非線形計画法による円輪板の大たわみ連成問題の解析*
（面外・面内両変位の幾何学的非線形項を考慮した軸対称問題）

大滝 誠一*1, 岸田 路也*2

An Analysis of the Coupling Problem of the Large Deflection of Annular Plates Using a Nonlinear Programming Theory
(Axisymmetric Case Considering the Geometrical Nonlinear Terms of Out-of-plane and In-plane Displacements)
Seiichi OHTAKI and Michiya KISHIDA

The coupling between the bending and the in-plane deformation under large deflection of annular plates is investigated using a nonlinear programing theory. The geometrical nonlinear terms in the strain-displacement relations are assumed with not only out-of-plane displacement but also in-plane displacement. The objective function derived from the total potential energy is minimized by the Davidson-Fletcher-Powell method. Numerical examples of axisymmetrical annular plates with clamped inner edge are presented in three cases. The displacements and the stresses are calculated for three boundary conditions of their outer edges. They are clamped edge (Case 1), simply supported edge (Case 2) and simply supported movable edge (Case 3). In Case 3, the difference of the results obtained by this method is significant compared with those calculated by the theory considering the nonlinear terms of out-of-plane displacement.

Key Words: Structural Analysis, FEM, Geometrical Nonlinearity, Large Deflection, Coupling Effect, Nonlinear Programming Theory, Annular Plates

1. まえがき

薄板の面外曲げにおいて、板のたわみが大きくなると、面外変位に及ぼす面内変位の影響が無視できなくななる。このような変位の連成効果は、薄板よりはむしろ薄板において著しいと言われている。

さて、この場合の大たわみは、ひずみを変位の高次式で表し、両変位を連成させて解くことによって求められるものであり、また、連成効果の大小についてもその結果から議論されるべきものである。しかし、解析の難しさからか、従来の大たわみ問題のほとんどは、変位は面外変位のみとし、ひずみは面外変位の二次式で表されるものとし、Kármán理論に基づく非連成問題として扱われてきた [例えば文献(3)〜(9)]。

著者らの一人は、既報(10)〜(14)において、面外・面内両変位を考慮し、ひずみは面外変位の二次式と面内変位の一次式の結合で表されるものとし、両変位の連成を考慮した有限要素理論(15)(18)以下、NTW(Nonlinear Term W)理論という]に基づいた解法により、いくたおの板の大たわみ問題を扱った。面外変位と応力について同じ場合のKármán理論による結果と比較すると、著者らの一人的結果は、内外周固定円輪板(16)ではYehの結果(16)より、周辺固定の円形板(17)では、Wayの結果(17)より著しい変化が見られた。

そこで本報では、ひずみを両変位の二次式の結合で表し、両変位の連成を考慮した有限要素法理論[以下、NTW(Nonlinear Term W)理論と呼ぶ]に基づき解法を示し、二、三の例題によって、連成効果について検討し、両理論による結果の定量的比較を行う。例としては、三角形固定された円筒板を有し、外周を、ケース1：固定支持、ケース2：ケース1でモーメントを解放して単純支持、ケース3：ケース2で面内変位を解放して単純移動支持された円輪板が剛円板によって軸角荷重を受ける軸対称問題を扱う。すなわち、周辺における変位の自由度を順次に解放することによって面内変位の大きさを変え、両変位の連成効果の変形や応力に及ぼす影響を本解法により明らかにするものである。なお、これら解法でせん断形の影響は考慮しないこととする。
2.1 座標と変位関数

図1に示すように扇形要素の半径方向、円周方向、板厚方向に座標 \((\xi, \eta, \tau)\) を定める。それぞれの座標軸の正の方向における変位成分を \((u, v, w)\) とすると、\(u, v\) は面内変位、\(w\) は面外変位である。

次に、実直角座標系における変位成分 \(f_{\xi}, f_{\eta}, f_{\tau}\) を用いて、各変位成分を \(f_{\xi}, f_{\eta}, f_{\tau}\) で仮定されるものとする。

\[
\begin{align*}
 f(\xi, \eta) &= \sum_{n=1}^{N} \sum_{m=1}^{M} (H_n^{(1)}(\xi)H_m^{(1)}(\eta)f_{\xi n} + AH_n^{(1)}(\xi)H_m^{(1)}(\eta)f_{\eta n} + B(\xi)H_n^{(1)}(\xi)H_m^{(1)}(\eta)f_{\tau n}) \\
 &+ AB(\xi)H_n^{(1)}(\xi)H_m^{(1)}(\eta)f_{\phi n}\delta \xi \delta \eta
\end{align*}
\]

