PMMの計装化衝撃試験と破壊靭性評価*

小林俊郎*1, 宮田 博*2, 菅澤賢二*3, 東原 隆*4

INSTRUMENTED IMPACT TEST AND EVALUATION OF FRACTURE TOUGHNESS IN PMMA

TOSHIRO KOBAYASHI, HIROSHI MITATA, KENJI KIRUSAMA AND TAKASHI HIGASHIHARA

In the present study, fracture toughness of PMMA is evaluated based on the instrumented impact test and static three-point bending test. In the measurement of true fracture load in the instrumented impact test, a very difficult problem associated with a remarkable inertial loading effect is pointed out. However, it is shown that the inertial loading effect can be controlled by changing the period (T) of vibration in specimen. It is also shown that the fracture toughness (Kc) is affected by the loading rate (K). It is observed in the tested range of T (3.8×10^{-2} - 2.3×10^{4} cm^{-3/2}) that the changing tendency can be divided into three types. That is, Kc increases monotonously at first, then decreases, and increases once again with increasing loading rate.

Furthermore, it is observed that a feature of fracture morphology is the change from a stable fracture to an unstable one with increasing in K.

Key Words: Dynamic Fracture, PMMA, Instrumented Impact Test, Inertial Loading Effect, Fracture Toughness, Loading Rate, Fracture Morphology

1. 緒言

金属、セラミックスならびにポリMERの1つである高分子材料は、機械性・形状性・耐熱性・電気的特性等々に優れており、現在種々の分野で使用されている。

ところで、多くの機械用高分子材料の破壊挙動は本質的に靭性であり、静的なおよび動的な荷重における破壊靭性値の測定が重要な課題となっている。従来、靭性高分子材料の簡便なシャルピー式衝撃試験に関しては、挙動等により比較の目安である衝撃値についての一連の研究がある。

計装化衝撃試験においては、荷重変形に関する情報や荷重変形に対する荷重変形値そのものが得られるようになっているが、一般に靭性材料では慣性力による振動の影響により実際の破壊荷重の測定が困難とされている。

ASTM E24.03.03委員会では予想衝撃試験における取引破壊領域においても慣性の影響の少ない低速度衝撃試験法によって動的な破壊靭性値を求めることを提案しているが、その後の進展が見られていなかったのが現状である。

そこで本研究では、非破壊高分子材料であるPMMA（メタクリル樹脂）を用い、計装化シャルピー衝撃試験における慣性の影響のない荷重による吸収エネルギーの解析法について検討した。

また、予想值を導入した試験片について衝撃試験および静的試験を行い、荷重速度を変化させた場合の破壊靭性値と破壊形態について検討した。

2. 実験方法

本試験に用いたPMMAS試験片を図1に示す。試験片は平板試料から機械加工によりエッジウェイズ方向に採取した。図1（a）は硬質プラスチックのシャルピー衝撃試験方法における6号試験片（JIS K7111-No.6）であり、（b）は金属材料の標準シャルピー衝撃試験片（JIS 22002-No.4）である。なお、それぞれの試験片には、切欠き先端半径の予想値（一定負荷下でボププ・イン式に導入）およびρ=0.1mmのスリットを導入した。

* 平成元年2月10日 東海支部第38期総会講演会において講演。原稿受付 平成元年5月17日。
* 正員、農技研究大学工学部（旧制440 東北帝京大学薬学部1-1）。**正会員、旭化成工業（株）（旧制524 富山市小島町515）。
* 学生員、農技研究大学工学部（旧制440 東北帝京大学薬学部1-1）。***正会員、アカオ化成工業（株）（旧制490-11 愛知県北郡高浜町西平寺学町80）。
PMMAの計装化衝撃試験と破壊弾性評価

衝撃試験には容量14.7ℓの計装化シャルビー衝撃試験機を用いて、衝撃速度を0.19〜4.28m/sと変化させ、ハンマー荷重ならびに試験片に貼付した歪ゲージ（共和ゲージ；KSN-2-33；ゲージ長2mmを主であり先端幅2mmの位置に貼付）信号を測定した。図2に、これらの計測システムのブロック線図を示す。なお、動的破壊弾性評価にはKalthoffが提案する衝撃応答曲線法を計装化シャルビー衝撃試験に適用した。（3）

また静的試験にはインストロン型万能試験機を用い、クロスヘッド降下速度0.05〜50mm/minと変化させた3点曲げ破壊弾性試験を行った。そして、破断後の試料について光学顕微鏡等を用い、巨視的破面観察を行った。

