評価をファジィ集合の帰属度関数で表すとき、この帰属度関数と信頼性解析の結果に大きな影響を及ぼす。しかし、これまでにこの帰属度関数について詳しく調べられた例はあまりない。帰属度関数は各個人に依存した主観的なものであることか、各個人によってどの程度の差があり、またどのような形状の関数となっているのであろうか、そして主観的評価は...

客観的なデータとどのような関係があるのであろうか。主観的評価を取り入れた構造物のファジィ信頼性解析を実用化していくためには、この帰属度関数の性質を明らかにしておくことが必要である。

著者は帰属度関数を調査するために、表面粗さの異なるカーボン試験片を数多く用意し、強度の専門家らにあらかじめ主観的に強度を評価してもらい、その後試験片の四点曲げ強度試験を行った。その結果から明らかになった帰属度関数および、主観的評価と客観的実験データとの関係について報告する。

2. 実験方法とその結果

2.1 実験方法 図1に示す大きさのカーボン試験片

図1 カーボン四点曲げ試験片
試験片を用意し、その表面粗さを細かいものから粗いものまで様々な粗さとなるように仕上げてある。この時、図の⑥面と⑦面の表面粗さが同じであるとは限らない。試験片は⑥面が下となるようにして図に示すような四点曲げ試験を実施する。

試験片の強度を主観的に判断してもらうために、素人から破壊の専門家まで6人の判定者(A〜F)を選び、以下の手順で実験を行った。

(1) 試験片は無作為に選んで順に並べ番号付した。
(2) 判定者に図1となる強度試験の要領を述べたうえで、試験片の強度を主観的に3種類に分類してもらった。この時、強度の強い（表面粗さが細かい）と判定したものをSmall、中位のものをMedium、弱いものをLargeと呼ぶことにする。この際、L、M、Sの選択の順序は特に指定せず任意に分類させた。
(3) 次に粗さ計により粗さ計測を実施した。粗さは試験片のほぼ中央部の①、⑦両面の粗さを計測した。計測長さ50mmの中での5点の最大粗さの平均値を荒さの表示に用いた。
(4) 最後に⑥面が下側となるよう下側として四点曲げ試験を実施し、破壊時の荷重を計測した。

2-2 実験結果
2-2-1 全体統計データ 全試験片に関する表面の表面粗さRz(i=1〜70)と曲げ強度Saに関する統計値は以下のとおりであった。
表面粗さの平均値 \(R = 20.694 \) (μm)
標準偏差 \(\sigma_s = 10.879 \)
曲げ強度の平均値 \(S_a = 55.63 \) (MPa)
標準偏差 \(\sigma_s = 3.454 \)
表面粗さと曲げ強度の相関関係 \(R = -0.5810 \) であり、両者を直線回帰したときの式は
\[S_a = 59.43 - 0.184R \]

3-1 粗さの帰属度値の決める方法

3-1-1 整数因対象物に主観的な判断を加えるときの手順を今回実験に当てはめてみる。本来は強度を判断するのであるが、破壊を直接判断できないために、強度に関連する因子のひとつとして表面粗さを着目する。表面粗さを3種類に分類するのに、まず特異なものから取り出していくが、判定者は全体の平均値を主観的に決定し、これからのぞして判断して分類を行っていく。以上のことを考慮して粗さの帰属度値は以下の手順で決定することとする。

(1) ○または▼印のデータに着目する。まず○印について考えると、データの左側は○印ばかりである。左から他の記号が現れるまでは○印の帰属度値は1.0である。

(2) そして、右側からの○印の数と左側からの○印以外の記号の数が等しくなくなった点、一致しないときはその中間点で○印の帰属度値を0.5とする。

(3) ▼印についても(1)、(2)の手順と同じ考え方で帰属度値が0.5 & 1.0となる表面粗さの点で定める。

(4) ○または▼印の帰属度値が0.5となる点でそれぞれ▼または○印の帰属度値は0.0となるものとする。

図2 判定者Dの主観的評価結果
図3 判定者Fの主観的評価結果
(5) △印については、○および▼印の帰属度関数を決定したあとで、3者の帰属度値の合計が1.0となるように△印の帰属度値を定める。