(1)

ここで、\(A, B(\xi)\) は Lamé のパラメータであり、\(A = \Delta r, B(\xi) = (\pi + \Delta r) \Delta \theta, H_k\) は、一次の Hermite

補間関数

\[
H_k^{(1)}(\xi) = 1 - 3\xi^2 + 2\xi^3, \quad H_k^{(1)}(\xi) = 3\xi^2 - 2\xi^3
\]

(2)

であって、\(\xi\) あるいは \(\eta\) を表す \(0 \leq \xi, \eta \leq 1\) の三次関数で表されるものとする。

2.2 ひずみ-変位関数とひずみエネルギー

Novozhilov(1) と Langhaar(2) の方を用いて扇形要素について、\(w\) と \(u\) の非線形項を含む NTWU 理論に拡張すると、ひずみ-変位関係式は

\[
\begin{align*}
\varepsilon_{x} &= \frac{1}{A} \frac{\partial u}{\partial x} + 2\nu \frac{\partial v}{\partial y} \\
\varepsilon_{y} &= \frac{1}{B} \frac{\partial v}{\partial y} + 2\nu \frac{\partial u}{\partial x} + \frac{1}{A} \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} - \frac{2}{B} \frac{\partial v}{\partial y} \\
\gamma_{xy} &= \frac{1}{\nu} \frac{\partial u}{\partial y} - \nu \frac{\partial v}{\partial x} + \frac{1}{A} \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} - \frac{2}{B} \frac{\partial v}{\partial y} \\
\gamma_{xz} &= \frac{1}{\nu} \frac{\partial v}{\partial x} - \nu \frac{\partial u}{\partial y} + \frac{1}{A} \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} - \frac{2}{B} \frac{\partial v}{\partial y}
\end{align*}
\]

(3)

となる。第1式の第3項、第2式の第4、5項、第3式の第5項は NTWU 理論に付加した \(u\) の非線形項である。

- ひずみエネルギー \(U\) は

\[
U = \int_{\Omega} \int_{\Omega} E \left[\varepsilon_{x} + \varepsilon_{y} + 2\nu \varepsilon_{z} + \frac{1}{2(1-\nu)^2} \right] \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} \delta x \delta y
\]

(4)

となる。ここで \(\varepsilon_{x}, \varepsilon_{y}, \gamma_{xy} \) はそれぞれ板厚、ヤング率、ポアソン比である。式(1), (2), (3)を式(4)に代入し、エネルギーを構成する変位の次数を下付添字 \(i\) として整理すると、ひずみエネルギーは

\[
U = \frac{1}{2} \frac{\partial u}{\partial x} \frac{\partial u}{\partial y}
\]

(5)

となる。さらに各項は、それぞれ

\[
U_{u} = U_{\varepsilon_{x}} + U_{\varepsilon_{y}} + U_{\gamma_{xy}} , \quad U_{h} = U_{\gamma_{xz}} + U_{\gamma_{zx}} , \quad U_{v} = U_{\gamma_{xy}} + U_{\gamma_{xz}} + U_{\gamma_{zx}} \quad \ldots (6)
\]

と書くことができる。エネルギーを構成する各変位成分を、上付添字 \(u, v, w\) で表せば

\[
\begin{align*}
U_{\varepsilon_{x}} &= \frac{1}{2} \int_{\Omega} \int_{\Omega} E \left(\frac{\partial u}{\partial x} \right)^2 \\
U_{\varepsilon_{y}} &= \frac{1}{2} \int_{\Omega} \int_{\Omega} E \left(\frac{\partial v}{\partial y} \right)^2 \\
U_{\gamma_{xy}} &= \frac{1}{2} \int_{\Omega} \int_{\Omega} E \left(\frac{\partial u}{\partial y} \frac{\partial v}{\partial x} \right)^2
\end{align*}
\]

