Dynamic Stress Intensity Factor of a Cracked Dielectric Medium in a Uniform Electric Field

Yasuhide SHINDO, Hirofumi KATSURA

We consider the scattering of normally incident longitudinal waves by a finite crack in an infinite isotropic dielectric body under a uniform electric field. By the use of Fourier transforms, we reduce the problem to that of solving two simultaneous dual integral equations. The solution of the dual integral equations is then expressed in terms of a Fredholm integral equation of the second kind. The dynamic stress intensity factor versus frequency is computed and the influence of the electric field on the normalized values is displayed graphically.

Key Words: Elasticity, Electric Fracture Mechanics, Electroelastic Wave, Finite Crack, Dielectric, Dynamic Stress Intensity Factor, Electric Field, Fourier Transform
同様に線形化された構成方程式は
\[t_{ij} = \lambda \delta_{ij} \mu (u_{ij} + u_{ji}) + A_0 (E_i E_j + 2 \delta_{ij} E_0) \delta_{ij} \]
\[+ A_0 (E_i E_j + E_j E_i + E_i E_i) \] \((5) \)
\[t_{ij}^0 = \sigma_{ij} + \beta \delta_{ij} \]
\[- \frac{1}{2} \epsilon_0 (E_i E_j + 2 \delta_{ij} E_0) \delta_{ij} \] \((6) \)
\[D_i = \epsilon_0 E_i + \frac{1}{\sigma_{ij}} \frac{1}{\delta_{ij}} \epsilon_0 E_i \]
\[d_i = \epsilon_0 \xi + \frac{1}{\sigma_{ij}} \frac{1}{\delta_{ij}} \epsilon_0 \xi \] \((7) \)
\[E_i = \frac{1}{\epsilon_0 \delta_{ij}} \delta_{ij} = \frac{1}{\epsilon_0 \delta_{ij}} \delta_{ij} \] \((8) \)

ここに、\(t_{ij} \) は Maxwell 応力テンソル成分、\(\lambda, \mu \) は Lamé の定数、\(A_0 \) は電気係数。\(\epsilon_0 \) は自由空間の誘電率、\(\epsilon_\infty = 1 + \eta \) は比誘電率、\(\eta \) は電気感容率、\(\delta_{ij} \) は Kroncker のデルタである。

また、線形化された境界条件方程式は
\[\left[t_{ij} \right] n_i + \frac{1}{2} \frac{1}{\epsilon_0} \left[(P_i n_i) n_i \right] n_i = 0 \] \((9) \)
\[\left[D_i \right] n_i = 0 \] \((10) \)
\[\left[d_i \right] n_i - \left[D_i \right] n_i = 0 \] \((11) \)
\[\epsilon_{ij} n_i \left[\delta_{ij} \right] n_i - \epsilon_{ij} n_i \left[\delta_{ij} \right] n_i = 0 \] \((12) \)

ここに、\(n_i \) は変形前の不連続面の電体群（ー）側から自由空間（＋）側に向かう単位法線ベクトル成分、\(\epsilon_0 \) は置換テンソル、\(\left[f_i \right] \) は誘電体の境界におけるベクトル成分 \(f_i \) の差分ベクトルを表す。

3. 問題の呈示と電気弾性解析

一般の慣習に従って、直角座標系 \(x, y, z \) の代わりに、図 1 に示す直角座標系 \(x, y \) を採用し、長さ \(2a \) の二次元き裂を有する無限弾性誘電体を考える。弾性誘電体は等方性であるが、電界的強さ \(E_0 \) の一様な \(y \) 方向電場の作用を受けるものとする。剛体の状態における電場等像是
\[E_{\xi} = \epsilon_0 E_0, \quad D_\xi = \epsilon_0 \epsilon_{\xi} E_0, \quad P_\xi = 0 \]
\[E_x = E_0, \quad D_x = \epsilon_0 \epsilon_{\xi} E_0, \quad P_x = \epsilon_0 \eta E_0 \] \((12) \)