3. 結果および考察

3.1 慣性の影響ならびに吸収エネルギーの解析

図3の形が変化しない条件、つまり負荷エネルギー容量は33.5J（11:全吸収エネルギー）を満たす（13）低衝撃速度での計装化シャルビー衝撃試験より得られた、両試験片の代表的なハンマー荷重-時間曲線および試験片に貼付した歪ゲージ出力-時間曲線を示す。いずれも弾性型の凝性破壊形態が確認される。試験片の真の荷重を反映すると考えられる歪ゲージ出力に対し、（a）試験片ではハンマー荷重に慣性の影響が大きく重畳している。これはハンマー・試験片・アンビル間に無接続状態が生じる、すなわちloss of contactが主因であると思われる。（14）

Server（15）は、このような振動波の周期Tを経験式として与えている。

\[T = 1.08 \times (SWEBC/s)^{1/2} / C_o \]

ここでSは支点間距離、WおよびBは試験片の幅、厚さ、Eはヤング率、Csは試験片のコンプライアンス、Coは試験片中の鋼の速度である。

経験式によれば、(b) 試験片のTは比率的に(a)試験片のほぼ2/3となる本試験結果とは比較的良好一致を示した。また、負荷衝撃速度を同一とした場合においても、Tの短い(b) 試験片ではハンマー荷重に重畳する振動の振幅が小さいのが観察された。

これらの現象をloss of contactと考え合わせると、(b) 試験片で慣性による振動波の偏波が抑制されている。振動波の周期Tが短くなることにより試験片の無接続時間が短く繰り返される影響によるものと

![図1 試験片形状](image1.png)

![図2 衝撃試験の計測システム](image2.png)

![図3 代表的なハンマー荷重、歪ゲージ出力-時間曲線](image3.png)

\[(\rho = 0.1mm, a/V = 0.5, E_0 \times 3E_1) \]
考えられる。したがって、衝撃試験時にtの短い比較的慣懶の影響が重視しあき試験片を用いた低速度衝撃試験により、簡便な解析および評価が可能であると考えられる。以上の点については、衝撃量のばらつきや変動が試験片形状によるものと考えられないのであるが、試験片形状を工夫することにより改善の余地がある。

ところで、シャルビー衝撃試験における試験片形状による破壊特性評価法として吸収エネルギーによる解析が挙げられる。（11）

そこで比較的慣懶の影響の少ない（b）試験片を用い、異なる予き裂長さを導入した試験片について低衝撃速度での計装化シャルビー衝撃試験における吸収エネルギーの解析をまず行った。一般に脆性材料のシャルビー衝撃試験より得られる吸収エネルギーtには、試験片の材料変形・破断エネルギーE_fのほかに、試験機の弾性変形等に費やされるエネルギーE_kおよび試験片の破断エネルギーE_bが含まれている。 （12）

全吸収エネルギーE_tは、次式によりエネルギー成分を分離することができます。ここでE_sは試験片に吸収・貯蔵されるエネルギーである。

$$E_t = E_s + E_b = E_f + E_k + E_m$$ ……（2）

計装化シャルビー衝撃試験で実測されるコンプライアンスC_tは、試験片および試験機のコンプライアンスより成り立っていると考えられ、次式によって表すことができる。

$$C_t = C_s + C_m$$ ……（3）

ここでC_sは試験片のコンプライアンス、C_mは試験機のコンプライアンスである。そこで、E_sは近似的に次式で求めることができる。

$$E_s = E_t (C_s / C_t)$$ ……（4）

従来、C_sは静的荷重を前提にした公式により理論的に求められていたが、C_t、C_s、C_mは衝撃速度依存性を示しm/s以下の速度で急激に変化し、脆性的な破壊挙動を示す材料の動的なC_sは次式で与えられることが報告されている。（13）

$$C_s = \frac{S^2}{EBW^2} Y + \frac{0.29W^2}{(W-a)^2} \left(\log \frac{1}{V_0} - 0.339 \right)$$ ……（5）

ここでV_0は衝撃速度、aとはき裂長さである。

また、E_kは試験片が破断後のハムマ速度でハンマーと直線上での衝突を仮定すると、運動量保存則より近似的に次式で与えられる。

$$E_k = mV^2 (1 + e)^2 V f^2 / \left(2 (m + M)^2 \right)$$ ……（6）

ここでmは試験片質量、Mはハンマ質量、V_fは破断後のハンマ速度、eはハンマと試験片間の回復係数であり本実験条件下では$e = 0.35$を測定している。実際の試験片の破断後の飛散エネルギーには、E_mより解放されるエネルギーの一部も含められるが、ここでE_sより解放されるE_kをどのように推定することとする。