(6)

となる。
非線形計画法による円輪板の大たわみ連成問題の解析

\[U_{\text{roww}} = \frac{Eh}{2(1-\nu^2)} \int_0^1 \left[\frac{A}{B^2} \left(\frac{\partial u}{\partial \eta} \right)^2 + \frac{\nu}{A} \left(\frac{\partial u}{\partial \eta} \right) \left(\frac{\partial w}{\partial \xi} \right) + \frac{(1-\nu)}{A} \frac{\partial u}{\partial \eta} \frac{\partial w}{\partial \eta} \right] d\xi d\eta \]

\[U_{\text{roww}} = \frac{Eh}{2(1-\nu^2)} \int_0^1 \left[\frac{A}{B^2} \left(\frac{\partial w}{\partial \eta} \right)^2 + \frac{\nu}{A} \left(\frac{\partial w}{\partial \eta} \right) \left(\frac{\partial \nu}{\partial \xi} \right) + \frac{(1-\nu)}{A} \frac{\partial w}{\partial \eta} \frac{\partial \nu}{\partial \eta} \right] d\xi d\eta \]

\[U_{\text{roww}} = \frac{Eh}{2(1-\nu^2)} \int_0^1 \left[\frac{A}{B^2} \left(\frac{\partial \nu}{\partial \eta} \right)^2 + \frac{\nu}{A} \left(\frac{\partial \nu}{\partial \eta} \right) \left(\frac{\partial u}{\partial \xi} \right) + \frac{(1-\nu)}{A} \frac{\partial \nu}{\partial \eta} \frac{\partial u}{\partial \eta} \right] d\xi d\eta \]

\[U_{\text{roww}} = \frac{Eh}{2(1-\nu^2)} \int_0^1 \left[\frac{A}{B^2} \left(\frac{\partial u}{\partial \xi} \right)^2 + \frac{\nu}{A} \left(\frac{\partial u}{\partial \xi} \right) \left(\frac{\partial w}{\partial \eta} \right) + \frac{(1-\nu)}{A} \frac{\partial u}{\partial \xi} \frac{\partial w}{\partial \eta} \right] d\xi d\eta \]

\[U_{\text{roww}} = \int_0^1 \left[\frac{B}{A^2} \left(\frac{\partial u}{\partial \xi} \right)^2 + \frac{1}{B^2} \left(\frac{\partial w}{\partial \eta} \right)^2 + \frac{\nu}{B} \left(\frac{\partial w}{\partial \eta} \right) \left(\frac{\partial \nu}{\partial \xi} \right) + \frac{1}{A^2} \frac{\partial u}{\partial \xi} \frac{\partial \nu}{\partial \eta} \right] d\xi d\eta \]

\[U_{\text{roww}} = \int_0^1 \left[\frac{B}{A^2} \left(\frac{\partial u}{\partial \eta} \right)^2 + \frac{1}{B^2} \left(\frac{\partial w}{\partial \xi} \right)^2 + \frac{\nu}{B} \left(\frac{\partial w}{\partial \xi} \right) \left(\frac{\partial \nu}{\partial \eta} \right) + \frac{1}{A^2} \frac{\partial w}{\partial \eta} \frac{\partial \nu}{\partial \eta} \right] d\xi d\eta \]

\[U_{\text{roww}} = \int_0^1 \left[\frac{B}{A^2} \left(\frac{\partial \nu}{\partial \xi} \right)^2 + \frac{1}{B^2} \left(\frac{\partial u}{\partial \eta} \right)^2 + \frac{\nu}{B} \left(\frac{\partial u}{\partial \eta} \right) \left(\frac{\partial \nu}{\partial \xi} \right) + \frac{1}{A^2} \frac{\partial \nu}{\partial \xi} \frac{\partial u}{\partial \eta} \right] d\xi d\eta \]

\[U_{\text{roww}} = \int_0^1 \left[\frac{B}{A^2} \left(\frac{\partial u}{\partial \xi} \right)^2 + \frac{1}{B^2} \left(\frac{\partial w}{\partial \eta} \right)^2 + \frac{\nu}{B} \left(\frac{\partial w}{\partial \eta} \right) \left(\frac{\partial \nu}{\partial \xi} \right) + \frac{1}{A^2} \frac{\partial w}{\partial \xi} \frac{\partial \nu}{\partial \eta} \right] d\xi d\eta \]