ここにより、上付添字 \(\xi \) は誘電体内部における自由空間の場を示すものとする。

平面ひずみを仮定すると、運動方程式は
\[\nabla^2 u_x + \frac{1}{2} \nabla^2 u_x \frac{v(x, z)}{\mu} \frac{u_x}{x_x} \frac{v(x, z)}{\mu} \frac{u_x}{x_x} \]
\[+ \frac{2}{\mu} E_0 \frac{\epsilon_{\xi} E_0}{\mu} \frac{u_x}{x_x} = \frac{1}{c_0^2} \]
\[\frac{v(x, z)}{\mu} \frac{u_x}{x_x} \] \((13) \)
\[\nabla^2 u_y + \frac{1}{2} \nabla^2 u_y \frac{v(x, z)}{\mu} \frac{u_x}{x_x} \frac{v(x, z)}{\mu} \frac{u_x}{x_x} \]
\[+ \frac{E_0}{\mu} \frac{A_0 E_0}{\mu} \frac{v(x, z)}{\mu} \frac{u_x}{x_x} = \frac{1}{c_0^2} \frac{u_x}{x_x} \] \((14) \)

また、電場方程式は
\[e_{\xi} x_x + e_{\xi} y_z = 0, \quad e_{\xi} x_x + e_{\xi} y_z = 0 \] \((14) \)

ここに、\(\nabla^2 = \nabla^2 x_c x_c + \nabla^2 y_c y_c \) は二次元 Laplace の演算子であり、\(z_c = (\mu/\rho) z_c \) はせん断波伝播速度、\(A_0 = A_0 + e_0 \eta \) である。

電気ポテンシャル \(\phi \) を導入すると、変形状態の電場方程式（14）は
\[\nabla^2 \phi_x - \frac{E_0}{\mu} \frac{A_0 E_0}{\mu} \frac{v(x, z)}{\mu} \frac{u_x}{x_x} = \frac{1}{c_0^2} \frac{v(x, z)}{\mu} \frac{u_x}{x_x} \] \((15) \)
\[\nabla^2 \phi_y + \frac{E_0}{\mu} \frac{A_0 E_0}{\mu} \frac{v(x, z)}{\mu} \frac{u_x}{x_x} = \frac{1}{c_0^2} \frac{v(x, z)}{\mu} \frac{u_x}{x_x} \] \((16) \)

また、次の変位ポテンシャル \(\Phi(x, y, t) \) および電圧ポテンシャル \(\phi(x, y, t) \) を導入する。
\[\Phi(x, y, t) = \frac{v(x, z)}{\mu} \frac{u_x}{x_x} \frac{v(x, z)}{\mu} \frac{u_x}{x_x} \] \((16) \)

変位ポテンシャル \(\phi_x, \phi_y \) および電圧ポテンシャル \(\phi \) による運動方程式は
\[\nabla^2 \phi_x - \frac{E_0}{\mu} (2A_0 + A_3) (\frac{v(x, z)}{\mu} \frac{u_x}{x_x}) \frac{1}{c_0^2} \frac{v(x, z)}{\mu} \frac{u_x}{x_x} \]
\[+ \frac{E_0}{\mu} \frac{A_0 E_0}{\mu} \frac{v(x, z)}{\mu} \frac{u_x}{x_x} = \frac{1}{c_0^2} \frac{v(x, z)}{\mu} \frac{u_x}{x_x} \] \((17) \)

ここに、\(c_0 = (\mu/c_0) \rho \) は等方波速である。

図 1 の変位ポテンシャル \(\phi \) の変位ポテンシャル
\[\phi' = \phi \left[\exp(-i\lambda(x + y/c_0)) \right], \phi = 0 \] \((18) \)
ここに、φ_0 は入射変位ポテンシャル φ_i の振幅、p は円振動数であり、上付添字 i は入射場を示す。

