面付実装形 IC パッケージはんだ接合部の熱疲労強度評価*
（第 2 報，3 種類のリードの比較）

北野 誠*1，河合 末男*2，清水 一男*2

Thermal Fatigue Strength Estimation of Solder Joints of Surface Mount IC Packages
(2nd Report; Comparison of Three Types of Leads)

Makoto KITANO, Sueo KAWAI, and Ichio SHIMIZU

Long-term reliability against thermal fatigue is required for soldered joints of surface mount IC packages. This study is carried out in order to estimate the thermal fatigue strength of the solder joints of three types of leads, namely, batt, gull-wing and J-bend leads. Strain on the solder joint induced by thermal expansion mismatch between the package and substrate has been analyzed by considering elastoplastic behavior of the solder and by treating leads as rigid frames. It is found that the fatigue lives of these types of solder joints can be estimated based on the equivalent plastic strain range calculated by the present analysis. The maximum fatigue lives of the solder joints agree approximately with the fatigue lives of the bulk solder specimens. The fatigue strength of the solder joints depends on the lead and solder size, and the comparative merits of these leads for fatigue strength cannot be discussed unconditionally.

Key Words: Thermal Fatigue, Solder, Surface Mount Device, Elastoplastic Analysis, Fatigue Test

1. 緒 言

IC, LSI のプラスチックパッケージでは、従来のピン挿入形状に代わって、リードを基板に直接はんだ付けする面付実装形が主流になりつつある。これは、面付実装形パッケージが多ピン化、高密度実装化に適しており、さらにはんだリファロー技術により穴あけ加工の不要な基板に一括して実装できるためである。

面付実装パッケージのリード形状は、図 1 に示すように、バットリード、ガルウィングリード、J ベンドリードと呼ばれる 3 種類が用いられている。これらのリードは、リード間距離の微細化、実装の難易、はんだ接合部の検査の難易などの点で一長一短があり、リード形状はパッケージの実装設計に応じて選択される。

これらの面付実装形パッケージを実装した基板に搬送し、温度変化の加わると、パッケージと基板の線膨張係数の差により、リードのはんだ接合部に繰返しのひずみが生じ、熱疲労破壊を起こすことがある。このため、使用条件のきびしい環境下で面付実装パッケージを用いる場合には、はんだ接合部の熱疲労強度について事前に十分検討しておく必要がある。

* 平成元年 10 月 15 日 第 67 回全国大会講演会において講演、原稿受付 平成元年 3 月 29 日。
* 京都府立製作所機械研究所（著300 宇治市柳原町 502）。
* 産業技術総合研究所電子機器開発センター（著370-11 高崎市西横手町 111）。
ICパッケージのはんだ接合部の熱疲労強度解析について、有限要素法をベースにした研究が行われているが、解析に要する費用と時間の点で必ずしも設計者の要求に合致していないように思われる。このため、著者らは、バッドリード（図1（a））のはんだ接合部について、简易的弾性問題をベースにした疲労強度評価手法について検討し、前報で報告した。本報告では、前報の手法をガルウィングリッド（図1（b））とJベンドリード（図1（c））に拡張し、各リードのはんだ接合部の疲労強度評価手法について検討したので、以下に報告する。

2. ひずみ解析

2.1 バッドリード
バッドリードのはんだ接合部のひずみ解析手法については、前報で報告したが、他のリードと比較するため、再述する。全体の解析モデルを図2（a）に示す。パッケージと基板の伸縮剛性は、リードの曲げ剛性に比べて大きいから、温度がTsからT1に変化したときの変形は、図2（b）に示すようにリードのパッケージ付け根部に荷重Fを加え、変位δを生じさせた場合と等価になる。変位δは次式で表される。

\[\delta = [(l_b + l_a) \alpha_a - l_b \alpha_b - l_a \alpha_f] (T_1 - T_0) \]...
(1)

ここで、\(\alpha_a, \alpha_b, \alpha_f \)はそれぞれ基板、パッケージ、リードの線膨張係数であり、\(l_b \)はパッケージ長さ/2、\(l_a \)はリードの水平部の長さである。以下、変位δを与えたときに生じるはんだ接合部のせん断ひずみγの求め方を示す。