\[U_{\text{roww}} = \int_0^1 \left[\frac{B}{A^2} \left(\frac{\partial \nu}{\partial \eta} \right)^2 + \frac{1}{B^2} \left(\frac{\partial u}{\partial \xi} \right)^2 + \frac{\nu}{B} \left(\frac{\partial u}{\partial \xi} \right) \left(\frac{\partial \nu}{\partial \eta} \right) + \frac{1}{A^2} \frac{\partial u}{\partial \xi} \frac{\partial \nu}{\partial \xi} \right] d\xi d\eta \]

…………………(7)

である。

2.3 全ポテンシャルエネルギー 全ポテンシャルエネルギー \(\Pi \) は、ひずみエネルギーと外部仕事 \(W \) によって

\[\Pi = U_i + U_3 + U_4 - W \] と表される。ここで

\[U_i = \frac{1}{2} X' K_i X \]

\[U_3 = \frac{1}{2} X' K_i Y + \frac{1}{2} X' K_i Z \]

\[U_4 = \frac{1}{8} Y' K_i Y + \frac{1}{4} Y' K_i Z \]

\[W = X' F \]

であリ、式中の \(K_i \)は二次の剛性マトリックス、 \(K_3, K_4 \) は三次と四次の非線形剛性マトリックス、 \(F \) は等価節点ベクトルである。また、変位ベクトル \(X \) は \(u, v, w \) に関する一次の成分であり、また \(Y, Z \) は \(w \) と \(u \) にする二次の成分で表され、それぞれ、1×48, 1×136, 1×136 の大きさを持ち、上付添字 \(T \) は転置マトリックスを表す。すなわち,

\[X' = [u_1, u_2, u_3, \ldots, u_{48}] \]

\[Y' = [v_1, v_2, v_3, \ldots, v_{26}, w_1, w_2, w_3, \ldots, w_{26}] \]

\[Z' = [u_1, u_2, u_3, \ldots, u_{94}] \]

…………………(10)

であり、ここで、例えば \(u, \xi \) は \((\partial u/\partial \xi) \) の略記号であり、下付添字 \(1 \) は頂点を表す。

この問題は変位成分について四次関数である全ポテンシャルエネルギーオーを最小にする解を求める問題である。図 1 は円輪板の変位分布を示しており、図 2 は要素モデルと物性値を示す。
3. 結果と考察

3.1 形状・寸法・物性値
図2(a)に示すように円盤板の外、内半径をa, bとし、半径比a/b=2、板厚比h/a=0.02とする。次に、図2(b)に示すように開き角0.05radの軸対称部分を取り出し、半径方向に12分割した有限要素モデルを考える。図中に特性

表1 内周、外周上における境界条件

<table>
<thead>
<tr>
<th></th>
<th>Wi</th>
<th>Wj</th>
<th>Wk</th>
<th>Wl</th>
<th>Wm</th>
<th>Wn</th>
<th>Wen</th>
<th>Wef</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>0</td>
<td>P</td>
<td>P</td>
<td>0</td>
<td>0</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Case 2</td>
<td>0</td>
<td>F</td>
<td>F</td>
<td>0</td>
<td>0</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Case 3</td>
<td>0</td>
<td>F</td>
<td>F</td>
<td>0</td>
<td>0</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

SUBSCRIPT
1: INNER BOUNDARY
0: OUTER BOUNDARY
F: FREE
G: FIXED

図3 円盤板の支持条件 (E=206 GPa, ν=0.33)

図4 半径方向断面中心面におけるwの分布
(a) ケース1 (b) ケース2 (c) ケース3

図5 半径方向断面中心面におけるuの分布
(a) ケース1 (b) ケース2 (c) ケース3

--- 202 ---
値も示してある。各ケースの支持条件を図3に、変位成分についての内外周上の境界条件を図1に示す。

3-2 計算 数値計算では、同心円上にある左右の筋点における\(w, u \)成分は軸対称性により等しいものと仮定すると、未知変数の数はこの仮定がない場合の半分になる。