式(18)の線形電気弾性波が示される場合、散乱場における境界条件式は

$$t^0_{d_2}(x, 0) = 0 \quad (0 \leq x < \infty) \quad \cdots \quad (19)$$

$$\begin{cases}
\phi_2(x, 0) = -\eta E_0 u_{y_2}(x, 0) + \phi^*_2(x, 0) \quad (|x| \leq a) \\
\phi_2(x, 0) = 0 \quad (a < |x|)
\end{cases} \quad \cdots \quad (20)$$

$$\begin{cases}
t^0_{d_2}(x, 0) = -\varepsilon_0 \varphi_0 E_0 \varphi_y - \rho_0 \quad (|x| \leq a) \\
u_{y_2}(x, 0) = 0 \quad (a < |x|)
\end{cases} \quad \cdots \quad (21)$$

ここに、$\rho_0 = -\mu (p/c_1) \varphi_0$ である。また、時間要素 $e^{-\alpha t}$ を除いているが、以下の解析においても同様に考える。

問題の対称性を考慮し領域 $0 < x < \infty, 0 < y < \infty$ の第 1 象限で考える。Fourier 変換法により、$\phi, \phi^*, \varphi, \varphi^*$ の一般解を求めると

$$\phi = -\frac{\pi}{2} \int_0^\infty a_0 (a) e^{-\varphi} \cos(ax) da \quad \cdots \quad (22)$$

$$\phi^* = -\frac{\pi}{2} \int_0^\infty a^*_0 (a) \sinh(\varphi(a)) \cos(ax) da$$

$$\varphi = \frac{\pi}{2} \int_0^\infty \left\{ A(a) e^{-\gamma_1(a)t} + \left(\frac{c_1}{p} \right)^2 \frac{E_0}{\mu} \times (2A_1 + A_2) \sinh(\varphi(a)) \cos(ax) da \right\}$$

$$\varphi^* = \frac{\pi}{2} \int_0^\infty \left\{ B(a) e^{-\gamma_2(a)t} - \left(\frac{c_1}{p} \right)^2 \frac{E_0}{\mu} A_0 \sinh(\varphi(a)) \sin(ax) da \right\}$$

ここに、$A(a), B(a), a_0(a)$ および $a^*_0(a)$ は未知関数であり、また $\gamma_1(a), \gamma_2(a)$ は

$$\gamma_1 = \left(\alpha^2 - \left(\frac{p}{c_1} \right)^2 \right)^{1/2}, \quad \gamma_2 = \left(\alpha^2 - \left(\frac{p}{c_1} \right)^2 \right)^{1/2} \cdots \quad (25)$$

無限速で散乱場が消滅し、放出波のみ存在する条件は $Re \gamma_1(a) > 0, \ Im \gamma_2(a) < 0 \quad (j = 1, 2) \cdots \quad (26)$

変位成分 u_x, u_y を求めると

$$u_x = -\frac{\pi}{2} \int_0^\infty \left\{ a_0 A(a) e^{-\gamma_1(a)t} + \gamma_2 B(a) e^{-\gamma_2(a)t} \right\} \cos(ax) da + \left(\frac{c_1}{p} \right)^2 \frac{E_0}{\mu} \times (2A_1 + A_2) \sinh(\varphi(a)) \cos(ax) da$$

$$u_y = -\frac{\pi}{2} \int_0^\infty \left\{ \gamma_1 A(a) e^{-\gamma_1(a)t} + \gamma_2 B(a) e^{-\gamma_2(a)t} \right\} \sin(ax) da + \left(\frac{c_1}{p} \right)^2 \frac{E_0}{\mu} A_0 \sinh(\varphi(a)) \sin(ax) da$$

