実物の車両構体による疲労試験*
(第1報、試験方法とその精度)

大村雄次*, 奥野澄生*, 河合大男*
正井健太郎*, 笠井誠夫**

Fatigue Test of an Actual Car Body Structure
(1st Report, The Testing Method and Its Accuracy)

Keiji OOMURA, Sumio OKUNO, Sueo KAWAI,
Kentarou MASAI and Yasuo KASAI

A fatigue testing method of actual car body structures under concentrated load instead of uniformly distributed load is studied. (1) The test under a concentrated load is able to simulate a state of uniformly distributed load by applying a four-point bending moment to a car body. (2) The stesses of side plates and carrying loads of spot welds near the supporting part of a car body are in fair accordance with those under uniformly distributed load. Judging from the above results, fatigue test of a car body can be carried out by making use of the concentrated load.

Key Words: Structural Analysis, Experimental Stress Analysis, Low Cycle Fatigue, Bending, Finite-Element Method, Car Body Structure

1. 緒言

近年、鉄道車両においては軽量ステンレス車体にみられるように省エネルギーおよび高速化の面から構体の軽量化が進められてきている(6)。このような構体の開発にあたっては、一般に有限要素法を利用した構体全体の構造解析と試験片および要素モデルによる強度試験が行われている(9)。その後、製作した構体による垂直等分布、車端圧縮およびねじり荷重などの静荷重試験を行い、構体全体の剛性および応力などを検討し、最終的な強度信頼性的評価を行っていた(9)。

しかし、強度信頼性を損うことなく構体の軽量化をより徹底して進めるためには、精度の高い評価法が必要と考えられる。特に、構体において、薄肉化した外板と骨組のスポット溶接部については、点数も多いことから、強度的に厳しくなる個所を見落としすることなく把握し、その信頼性を検討することが重要となる。このためには、実車の疲労試験を行うことが望ましい。しかし、実車の疲労試験は、対象とする荷重が等分布荷重であり、実験的に再現することが難しいこと、また全長が約20mと長く、全重量も400kN前後で大きく、適切な試験装置がないなどの理由から、これまで行われていなかった。

そこで、構体の軽量化を行うためにあたって、構体の構体全体の構造解析と試験片および要素モデルによる強度試験の妥当性を検証するため、実物の構体を用いた疲労試験を行った。

本研究では、実物構体を供した試験のうち、疲労試験方法とその精度について検討する。疲労試験結果およびスポット溶接部の強度評価については、第2報で報告する予定である。

2. 試験用車両構体および荷重方法の検討

2-1 試験用車両構体の概要 試験に用いた車両構体は、図1に示すように全長19500mm、幅2800mmで、左右両側に各4個所の出入口を配設し、経電車両と同一の仕様とした。構体の主成分である側、屋根、妻および台枠の材質はSUS301とした。このうち垂直荷重に対して構体の剛性を支配する個体の板厚は、図2に示すように妻板および妻板で1.2mm、戸
袋板で1.5mmとした。骨組は板厚1.2mmの板をプレス加工により形成した後、立体制骨組（Structural joint）を用いスポット溶接により結合した。また、外板と骨組もすべてスポット溶接により結合した。

2-2 総返し荷重の付加方法 構体に作用する荷重のうち、疲労強度の面から主に検討すべき荷重は、走行中の上下振動により作用するものと考えられる。本荷重は、垂直の等分布荷重に近い。したがって、構体の疲労試験は等分布荷重で行うことが望ましい。しかし、このような疲労試験で、構体が試験片および構造要素モデルと比較して非常に大きくなることから、設備の面で難しくなる。そこで、構体の疲労試験は、強度的に最も厳しい条件となる側構体の支点近傍の応力状態を上記した等分布荷重の場合に近似するよう工夫し、集中荷重で行うこととした。

応力状態の近似にあたり、構体に作用するせん断力および曲げモーメント分布を両方式でほぼ一致させることが重要である。いま、構体全長を1本のひとりと仮定すると、等分布荷重に対するせん断力および曲げモーメントは図3の破線で示すような分布状態となる。