本解析では、リードをラーメン構造として、はり理論を適用してひずみ解析を行った。図2（b）において、垂直方向の荷重と変位を無視し、はんだ接合部のモーメントを \(M \)、荷重を \(F \)とする。リードの垂直部分をはり1、水平部分をはり2とし、座標 \(x_1, x_2 \)をそれぞれ図2（b）のようにとる。はり1、2の曲げモーメント分布 \(M_1, M_2 \)は、

\[\begin{align*}
&\text{はり1: } M_1 = -Fx_1 + M \\
&\text{はり2: } M_2 = -F(x_2 - h_2) + M
\end{align*} \]...
(2)

で表される。ここで \(L_2 \)はリード長さ（はり1の長さ）、
\(h_2 \)ははんだの接合高さである。はり1、2のたわみを \(\psi_1, \psi_2 \)とし、はんだ接合部のはり1の傾きをφとするとき、端末条件は次のようになる。

\[\begin{align*}
&\psi(x=0) = \phi \\
&\psi(x=0) = \psi_1 \\
&\psi(x_1 = l_b - h_2) = \psi(x_2 = 0) \\
&\psi(x_1 = l_b - h_2) = \delta \\
&\psi(x_2 = l_b) = 0
\end{align*} \]...
(3)

式(2)～(3)より、\(\psi, \phi, \delta \)は、

\[\begin{align*}
&\phi = \left[F(x_1) - l_b(h_2 - l_2/2) \right]
&\delta = \left[F(x_1) - l_b(h_2) \right] / 6
&\psi(x_1 = l_b - h_2) = \left[F(x_1) - l_b(h_2) \right] / 6
&\psi(x_1 = l_b - h_2) = \left[F(x_1) - l_b(h_2) \right] / 6
&\psi(x_1 = l_b - h_2) = \left[F(x_1) - l_b(h_2) \right] / 6
&\psi(x_1 = l_b - h_2) = \left[F(x_1) - l_b(h_2) \right] / 6
\end{align*} \]...
(4)

とする。ここで、E1はリードの弾性係数、I1はリードの断面防止モーメントである。はんだとリードの界面に発生するせん断応力τとモーメント \(M \)の釣合い（図2（c））。

\[M = I_b h_b \tau \]...
(5)

が成立つ。ここで \(\tau \)はリードの、\(h_b \)はリード垂直部の幅である。はんだのせん断ひずみγとφの関係は、はんだ接合部を三角形定ひずみ要素とみなし、

\[\gamma = (\tau/2h_b + 1) \phi \]...
(6)

で表される。ここで \(h_b \)ははんだ接合部のフット長さである。はんだのせん断応力～ひずみ挙動は、はんだ素材の継返しひずみ試験により、

\[\gamma = \gamma_s + \gamma_p = \frac{\tau}{G} + \frac{1}{2} \left(\frac{2E}{F_s^2} \right)^{1/2} \]...
(7)

で表される。ここで、\(\gamma_s \)は弾性ひずみ、\(\gamma_p \)は塑性ひずみ、\(G \)は横弾性係数、\(F_s \)は塑性係数、\(h_b \)はひずみ硬化指数、\(m \)はリード速度、\(\tau \)ははなんだ相性応力、\(m \)ははんだの温度応力が同じである。これらの定数は温度の関数であり、その値は前報で示した。本解析では、さらにγとτの関係においてヒステリシスを考慮した。すなわち、荷重が変動したときのひずみ増分を塑性ひずみ増分と塑性ひずみ増分の和とし、除荷過程では、ひずみ増分を弾性ひずみ増分のみとした。

以上述べた式(2)～(13)を結合させることにより、
面付実装形 IC パッケージはんだ接合部の熱疲労強度評価（第 2 報）

継返し変位全振幅 $\Delta \delta$ からせん断ひずみ範囲 $\Delta \gamma$ を計算することができる。

2.2 ガルウィングリッドと J ベンドリード ガルウィングリッドの解析モデルを図 2 (d) に示す。はり 1，2 の定義はバッテリードの場合と同様であり，はんだ接合部の水平リードをはり 3 とする。はり 3 の左端に生じる曲げモーメントを M_3 と仮定すると，バッテリードの場合は h_3 を零とした (2)～(8) が成り立つ。したがって，ϕ と M, F の関係は

$$\phi = [F_{1a}(l_1 + l_2)/2 - M(l_1 + l_2)/E I_1]$$

(14)

$$\delta = \phi l_2 + [F_{1a}^2/6 - M_3^2/2]/E I_1$$

(15)