図4に求めた各種吸収エネルギー値の例を示す。本供試材の真の変形・破断エネルギーE_f、全吸収エネルギーtの約50～65％であった。但し、ここで言うE_fは、純粋な破壊表面エネルギーに比べれば、まだ余分のエネルギーを包括したマクロな意味での便宜的なものであることを断っておきたい。例えば破壊前における試験片の振動や運動エネルギー等も一部含まれていると考えられる。

以上の吸収エネルギーの解析により得られた真の変形・破断エネルギーE_fより、線形破壊力学に基づく動的破壊特性値の算出を試みる。

弾性歪エネルギー解放率G_cは、き裂が単位面積当たり進展するときに解放されるエネルギーであるから、
次式のように定義される。

\[
G_c = \frac{dU}{dA} = \frac{1}{2} \left(\frac{dP}{dA} - \frac{dU}{dA} \right) \quad \cdots (8)
\]

ここで，\(U \) は弾性歪エネルギー，\(P \) は荷重，\(u \) は変位，\(A \) はき裂面積である。

また，コンプライアンスの定義より \(G_c \) は次式のように表される。\(^{111}\)

\[
G_c = \frac{P^2}{2 \cdot dA} \cdot \frac{dC}{dA} = \frac{U}{BWC} \cdot \frac{d(a/W)}{BW} \cdot \frac{G_c}{BW} \quad \cdots \cdots \cdots \cdots (9)
\]

ここで\(a \) は切欠き比 \(a/W \) に依存する形状関数で
ある。

ところで，(9)式における限界の弾性歪エネルギー \(U \) は先に求めた真の変形・破壊エネルギーと等価であるので，シャルビー衝撃試験より得られる限界弾性歪エネルギー解放率 \(G_c \) は次式で示される。

\[
G_c = \frac{E f}{(BW)} \quad \cdots \cdots \cdots \cdots (10)
\]

図5に先に求めた \(E f \) と形状関数 \(BW \) の関係を示す。ほぼ原点を通る良好な関係となり，この勾配より \(G_c = 421 \text{J/m}^2 \) を得た。これを応力を拡大係数に換算すると \(K_1 = 1.13 \text{MN}\text{m}^{-3/2} \) となり衝撃応答曲線法で求めた値 \(K_1 = 1.08 \text{MN}\text{m}^{-3/2} \) と比較的よい一致を示した。

3.2 破壊靱性値に及ぼす負荷速度の影響 図6に静的3点曲げ試験および衝撃応答曲線法を用了衝撃試験で評価した破壊靭性値に及ぼす負荷速度の影響を，

\[
\begin{align*}
\text{Static test} & \quad \text{Impact test} \\
\end{align*}
\]

\[
\begin{align*}
\text{Specimen (a)} & \quad \text{Specimen (b)} \\
\end{align*}
\]

\[
\begin{align*}
A & \quad B \\
\end{align*}
\]

図6 破壊靭性値に及ぼす負荷速度の影響

\[
\begin{align*}
\text{Static test} & \quad \text{Impact test} \\
\end{align*}
\]

\[
\begin{align*}
\text{0.5mm} & \quad \text{0.5mm} \\
\end{align*}
\]

図7 静的および衝撃試験での代表的な破面形態
図8 負荷速度に対する破面形状の模式図

域が形成され、周辺にパラボラパターンの領域が形成されているのに対し衝撃試験を行った試験片では鏡面領域の形成が見らわれなくなる。また、高負荷速度領域では個々のパラボラパターンの大きさが小さくなることも観察された。

負荷速度に対する破面形状の模式図を図8に示す。

それらより負荷速度を增大させると、比較的緩やかなき裂成長を伴う鏡面領域形成型の安定破壊から、パラボラ領域形成型の不安定き裂成長破壊へと移行するのが認められる。

したがって、図6に示すA領域における単調な疲労値の増加は粘弾性材料としての粘弾性を示していると考えられる。またB領域における急激な疲労値の低下には、破壊進展の変化に伴うクリージング等の影響が関与していると考えられる。

なおC領域での疲労値の増加については、き裂先端あるいは微視的にみたクリージング先端での局所的な温度上昇およびincubation timeの影響が推察されるが今後更に検討が必要である。

4. 結言

代表的な粘弾性高分子材料であるPMMAについて、
静的ならびに計装化衝撃試験を行った結果以下の結論を得た。

（1）衝撃試験時にRの短くなるような試験片形状を用いることにより、ハンマー荷重に依存する慣性の影響を抑制することができる。

（2）衝撃試験で得られた吸収エネルギーを解析した結果、荷重変形・破断エネルギーEの吸収エネルギーEの約50％である。また、Eと形状因数BWの関係より評価した破壊特性値と、衝撃応答曲線法より求めた値は比較的よ