また、初期電場による静的応力項を含む応力成分 t_{d_2} は

$$t_{d_2}^0 = -\frac{4\mu}{\pi} \int_0^\infty \left\{ \left(\frac{A}{2\mu} \left(\frac{p}{c_1} \right)^2 + \alpha^2 \right) A(a) e^{-\gamma_1(a)t} \right\}$$

$$+ \frac{E_0}{\mu} \left\{ \left(\frac{c_1}{p} \right)^2 (2A_1 + A_2) a^2 + A_1 \right\}$$

$$\times \sinh(\varphi(a)) \cos(ax) da + \frac{E_0}{\mu} \left\{ \left(\frac{c_1}{p} \right)^2 (2A_1 + A_2) a^2 - A_2 \right\}$$

$$\times \sinh(\varphi(a)) \sin(ax) da$$

$$+ \frac{E_0}{\mu} \left\{ \left(\frac{c_1}{p} \right)^2 (2A_1 + A_2) a^2 - (A_1 + A_2) \right\}$$

$$\times \sinh(\varphi(a)) \cos(ax) da + (A_1 + A_2) E_0$$

$$+ \gamma_2 A(a) e^{-\gamma_2(a)t}$$

$$+ \frac{E_0}{\mu} \left\{ \left(\frac{c_1}{p} \right)^2 (2A_1 + A_2) a^2 + A_1 \right\}$$

$$\times \sinh(\varphi(a)) \cos(ax) da + A_1 E_0$$

$$\int_0^\infty \left[\left(\frac{c_1}{p} \right)^2 (2A_1 + A_2) a^2 - A_2 \right] \sinh(\varphi(a)) \cos(ax) da$$

$$\times \sinh(\varphi(a)) \sin(ax) da + (A_1 + A_2) E_0$$

$$\cdots \quad (28)$$

$$t_{d_2}^0 = \frac{4\mu}{\pi} \int_0^\infty \left\{ \frac{1}{2\mu} \left(\frac{p}{c_1} \right)^2 + \alpha^2 \right\} A(a) e^{-\gamma_1(a)t}$$

$$+ \gamma_2 A(a) e^{-\gamma_2(a)t}$$

$$+ \frac{E_0}{\mu} \left\{ \left(\frac{c_1}{p} \right)^2 (2A_1 + A_2) a^2 - A_2 \right\}$$

$$\times \sinh(\varphi(a)) \cos(ax) da + \frac{E_0}{\mu} \left\{ \left(\frac{c_1}{p} \right)^2 (2A_1 + A_2) a^2 - (A_1 + A_2) \right\}$$

$$\times \sinh(\varphi(a)) \cos(ax) da + (A_1 + A_2) E_0$$

$$\cdots \quad (29)$$

境界条件式(19)より、次の未知関数間の関係式が得られる。

$$2\gamma_2 A(a) + \left\{ 2\alpha^2 - \left(\frac{p}{c_1} \right)^2 \right\} B(a)$$

$$+ \frac{E_0}{\mu} \left\{ \left(\frac{c_1}{p} \right)^2 (2A_1 + A_2) a^2 - A_2 \right\} \sinh(\varphi(a)) \cos(ax) da = 0$$

$$- \frac{E_0}{\mu} \left\{ \left(\frac{c_1}{p} \right)^2 (2A_1 + A_2) a^2 - (A_1 + A_2) \right\}$$

$$\sinh(\varphi(a)) \cos(ax) da + (A_1 + A_2) E_0$$

$$\cdots \quad (30)$$

境界条件式(20), (21)より、式(30)を考慮すると、次の $a_0(a), C(a)$ に関する連立双極方程式が得られる。

$$\int_0^\infty a_0(a) \sinh(\varphi(a)) \cos(ax) da = 0 \quad (0 \leq x \leq a)$$

$$\int_0^\infty a_0(a) \cos(ax) da = 0 \quad (a < x < \infty) \cdots \quad (31)$$

$$\int_0^\infty a_0(a) \left[f_0(a) C(a) + \frac{E_0}{\mu} \left(f_0(a) a(a) \right) \cos(ax) da = 0 \quad (0 \leq x \leq a) \right.$$}

$$\int_0^\infty C(a) \cos(ax) da = 0 \quad (a < x < \infty) \cdots \quad (32)$$
電場内におけるき裂有する誘電体の動的応力拡大係数