荷重\(P \)は、最大外周変位が板厚と同一となるケース3の線形理論解\(P_{0} (3.76 \text{kN}) \)で無次元化し、比\(P/P_{0} \)は0.25から1.0まで0.25ずつ4段階とした。

DFP法の収束判定基準の係数である一次探索最小幅、目的関数の最小減少率および最小ステップ幅を\(0.1 \times 10^{-4} \)とした。ケース3で自由度49に対し、\(P/P_{0}=1 \)のとき、計算時間はHITAC S820/80で3分53秒であり、DFP法の反復回数は147回であった。

変位成分はそれぞれ無次元量\(\frac{w}{h}, \frac{u}{h} \)、\(\sigma_{n}/Eh \)で表し、また、応力成分に添字を付し、半径方向応力を\(\sigma_{r} \)、円周方向応力を\(\sigma_{t} \)で、さらに、面内応力を\(\sigma_{s} \)、上表面における曲げ応力を\(\sigma_{b} \)、これらの和である合成応力を\(\sigma_{a} \)で表す。

3-3 結果 図4-7(a)，(b)，(c)に、各ケースの理論解による\(w, u, \sigma_{n} \)および\(\sigma_{a} \)の半径方向変化を示す。理論解による変位と応力の差は、自由度を解放する順にケース1からケース3へと、かつ、\(P/P_{0} \)が大きくなるに従い大きくなっており、ケース3で最も小さい。図4で示す\(w \)についてはNTWU理論による最大値\(W_{\text{max}} \)NTWU理論によるそれに対し、ケース1で約4%、ケース3で約18%減少している。図5に示す\(u \)についてはNTWU理論による\(\max u \)NTWU理論によるそれに対しケース2で約62%、ケース3で46%減少している。図6において両理論による\(\max u \)の
図8 各ケースにおける最大面外変位の両理論による解と非連成解の比較

差は、ケース1, 2では小さいが、ケース3におけるNTWU理論による\[\sigma_{th}\]は、NTW理論による\[\sigma_{th}\]に対し内周で約15%減少している。NTWU理論による\[\sigma_{th}\]はいずれのケースについても内周近傍でNTW理論によるそれに比較し小さい。このことから、NTWU理論による\[\sigma_{th}\]はNTW理論によるそれよりも小さくなり、しかも、上下表面上の応力の非対称性は緩和されている。このことは図7に示す\[\sigma_{th}\]についても同様なことがいえる。しかし、\[\sigma_{th}\]は\[\sigma_{th}\]成分に比較し小さい。

図8に両理論による各ケース最大面外変位\[W_{max}\]と、本解法で三次のエネルギー成分を無視した非連成の結果を併記して示す。なお、ケース2, 3の非連成解は同一である。NTWU理論による\[W_{max}\]はNTW理論によるそれより小さいが、非連成の結果よりは大きい。

4.まとめ

本研究では、非線形計画法によって面外・面内面外変位の幾何学的非線形項を考慮した連成問題としての大たわみ問題の一解法を示し、軸対称円筒板の解析を行った。その結果、下記の知見が得られた。

（1）本解法によって、両変位の非線形項を考慮した連成問題が比較的容易に扱われることが示された。

（2）ここで用いた両理論による解析結果の定性的比較に限定すれば、ケース1で示した面内変位の面外変位に対する関わり方が少ない場合には、両変位の非線形項による連成効果は少ないが、ケース3で示した面内変位のオーダが面外変位のそれに対して無視できなくなる大きさとなる場合では連成効果は大きくなることが明らかになった。したがって、特に本理論による解析は後者の解析に有用であることが示された。

数値計算における長谷川正行氏（当時北海道工業大学学部学生）の協力に感謝の意を表す。なお、数値計算には北海道大学大型計算センターのHITAC S820/80を使用した。

文献

（1）長谷川・島田・角。平板強度設計便覧。（1982）、99、新倉書店。
（7）Tielking, J. T., Trans. ASME, 45-4 (1978), 834.
（12）大木・橋論, 56-526, A (1990), 1461.
（13）文献(12)の1468ページ。
（14）文献(12)の1474ページ。
（18）Novozhilov, V. V., Foundations of the Nonlinear Theory of Elasticity (1953), 191, Graylock Press.