これに対し、集中荷重方式では中央に加えた荷重を左右に分散させた四点曲げ方式が等分布荷重状態のせん断力および曲げモーメント分布に比較的近いと言え

一方、等分布荷重に対する構体の応力は、一般に支点近傍の側構体の窓隅部で大きくなる。これは、図3のせん断力分布の比較からも明らかのように、支点近傍のせん断力による影響が大きいと思われる。曲げモーメントに関しては、窓隅部近傍が中立軸なることから、応力への影響が小さいと考えられる。そこで、今回の疲労試験では、集中荷重方式の曲げモーメント分布が等分布荷重の場合になるべく近づいた状態で支点と荷重点にはさまれた出入口間、すなわち図4のL間のせん断力図の面積の総和 \(A_c \)（矩形abcd）、\(A_a \）（台形aefd）を集中荷重と等分布荷重方式について、それぞれ式（1）および式（2）で求め、各々の総和が等しいとき、出入口間の側構体の応力分布が一致すると仮定し、付加する集中荷重の大きさを決定することにした。

図1 車両構体の外形寸法
図2 車両構体の概要
図3 車両構体への作用荷重とせん断力および曲げモーメント分布
図4 集中荷重と等分布荷重の対応
実物の車両構体による疲労試験（第1報）

$$A_c = \frac{W_c}{2} \times L \quad \cdots (1)$$

$$A_w = \frac{1}{2} \frac{W_c}{I} \times L \times (h - 2h - L) \quad \cdots (2)$$

ここで、

- W_c: 全集中荷重
- W_w: 全等分布荷重
- I: 構体の全長
- h: ポルスタ間長さ
- L: 支点と荷重点の出入口柱間長さ

付加する集中荷重の大きさは、$A_c = A_w$ として式 (3) より求まる。

$$W_c = \frac{h - 2h - L}{I} \times W_w \quad \cdots (3)$$

いま、荷重点を治具の固定しやすい図 3 のx 点とし、式 (3) の I, h, L および W_w をそれぞれ 19500, 14000, 450 および 3500 mm で代入すると、集中荷重と等分布荷重の関係式 (4) となる。

$$W_c = 0.492 \times W_w \quad \cdots (4)$$

3. 試験方法

3.1 集中荷重による試験方法

集中荷重方式による構体の試験方法を図 5 に示す。構体の支持には、台枠柱はそのまま空気圧計付設置位置に直径 60 mm の丸棒を用いた。構体の内部では、下側方向の中央部に付加した集中荷重が、それぞれ長手および幅方向に等分に分散するように、両端支圧状態の骨組を組合せた。なお、台枠の上下に配置した治具は、荷重点において延軸し試験の過程で移動しないようにボルト、ナットで固定した。

4. 試験方法とその精度の検討

等分布荷重方式を集中荷重方式で置換する試験の精度を、FEM による構造解析と実車による荷重試験の両面から検討した。

4.1 FEM 解析による検討

車両構体の FEM 解析モデルは、構造および荷重の対称性を考慮して図 7 に示すように構体の 1/4 を対象とした。荷重の条件は、本荷重である変形等分布と本試験の集中荷重とした。集中荷重方式による試験の精度は、まず疲労試験の検討範囲とした支点近傍の変形をみ分布および公称応力を中心に検討した。その結果を、図 8 および

図 5 集中荷重方式の試験方法

図 6 応力測定位置
実物の車両構体による疲労試験（第1報）

表1に示す。

垂直たわみ分布に関しては、支点と集中荷重間で集中荷重方式と等分布荷重方式の値がほぼ同一である。一方、構体中央では等分布荷重方式の値が集中荷重方式に比較して大きく、それぞれの荷重方式の特徴が見られる。しかし、疲労試験で検討の対象としている範囲（図8のL間）の垂直たわみは、両荷重方式で分布の傾向および値ともほぼ同一である。したがって、集中荷重方式により等分布荷重の場合の変形形状を近似しているとみなせる。