各検定者が実施した表面粗さに関する主観的分類では、各試験片は必ず△、または▼印のいずれかに分類される。帰属度値が1.0ということは、必ずその事象に分類するという確率的な意味を含んだものであり、この点から考えても、他の部分において帰属度値の合計が1.0となるようにすべきものと考えられる。

3-2 S, π および Z 関数 △および○印の帰属度関数を表す標準関数として、それぞれS, π および Z 関数が提案されている(13)。この標準関数では帰属度値が0.0, 0.5 および1.0となる点におけるパラメータ値をそれぞれα, b およびc とするが、$
2b=a+c$ なる関係がある。しかし、実験の結果は一方に片寄ることも多く、点a とc がb 点について対称的位置にあるとは限らない。そこで、各帰属度関数を以下のように定めることにする。まずS 関数について、パラメータa, b, c を用いて次のように表す。

(i) $b-a\leq c-b$ のとき

$$S(u; a, b, c) = \begin{cases} 0 & \text{---} u \leq a \\ \frac{1}{1-\left(\frac{a-u}{c-a}\right)^x} & \text{---} a \leq u \leq \frac{a+c}{2} \\ \frac{1}{1-\left(\frac{u-c}{c-a}\right)^x} & \text{---} a+c \leq u \leq c \\ 1 & \text{---} u \geq c \end{cases}$$

ただし、

$$\left\{\frac{c-b}{c-a}\right\}^x = 0.5$$

となるようにx の値は決定する。

(ii) $b-a > c-b$ のとき

$$S(u; a, b, c) = \begin{cases} 0 & \text{---} u \leq a \\ \frac{1}{1-\left(\frac{a-u}{c-a}\right)^x} & \text{---} a \leq u \leq \frac{a+c}{2} \\ \frac{1}{1-\left(\frac{u-c}{c-a}\right)^x} & \text{---} a+c \leq u \leq c \\ 1 & \text{---} u \geq c \end{cases}$$

ただし、

$$\left\{\frac{c-b}{c-a}\right\}^x = 0.5$$

となるようにx の値は決定する。

以上のように定めた帰属度関数を用いて判定者Dの選択に関する帰属度関数を表すと図4のようになる。

3-3 強度の帰属度関数 粗さの帰属度関数が与えられたときに、これを強度の帰属度関数に変換することが必要となる。実験の結果では粗さから強度への変換のための模型を決定することになるが、ここでは実験結果から直接に強度の帰属度関数を推定する。

3-3-1 帰属度関数の推定 強度にパラメータがなく、粗さと強度が1対1で対応している場合には、粗さの帰属度関数を強度の帰属度関数に変換することは容易である。しかし、実際には強度にパラメタがあるため、主観的に評価された粗さの値が強度のどの範囲に帰属しているかは明りょうではない。そこで、まず粗さの主観的評価から強度の帰属度関数を決定し、次に

図 4 表面粗さの帰属度関数(判定者D)

図 5 表面粗さから曲げ強度への帰属度の変換
これに強度の確率密度を作用させて強度の可能性関数を決定する。そして最後に、この可能性関数で非帰属度関数へ変換することを試みる。

判定者 D のデータについて考える。図 4 に示すように、粗い (▼) の帰属度関数は表面粗さ約 15 μm 以下では帰属度値が零であり、約 29 μm 以上で 1.0 となる。この 15 および 29 μm に相当する強度を求めるのに、回帰直線まわりの ±2σ (σ: 強度の回帰直線まわりの標準偏差) 線を用いる。図 5 に示すように、±2σ 線の粗さ約 15 μm での点を L、-2σ 線の粗さ約 29 μm での点を Q とすると、強度については L 点より大での帰属度値は零となり、Q 点より小での帰属度値は 1.0 となる。▼印の粗さの帰属度値が 0.5 となる点で強度の帰属度値も 0.5 となり、ときの強度の値は回帰直線上の値 P を用いることとする。この L、P および Q での強度の値から 3-2 で述べた関数を用いて強度の帰属度関数を決定することができる。（□印については同じ考え方で帰属度関数を決定できる。△印については、粗さの帰属度値が最大となる約 18 μm の点で回帰直線での点 N の値をとることをとし、そのときの強度の帰属度値が粗さの帰属度値をとることとする。そして、▼および △印に対して定めた点 L、J を用いて、線分 LJ の中点を M とするとき、この点の強度の値での帰属度値を最大帰属度値の 1/2 とする。O 点についても同様に定める。さて、△印の帰属度関数は π 関数で

$$
\pi_a = \left\{ \begin{array}{ll}
S_a(\psi; S_0, S_0, S_N) \times a_0, & S_0 \leq S_N \\
Z_a(\psi; S_N, S_M, S_I) \times a_0, & S_K \leq \psi \leq S_I
\end{array} \right.
$$