となる。はり 3 は，左端に生じた曲げモーメントを M_3 により上下方向に変形してたわみ v_3 を生じる。時にははんだ印加圧縮の変形を生じ，はんだの変形による反力がはり 3 に分配される。はんだ接合部は，反力 p は次式で表される。

$$p = -\frac{E_b b_3}{h} v_3$$

(16)

ここで，E_b ははんだの弾性係数，h ははんだの厚さであり，両者とも距離 x_3 の関数である。また，b_3 ははり 3 の幅を表し，はり 3 のたわみ v_3 と距離 x_3 の関係ははり理論より次式で表される。

$$v_3 = \frac{p}{E I_3} x_3$$

(17)

ここで，I_3 ははり 3 の断面係数である。式 (16)，(17) より，

$$v_3 = \frac{-E_b b_3}{E I_3} \frac{p}{h} v_3$$

(18)

となる。式 (18) の端条件は

$$v_3(x_3 = 0) = \frac{M}{E I_3}$$

(19)

$$v_3(x_3 = L) = 0$$

(20)

$$v_3(x_3 = L) = 0$$

(21)

$$v_3(x_3 = L) = 0$$

(22)

である。はんだの垂直ひずみ ε は，次式で与えられる。

$$\varepsilon = \frac{v_3}{h}$$

(23)

なお，はんだ接合部には垂直ひずみ ε のほかに荷重 F によるせん断ひずみ γ が生じるが，通常の 1C リード寸法では γ は ε に比べて十分小さいので，これを無視する。

はんだの垂直応力-ひずみ挙動については，前報で示した値に対応する詳細なデータの測定を行っていないので，垂直応力-ひずみ挙動についても，式 (13) と同様に，次式で整理できるものと仮定した。

$$\varepsilon = \varepsilon_0 + \frac{2G}{E} \left[\frac{2 \sigma}{F_{1a}^2} \right]^{1/n}$$

(24)

ここで，ε_0 は弾性ひずみ，σ は応力ひずみである。E は弾性係数である，ポアソン比 $\nu = 0.3$ とすると，

$$E = 2(1 + \nu)G = 2.6G$$

(25)

となる。F は垂直ひずみの応力係数であり，ミーゼスの降伏条件を用い，せん断ひずみの応力係数 F_{1a} から次式で求める。

$$F_{1a} = \sqrt{3} F$$

(26)

また，式 (24) の m, n は，式 (13) と同一の値であると仮定する。

式 (18) の E_b, h が一定の場合は，一般解は次のように求まる。

$$v_3 = \exp (\beta x_3) [A \cos (\beta x_3) + B \sin (\beta x_3)]$$

$$+ \exp (-\beta x_3) [(C \cos (\beta x_3) + D \sin (\beta x_3))$$

(27)

ここで，$\beta = (E_b b_3/4 E I_3 h)^{1/4}$，$A, B, C, D$ は端条件により決まる積分定数である。しかし，はんだ厚さ h ははり 3 の形状により決まる距離 x_3 の関数であり，はんだ全体が弾塑性変形するため，E_b は一定ではない。そこで，本解析では，式 (18) を離散化し，差分法によりより以下のようにして解を求める。

まず，離散化した各節点 i の強度係数の初期値 $E_i^{(0)}$ を素材の弾性係数 E に等しいとし，式 (18)～(24) を差分法により解き，ひずみ $\varepsilon_i^{(0)}$ を求める (図 2 (f))。次に，式 (24) で表されるはんだの応力-ひずみ挙動より，応力 $\sigma_i^{(0)}$ を求め，見掛けの弾性係数 $E_i^{(0)}$ を次式で計算する。

$$E_i^{(0)} = \frac{\sigma_i^{(0)}}{\varepsilon_i^{(0)}}$$

(28)

再び式 (18)～(24)，(28) を用いて，$\varepsilon_i^{(0)}, \sigma_i^{(0)}, E_i^{(0)}$ を求めめる。この操作を $J + 1$ 回繰返して，$E_i^{(n)}$ が一定の値に収束したら，このときの $\varepsilon_i^{(n)}, \sigma_i^{(n)}$ をはんだのひずみ，応力とする。なお，この解析でも，バッテリードと同様に ε と σ の関係においてヒステリシスを考慮した。