一方、公称応力に関しては、支点近傍ではせん断応力場からこの応力（tnp）で比較した。その結果、図7中のa点の応力は両荷重方式で良い対応を示している。窓隅の局部応力については、車体全体を対象とした解析モデルでは窓隅近傍の板・シェル要素とb1およびb2で比較した。その結果、最大主応力は両荷重方式で最大約7.6%の差であり、ほぼ同等とみなせる。

次に、最大応力が発生する窓隅部に関して、応力分布図とスポット溶接部の分担荷重を検討するため、図7中のA部を対象に、図9に示すような解析モデルを作り、構体全体の解析結果より得られた変位を本モデルの節点変位として与えたスミング解析を行った。なお、モデルのスポット溶接部は、はり要素でモデル化し分担荷重を求めた。その結果、表2に示すように、窓隅コーナ部の応力分布およびスポット溶接部の分担荷重は、両荷重方式で最大10%の差であり、ほぼ一致しているとみなせる。

以上のことから、FEM解析では、支点近傍に関し、集中荷重方式で等分布荷重状態が近似できると言える。

4-2 荷重試験による検討実物の車両構体では、3-2節で述べたように、構体の垂直たわみおよび窓隅の公称応力と窓隅の局部応力について、両荷重方式の結果を比較した。なお、集中荷重方式の結果は、いずれも図4により等分布荷重に換算している。

図10は実荷重相当の最大荷重における垂直たわみ分布を示したものである。検討対象とした図中のL間に

<table>
<thead>
<tr>
<th>Concentrated load</th>
<th>Uniformly distributed load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side plate (door pocket) a (Fig.7)</td>
<td>44 MPa</td>
</tr>
<tr>
<td>Side plate (window corner) b1 (Fig.7)</td>
<td>85</td>
</tr>
<tr>
<td>b2 (Fig.7)</td>
<td>87</td>
</tr>
</tbody>
</table>

図7 車両構体のFEM解析モデル

図8 車両構体の垂直たわみ

図9 窓隅のスミング解析モデル

図10 沿車相当の最大荷重における垂直たわみ分布を示したものである。検討対象とした図中のL間に

<table>
<thead>
<tr>
<th>Concentrated load</th>
<th>Uniformly distributed load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum stress (side plate of a window corner)</td>
<td>382 MPa</td>
</tr>
<tr>
<td>Maximum carrying load of spot weld (near side plate of a window corner)</td>
<td>3.58 kN</td>
</tr>
</tbody>
</table>

図11 車両構体のFEM解析モデル
ついてみると、垂直たわみは集中荷重点近傍で同荷重点
方式の値が等分布荷重点方式に比較していくぶん大き
くなる傾向にある。しかし、両方式の結果は全体的には
変形モードおよびたわみ量とも、ほぼ一致していると
言える。一方、構体中央部の荷重点間の垂直たわみは、
集中荷重点方式の結果が等分布荷重点方式に比較して小さい
か、また、支点から車端間ではこれと逆になっている。
これは、集中荷重点方式ではこれらの範囲内で外部荷重
を受けていないことによる。

応力については、集中荷重の作用状況を確認するた
め、まず支点近傍の戸袋中央に関して、荷重に対する
せん断応力の挙動について検討した。ここで、せん断
応力は、戸袋外板の応力である。その結果、図 11 に
示すように測定点 a の応力は両荷重点方式の値が同一
の直線上にあり、極めてよく一致した。また、後述する
表 3 に示すように、測定点 a, a1, a2, a3 の応力はほぼ
同一であり、集中荷重点方式において構体中央に加え
た荷重は各支点で均等に分布されていると言える。両
荷重点方式のこのような応力挙動は構体の応力について
も同一である。表 3 では、この点をさらに詳細に調べ
るため、集中荷重と等分布荷重方式の最大荷重作用時
の応力を比較したものである。表から、測定点 b およ
び e を除いて、両荷重点方式の応力の比率（集中/等
分布）は、0.98 ～1.05 であり、極めて良く一致している。
測定点 b および e では集中荷重点方式の応力が等分布荷
重点方式に比較して大きくなっているが、これは、図 3
に示したように集中荷重点方式では、荷重点に近いこれ
らの点のせん断力が等分布荷重方式に比較して大き
いことによると考えられる。しかし、両者の差は 11
～18% であり、おおむね一致しているとみなせる。