ここに、s_i(i=Q, N, L) は Escape の強度値であり、a_0 は最大帰属度値で粗さの最大帰属度値と同じ値を用いる。

このようにして定めた帰属度関数の形状を図 6 に示す。

3-3-2 強度の可能性関数

構造物のファジー信頼性解析を行うためには、主観的評価を行ったことにより、強度の値がどのように変化したかを知ることが重要なテーマである。前節で述べた強度の帰属度関数から、O 印と判別した試験片の強度の平均値やバラツキを推定することはできない。そこで、帰属度関数と強度の確率密度関数を組合せて平均値やバラツキを推定することを試みる。

標本空間 X に対する確率密度関数が p(x) で与えられ、ファジー事象 A の帰属度関数を µ_A(x) で表すものとすると、ファジー事象の確率 P(A) すなわち、ファジー事象 A の生起する確率は次式で定義される。

$$P(A) = \int_{X} \mu_A(x) \cdot p(x) dx$$

積分項 µ_A(x) と p(x) はファジー事象 A の全体に対する確率密度を表現したものとみなすことができる。

µ_A(x) として前節で求めた帰属度関数を用い、p(x)
構造物のファジィ信頼性解析における帰属度関数の実験的研究

そして今回の実験データからあたえられた正規確率密度関数を用いて、判定者DおよびFの○△および▼印について、それぞれの$q_\alpha(z)$を求めたものが図7および図8である（図の値は計算で得られた値を10倍してある）。この$q_\alpha(z)$関数はファジィ事象の可能性を表現したものである。最大値が1.0となるように定数倍して可能性関数と呼ぶこととする。この可能性曲線から得られる平均値はその主観的評価に対する強度の推定値を表し、曲線の拡がりはそのバラツキを表しているものとみなすことができる。この点について判定者Fの実験による統計データと図8から求めた平均値および標準偏差を比較したものが表1である。計算によって標準偏差の値は実験結果よりも少しだけ小さく、精度の良い推定値が得られているが、両者の傾向は良く一致しており、計算の考え方は大筋正しいものと推察できる。ここで得られた可能性関数から、主観的評価に対する平均値やバラツキが推定できれば、構造物の信頼性解析には非常に有効な情報となる。

また、図7と図8を比較すると両者の形状がやや異なっている。特に△印の曲線においてその差が大きいが、これは各判定者によりそれぞれの評価値に分類する割合が異なっていることを示しており、これも信頼性解析への有効な情報になるものと考えられるが、この点についてはさらに検討が必要である。

3.3.3 核の帰属度関数
これまでも、実験データをもとに主観的評価と客観的データとの関係を調べてきた。しかし、一般には主観的評価と客観的データとは1対1には対応せず、他の種々のパラメータが中間的に介在することがある。そこで述べた可能性関数を求める場合は容易ではない。また多くの主観的評価があり、そのような評価を行う場合には、著者が文献(5)で述べた非帰属度関数で表現しておくほうが適当であることが多い。先に得られた可能性関数を帰属度関数に置き換えたものが、図9である。ただし、帰属度関数が0.0付近の曲線は実際よりも単調な曲線となるような修正が行われている。図において、Sは統計データから推定した非帰属度関数である。すなわち、確率密度関数を一種の可能性関数とみなして、この曲線から帰属度関数を表したものである。帰属度関数からも平均値や標準偏差を推定する方法を考えてみる。帰属度関数が零で平均値を表していると考えて差支えないと、バラツキについても推定が容易である。今回の解析結果の2σを各評価値について当てはめて見ると、帰属度関数が0.8であった。しかし、この値は一般的な値ではないので、各ケースに応じて検討が必要である。

現実の問題では、十分な統計データが与えられ、平均値や標準偏差が与えられることも多い。いずれにしても先験的な強度の帰属度関数が与えられ、それが主観的評価によりどのように変化するかを知ることが重要である。これは核を決定する問題となる。