J ベンドリードの解析モデルを図 2 (e) に示す。J ベンドリードでははんだ接合部のリードの曲率を無視すると，座標 x_3 の向きがガルウィングリッドと逆になっているだけで，他はガルウィングリッドと同様である。したがって，式 (15) のわかりに次式を用いることにより，ガルウィングリッドと同様に解くことができる。

$$\delta = -\phi l_2 + [F_{1a}^2/6 - M_3^2/2]/E I_1$$

(29)

以上に述べた手法により，繰返し変位全振幅 $\Delta \delta$ が与えられたときのガルウィングリッドのはんだ接合部に生じるひずみ範囲 $\Delta \varepsilon$ を計算することが可能である。
できる。

2-3 解析例および評価パラメータ 本解析手法をパーソナルコンピュータによりプログラム化し、計算を行った。図3に示す解析モデルに、20℃で30μmの変位を与えた場合のひずみ分布、および±30μmの繰返し変位を与えた場合のx軸=0における定常状態の応力とひずみの関係を図4に示す。図4(a)からわかるように、ガルウィングリードとJベンドリードのひずみは、y軸=0で最大となっている。このことは後述する実験結果に一致している。したがって、両リードのひずみは接合部の強度評価にこのようなループを描く。

本研究では、パッケージのひずみは接合部ではせん断モード、ガルウィングとJベンドリードでは引張圧縮モードの変形を仮定している。このようにモードの異なるひずみを比較するために、次式で表現されるミリメガスの相当塑性ひずみ範囲ε_{p}を強度評価に用いることによりした**。

\[\Delta \varepsilon_{p} = \frac{1}{3} \left[\Delta \varepsilon_{p}^2 + \Delta \varepsilon_{p}^3 + \Delta \varepsilon_{p}^4 \right] ^{1/2} \] \[(30) \]

ここで、Δε_{p1}, Δε_{p2}, Δε_{p3}はx, y, z方向の塑性ひずみ範囲、Δγ_{p1}, Δγ_{p2}, Δγ_{p3}は各方向のせん断塑性ひずみ範囲を表す。パッケージのひずみは接合部では、一つのせん断塑性ひずみ範囲のほかは零であるから、

\[\Delta \varepsilon_{p} = \frac{\Delta \varepsilon_{p} \sqrt{3}}{2} \] \[(31) \]

となり、ガルウィング、Jベンドリードでは、Δε_{p} =

\[\Delta \varepsilon_{p} = \Delta \varepsilon_{p} - \Delta \varepsilon_{p} = \Delta \varepsilon_{p}/2 \] であり、せん断ひずみは零であるから。

\[\Delta \varepsilon_{p} = \Delta \varepsilon_{p} \] \[(32) \]

となる。例えば図4の例では、パッケージのΔε_{p}は1.36%、ガルウィングリードでは1.05%、Jベンドリードでは0.91%となり、パッケージのΔε_{p}が最大となる。

![図3 リード形状](image)

**モードの異なるひずみの相当塑性ひずみに相当するものにより整理できることは、構造力学により報告されている。
3. 疲労試験

前報に於て述べた方法により、各種のリードのはんだ接合部の疲労試験を行い、疲労強度を測定した。
3-1 試験片
3種類のリードのはんだ接合部の疲労強度を比較するためには、リード寸法（リード高さ、幅、厚さなど）はんだ接合方法を同一にした試験片を作成する必要があるが、現在入手できるICパッケージでは、3種類のリード寸法はそれぞれ異なっている。しかし、パッキングリードは、形状が簡単なため、ガルウィングあるいはJベンドリードの先端を切断成形するだけで、リード寸法を同一にした試験片を得ることができる。そこで、ガルウィングリードから成形したパッキングリードとガルウィングリードおよびJベンドリードから成形したパッキングリードとJベンドリードの疲労強度を比較することができる。間接的には、3種類のリードの強度を比較した。

試験片の製作方法を図5に示す。厚さ1mmの銅板に40Pb-60Snのはんだはくとフラックスを用いて平均厚さ5μmのはんだコートを施し、実装基板とした。次にパッケージを基板上に搭載し、ホットプレート上で200℃に加熱し、はんだ接合を行った。最後にマイクロダイヤモンドカッタでパッケージと基板をリード1本分だけ切断した。なお本稿では、パッキングリードの変形を明らかにするため、ガルウィングリードから成形したパッキングリードとパッキングリード（G），Jベンドリードから成形したパッキングリードをパッキングリードと記す。