ここに，$f_s(a), f_s(a)$ は

\[f_s(a) = -\frac{1}{\gamma(a)/\gamma(c)} \left\{ \frac{2\alpha^2 - (\frac{a}{c})^2}{\gamma(a)/\gamma(c)} \right\}^2 \]

\[+ 4\alpha^2 \gamma(a)/\gamma(c) \left\{ 2\alpha^2 - (\frac{a}{c})^2 \right\} (2A_1 + \varepsilon_0 \eta) \]

\[- 2\gamma(a)/\gamma(c) A_s + 2\gamma(a)/\gamma(c) A_s (2A_1 + A_s) \]

\[- \frac{1}{\gamma(a)/\gamma(c)} \left(\frac{a}{c} \right)^2 \left(2A_1 + 2A_2 - \varepsilon_0 \eta \right) \]

\[\frac{a}{2} \]

………(33)

また，未知関数 $A(a), B(a)$ は，新しい未知関数 $C(a)$ と $a(a)$ を用いて次のように表される。

\[A(a) = -\frac{1}{\gamma(a)/\gamma(c)} \left\{ 2\alpha^2 - (\frac{a}{c})^2 \right\} C(a) \]

\[+ \frac{E_s}{\mu} (2A_1 + \varepsilon_0 \eta) \alpha^2 \gamma(a)/\gamma(c) \]

\[B(a) = -\frac{1}{\gamma(a)/\gamma(c)} \left\{ 2\alpha^2 - (\frac{a}{c})^2 \right\} A_2 a \gamma(a)/\gamma(c) \]

………(34)

連立双線方程式 (31)，(32) を解くため，次式で定義される新しい未知関数 $\Phi(u)$ を導入する。

すなわち

\[C(a) = \frac{\pi \rho \pi a^2}{4 \mu s y_0} \int_0^1 u^{1/2} \Phi(u) f_s(a u) f_s(u) du \]

………(35)

\[a(a) = -\frac{\pi \rho \pi a^2}{4 \mu s y_0} \int_0^1 u^{1/2} \Phi(u) f_s(a u) f_s(u) du \]

ここに，$f_s(a)$ は 0 次の第 1 種 Bessel 関数であり，s_0 および y_0 は

\[c_0 = (c_0/c)^2 - 1 \]

\[y_0 = 1 + \frac{1}{2} [(1 - 2\nu)(2A_1 + \varepsilon_0 \eta) \]

\[- 2(1 - \nu)(\varepsilon_0 \eta - A_2)] \]

………(36)

式(35)は，式(31)および式(32)の第 2 式を自動的に満足している。式(35)を式(31)および式(32)の第 1 式に代入すると，次の第 2 種 Fredholm 形積分方程式が得られる。

\[\Phi(u - \int_0^1 \Phi(s) \alpha^2 ds) K(u, s) ds = u^{1/2} \]

ここに，$K(u, s)$ は積分核であり

\[K(u, s) = \int_0^1 \left[a + \frac{1}{c_0 s y_0} \left\{ f_s(a) \]

\[- \gamma E_s f_s(a) \left\{ f_s(a) \right\} \right\} f_s(a u) f_s(u) du \]

………(38)