主観的評価の帰属度関数が$m_\alpha(u)$で表されるものとする。本報の実験では各単品の強度を問題としているのでウェイトの項を無視している。粗さに対する主観的評価を強度の評価に結びつける核を$m_\alpha(v)$とするとき、両者のファジィ関係m_αは次式で与えられる。

\[m_\alpha(v,u) = \int_{v=0}^{v=V} m_\alpha(u) \wedge m_\alpha(v)(u,v) \text{ (7)} \]

ここでjは○△▼印であり、\(\wedge \)はminを意味する。

ある試験片に対する主観的評価をm_αが与えられたときのその核の帰属度関数m_βは次式のようになる。

\[m_\beta(v) = \sqrt{\text{Max}}[m_\alpha(v) \wedge m_\alpha(v,u)] \text{ v} \text{ (8)} \]

ここで\(\text{Max} \)を意味する。

先験的な強度の非帰属度関数$m_\alpha(v)$が与えられているとき、主観的評価の非帰属度関数$m_\alpha(v)$は次式で与えられる。

\[m_\alpha(v) = \int_{v=0}^{v=V} m_\alpha(v) \cdot m_\alpha(v-r-v) \text{dv} \]

今回実験では$m_\alpha(v)$と$m_\alpha'(v)$が実験結果から推定され、$m_\beta(v)$や$m_\beta'(v)$を求めるファジィ逆問題(6)と

<table>
<thead>
<tr>
<th>表1</th>
<th>実験および計算による強度の平均値と標準偏差の比較</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>Calculated from Fig.8</td>
</tr>
<tr>
<td>mean</td>
<td>std. dev.</td>
</tr>
<tr>
<td>○</td>
<td>56.9</td>
</tr>
<tr>
<td>△</td>
<td>55.6</td>
</tr>
<tr>
<td>▼</td>
<td>54.2</td>
</tr>
</tbody>
</table>

| 図9 | 強度の非帰属度関数 |
構造物のファジィ信頼性解析における帰属度関数の実験的研究

4. 考察

主観的評価を構造物の信頼性を評価する上での一情報であるとは理解されているが、どのように定量化するかについては、まだ多くの問題が残されている。
特に帰属度関数や核については不明な点が多く、これらを少しでも明らかにするために主観的評価に関する実験を行った。その結果、以下のようなことが明らかになった。

（1）主観的評価の帰属度関数の決め方は、ひとつの提案を行った。この帰属度関数は個人により大きな差があり、これまで述べられているようなきらいな形状にはならない。

（2）図さの帰属度関数は各要因値において、各帰属度の和が1.0となるが、強度の帰属度は統計的パラツキが入るため必ずしも1.0とはならない。

（3）図さから変換した強度の帰属度値と、強度の確率密度関数の積から、強度の可能性関数を求めるることを試みた。

（4）この可能性関数を一種の確率密度関数とみなして求めた平均値や分散が、実験から得られた平均値や分散と大きい関係がある。

（5）実際への適用のために、可能性関数を帰属度関数に変換したが、今回の実験では非帰属度が零で平均値0.8でほぼ2αの標準偏差を与える。

主観的評価から平均値や標準偏差を推定できれば、その個人の主観的確率が得られることとなり、専門家
の判断が信頼性解析に大いに活用できるようになる。

そのほか、本文では割愛したが、ここで述べたような簡単な実験では素人の判断も有効な情報を与えることがわかった。しかし、素人の判断は専門家の判断に比較してパラツキが大きくなる。これは素人がこのような判断に慣れており、強度と図さの関係を十分理解していないためと考えられる。

以上述べてきたとおり、主観的評価に関する実験により種々の知見が得られた。今後主観的評価と客観的データととの関連性がさらに明りょうとなれば、ファジィ集合を用いた解析法が品質管理や構造物の信頼性解析の強力な武器になるものと考えられる。

文献

（1）牛込. 概論. 53-491. A (昭62)1402。
（2）白石ほか2名. 土木学会論文報告集. 325 (昭57), 1。
（3）Zadeh, L. A., Fuzzy sets and their application to

cognitive and decision process, (1975), 1. Academic

Press。
（6）塚本・田代. 計測自動制御学会論文集. 15-1(昭54), 21。

NII-Electronic Library Service