3-2 実験方法
実験装置を図6に示す。最小変位0.25μmのパルスモータ駆動ステージを用いて、基板とパッケージに繰返しの相対変位を与え、このときの変位を最小測定0.1μmの電気マイクロメータで測定し、荷重範囲を常温19.6Nのロードセルで測定した。疲労試験はパーソナルコンピュータで制御して行い、荷重範囲の変化をコンピュータに記録した。繰返し速度は約0.5Hz、試験温度は室温である。最大倍率80倍の実体顕微鏡で変性の観察を行った。

3-3 実験結果
各リードの荷重範囲の変化の例を図7に示す。各リードとも、初期の荷重範囲は一定であるが、矢印で示した点から徐々に低下し始める。顕微鏡による観察から、この点は前報に於て定義した疲労試験結果を示している。
労寿命。すなわち、き裂がリード幅に達した継返し数にほぼ等しいことがわかった。そこで本報ではこの継返し数を疲労寿命 \(N_f \) とした。

変位全振幅 \(\Delta \delta \) と疲労寿命 \(N_f \) の関係を図 8 に示す。図 8 中の実線と破線は、各実験結果を最小二乗法により直線近似した結果である。図 8 より以下のことかわかる。

(1) ガルウィングリードののはんだ接合部の疲労強度は、パット \((G) \) より高い。

(2) 变位全振幅が 60 \(\mu \)m より大きい場合は、 \(J \) ベンドリードの強度はパット \((J) \) の強度より高いが、変位全振幅が 60 \(\mu \)m より小さい場合は、パット \((J) \) のほうが高くなる。

(3) \(J \) べンドリード、パット \((J) \) の強度は、ガルウィングリード、パット \((G) \) の強度より高い。

これらの結果の考察は、次のひずみ解析の項で行う。

本実験では実験結果の解析を行うため、試験後にすべての試験片の断面観察を行った。はんだ接合部を含めた各リードの断面形状の写真の例を図 9 に示す。ガルウィングと \(J \) ベンドリードのき裂は、2-3 節で予測したようにはんだ接合部の垂直リード側の端部で発生している。なお、本実験で用いた試験片のはんだ接合部には、顕微鏡で観察できるほどの大きさのポイド、接合欠陥は存在しなかった。

3-4 はんだ接合部のひずみ解析

2 章で述べた手法により、本実験のはんだ接合部のひずみ解析を行った。はんだ接合部のひずみは断面写真により測定した結果を平均値を用いた。変位全振幅 \(\Delta \delta \) と相当塑性ひずみ範囲 \(\Delta \varepsilon_{eq} \) の関係を図 18 に示す。図 10 より以下のことかわかる。

(1) 疲労試験を行った変位全振幅 \(\Delta \delta \) の範囲 (35 \(\mu \)m 以上) では、ガルウィングリードのはんだ接合部の相当塑性ひずみ範囲 \(\Delta \varepsilon_{eq} \) は、パット \((G) \) の \(\Delta \varepsilon_{eq} \) より小さい。

(2) \(\Delta \delta \) が 50 \(\mu \)m より大きい場合は、 \(J \) ベンドリードの \(\Delta \varepsilon_{eq} \) はパット \((J) \) の \(\Delta \varepsilon_{eq} \) より小さいが、50 \(\mu \)m より小さい場合は、この関係が逆転する。
図 11 リードのはんだ接合部の疲労強度

（3）J ベンドリード、バット（J）の \(\Delta \sigma_{\text{eq}} \) は、ガルウィングリード、バット（G）の \(\Delta \sigma_{\text{eq}} \) より小さい。

以上の項目は、3・3 節で述べた実験結果とよく対応している。

次に、実験を行ったすべての試験片のはんだ接合部の寸法を測定し、本解析により \(\Delta \sigma_{\text{eq}} \) を計算し、図 8 の実験結果を相当塑性ひずみ範囲 \(\Delta \sigma_{\text{eq}} \) と寿命 \(N_f \) の関係に示す。結果を図 11 に示す。また、図 11 には、はんだ素材の疲労強度とせん断ひずみの関係式を用いた（31）で相当塑性ひずみ範囲と寿命の関係に変換し、併記した。