4-3 試験方法の妥当性的検証 最後に、集中荷重
方式による車両構体の疲労試験の精度について述べ
る。4-1 節および 4-2 節では軽量化した車両構体を対
象に FEM 解析および荷重試験を実施し、集中荷重点
方式と等分布荷重方式の応力分布および垂直たわみ関
する差について検討した。その結果、車両構体は集中
荷重点方式では支点と荷重点にはされた部分に関し
、せん断力は等分布荷重と一致させれば、支点近
傍の各点の応力が両荷重点で良く一致する。集中荷重
点近傍の応力は、等分布荷重点方式に比較していくぶん
大きくなるが、支点近傍の値ともほぼ同等である。一方
垂直たわみは支点と集中荷重点間では集中荷重点方式の
値が等分布荷重の結果と比較していくぶん大きくなる
傾向にある。しかし、強度に関する応力が両荷重点方式

<table>
<thead>
<tr>
<th>表 3</th>
<th>荷重付加方式と応力測定結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured point</td>
<td>Concentrated load</td>
</tr>
<tr>
<td>a1</td>
<td>40 MPa</td>
</tr>
<tr>
<td>a2</td>
<td>42</td>
</tr>
<tr>
<td>a3</td>
<td>41</td>
</tr>
<tr>
<td>b</td>
<td>39</td>
</tr>
<tr>
<td>c</td>
<td>31</td>
</tr>
<tr>
<td>d1</td>
<td>409</td>
</tr>
<tr>
<td>d2</td>
<td>412</td>
</tr>
<tr>
<td>e</td>
<td>-432</td>
</tr>
<tr>
<td>f1</td>
<td>324</td>
</tr>
<tr>
<td>f2</td>
<td>367</td>
</tr>
</tbody>
</table>

Comment
Sc : Stresses under the concentrated load
Su : Stresses under the uniformly distributed load

図 10 荷重試験における垂直たわみ
図 11 荷重付加方式と応力挙動
図 12 集中荷重点方式における疲労試験荷重
で良く対応しており、垂直たわみは上記の程度でも十分と思われる。したがって、車両構体の垂直等分布荷重による疲労試験は集中荷重方式で置換できると言え、この場合、最初に疲労き裂が発生すると考えられる支点近傍では、両荷重方式の関係を式(4)で対応させば応力がほぼ1:1で対応するため、その精度は十分確保できると言える。

図12は、例として今回の疲労試験における集中荷重と等分布荷重の関係を示したものである。車両構体の垂直等分布荷重に対する疲労試験は、同図を用いて平均荷重(W_{mean})および繰返し荷重(W_n)の大きさを決定することにより集中荷重方式で行うことができると報告されている。

5. 結 言

車両構体の等分布荷重に対する疲労試験を集中荷重方式で置換して行う試験方法を確立するため、集中荷重の付加方法と等分布荷重に対する試験精度について検討を加えた。得られた結果を要約すると次のようになる。

（1）車両構体の等分布荷重に対する疲労試験は、集中荷重を四点曲げ荷重で車両構体に付加し、支点と荷重点間にはされたせん断力分布図の総面積を集中荷重と等分布荷重方式で一致させることにより集中荷重で行うことができる。

（2）（1）において、集中荷重方式による車両構体の側板応力およびスポット溶接部の分担荷重は、試験対象となる支点近傍に関して、等分布荷重状態と非常に良い精度で一致する。

以上の結果より、車両構体の等分布荷重状態の疲労試験を、集中荷重方式で行うことができる。

文 献

（1）荒井・中村・民谷・永本、車両技術、172（1985），84。
（2）木村・笠井、車両技術、182（1988），38。
（3）藤田・瀧寿・奥野、日立評論、64-12（1982），45。
（4）松澤、旅客車工学概論、（1986）、166-180、レールウェイ・システム・リサーチ。
（5）奥野・大村・初田・笠井、機論、52-477，A（1986），1403。
（6）戸取・田中、特許第1430090号（特公昭62-35937）