実験を行った 4 種類のリードのはんだ接合部の疲労試験結果は、はらつきが大きいものの、はんだ素材の \(\Delta \sigma_{\text{eq}}-N_f \) 曲線と同一の傾向を示し、最大寿命ははんだ素材の疲労強度と一致している。したがって、バット、ガルウィング、J ベンドの 3 種類のリードのはんだ接合部の最大寿命、とは本解析手法により求めた相当塑性ひずみ範囲の値とは素材試験片の疲労強度データから推定できることがある。なお、はらつきの原因は、はんだのボール、接合不良などの欠陥によるものと思われる**。今後はこれらの欠陥の定量的評価法を確立することが必要となる。

3-5 3 種類のリードの比較

3 種類のリードのはんだ接合部の疲労強度を直接比較することが実験的にはできなかったので、3-4 節で有効性が確認された本解析により比較した。図 10(b) に示した J ベンドリードとバット（J）の相当塑性ひずみ範囲の計算結果に、リード高さ、厚さなどの寸法を J ベンドリードと同一にしたガルウィングリードの計算結果を加え、図 11 に示す。計算結果は、変位幅を変える場合に生じるガルウィングリードの相当塑性ひずみ範囲は、J ベンドリードより常に大きくなっている。これは、最大ひずみが発生するはんだ接合部端部におけるはんだ厚さが J ベンドリードのほうが大きいことによる。また、 \(\Delta \sigma \) が 50 \(\mu \text{m} \) より小さい場合は、パッタリードの \(\Delta \sigma_{\text{eq}} \) が最も小さく、逆に \(\Delta \sigma \) が 75 \(\mu \text{m} \) より大きい場合には、パッタリードの \(\Delta \sigma_{\text{eq}} \) が最大値となっている。

以上の結果、リードははんだ接合部の寸法を特定した場合の例であるので、リードの種類による優劣は一概には言えない。したがって、おののおののパッタリードのリード設計においては、本解析を用いて個別の検討を行い、リード形状の選択、設計を行う必要がある。

4. 結 言

面付実装形 IC パッケージでは、リードははんだ接合部の疲労強度問題となっている。そこで、はんだ接合部の強度評価を行うことを目的に、面付実装形 IC パッケージで用いられているバット、ガルウィング、J ベンドの 3 種類のリードについては、はんだ接合部の塑性ひずみ解析を基にした疲労強度予測手法の開発と機械的疲労試験によるその妥当性の検討を行った。

その結果、本解析手法でそれぞれのリードははんだ接合部の相当塑性ひずみ範囲を求めることにより、はんだ接合部の疲労強度評価が行えること、はんだ接合部の最大寿命は、はんだ素材の疲労強度とはほぼ一致することを明らかにした。また、はんだ接合部の強度、リード断面寸法、リード高さおよびはんだ接合部の寸法により決まり、リードの種類による優劣は一概には言えないことがわかった。

文 献

(1) 北野・ほか 2 名, 機械, 54-505, A (1988), 1709.
(5) 考え方は、三好・ほか 3 名, 有限要素法, (1976), 第 1 章, 実用出版.
(8) 河合・ほか 2 名, 材料学会第 34 回学術講演会前研究, (1985), 16.
討 論

（質問） 吉 岡 純 夫（三菱電機（株）中央研究所）
ICパッケージはんだ接合部のひずみ解析法、疲労寿命評価法を明らかにされることに敬意を表す。
(1) 図11でははんだ素材とリードはんだ接合部の疲労特性の対比で、リード接合部のばらつきの主因を欠陥とされているが、文献(1)の図12に示されている接合弾性の結果と対比するとはどうなるか、破壊の定義をさらに検討する必要性はないか。
(2) べンドリードでの曲率を無視した影響がどの程度のものか検討された結果があれば提示していただきたい。

（回答）（1）文献(1)の図12の基となる接合試験片[図3(b)]の疲労試験結果（図5）を本報と同様に相当塑性ひずみ範囲と寿命の関係に改め、本報の図11に重ねてプロットした。これを付図1に示す。
図より、接合試験片の寿命のばらつきのほうが大きいことがわかる。しかし、この場合も最大寿命は素材の強度と一致している。したがって、両者のばらつきの大きさが異なるのは、欠陥の確率分布が異なっていたためであると考えられる。また同じ理由により、素材試験片、接合試験片、リードはんだ接合部の疲労寿命の定義は、同等の評価を与えていると考えられる。
(2) べンドリードの曲率の影響については、詳細な検討を行っていない。しかし、図3(c)の形状について、FEMによる弾塑性解析を行い、本研究と比較したところ、付図2に示すように両者はほぼ一致した。したがって、曲率の影響は小さいと考えられる。