関数 $f_s(a), f_s(a)$ は

\[f_s(a) = -\frac{1}{2\pi} \left\{ (2\alpha^2 - P^2) + 4\alpha^2 \frac{\gamma(a)}{\gamma(c)} \right\} \]

\[\frac{1}{\gamma(a)/\gamma(c)} \left\{ 2\alpha^2 - (\frac{a}{c})^2 \right\} \gamma(a)/\gamma(c) \]

\[+ 2\alpha^2 \gamma(a)/\gamma(c) A_2 + 2\alpha^2 \gamma(a)/\gamma(c) A_2 (2A_1 + A_2) \]

\[- \frac{1}{\gamma(a)/\gamma(c)} \left(\frac{a}{c} \right)^2 \left(2A_1 + 2A_2 - \varepsilon_0 \eta \right) \]

\[\frac{a}{2} \]

………(39)

ここに，$\gamma(a)/\gamma(c) = (\sqrt{\alpha^2 - (\rho a)^2} \right\}$, $\gamma(a)/\gamma(c) = \sqrt{\alpha^2 - P^2}$ であり，

\[E_n, A_1, A_2, E_p, \sigma = \]

\[E_n = \frac{\sigma_0 E_n}{\mu}, A_1 = \frac{A_1}{\varepsilon_0}, A_2 = \frac{A_2}{\varepsilon_0}, P = \frac{a b}{c_2}, \sigma = \frac{c_1}{c_1} \]

………(40)

動的電気応力拡大係数 K_{im} は，次式で定義される。

\[K_{im} = \lim_{\omega \to 0} (2\pi(x-a))^{1/2} (\rho_0 + i\omega)^{1/2} \]

\[= \rho_0 (\pi a)^{1/2} \frac{\omega}{y_0} \Phi(1) \]

………(41)

ここ

\[\omega_0 = 1 + \frac{1}{2} (1 - 2\nu)(2A_1 + \varepsilon_0 \eta) \]

\[+ 2(1 - \nu)(A_2 + \varepsilon_0 \eta + 1)] \]

次に，剛体的状態の静電場による応力拡大係数について

<table>
<thead>
<tr>
<th>表 1 PMMA の材料定数</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ (N/m²)</td>
</tr>
<tr>
<td>1.1 \times 10⁵</td>
</tr>
</tbody>
</table>

図 2 動的応力拡大係数に及ぼす電場の影響
電場内におけるき裂を有する誘電体の動的応力拡大係数

4. 数値結果および考察

無限誘電体中の二次元き裂に調和面電気弾性波が
入射する場合の動的電気応力拡大係数に及ぼす電場の
影響を明らかにする。数値例として用いた PMMA
（Polymethylmethacrylate）の材料定数を表1に示
す。無次元動的電気応力拡大係数 K_1 は、$|K_{im}|$ と K_{1s}
を重ね合わせて求め、$K_1=|K_{im}|+K_{1s}$ となる。
図2はPMMA材における無次元振動数 $P=ap/c_0$ に対
する無次元動的電気応力拡大係数 $K_1/\rho_0(\pi a)^{1/2}$ に及ぼ
す電場の影響を示したもので、$E_0=\sqrt{\varepsilon_0/\mu}$ $E_0=0.1$
とした。動的応力拡大係数は極大値 K_{max} を示し、こ
れらの値は、$E_0=0.0, \rho_0/\mu=\infty, 0.02, 0.01(E_0=0.1)$
に対して、それぞれ $K_{max}/\rho_0(\pi a)^{1/2}=1.366, 1.521, 2.415$,
3.309 である。また、$P=0$ とすると、K_1 は静的応力拡
大係数 K_{1s} となる。$E_0=0.0, \rho_0/\mu=\infty, 0.02, 0.01(E_0=0.1)$
に対する静的応力拡大係数は、それぞれ $K_{1s}=1.000, 1.111, 2.004, 2.899$ となり、静的値と極大値との
比 K_{max}/K_{1s} は、それぞれ $K_{max}/K_{1s}=1.366, 1.369$,
1.205, 1.141 となる。電場の存在は動的電気応力拡大係数
を増大させ、電気破壊強度を考慮する際、注意を要す
る。

5. 結 言

き裂を有する誘電体の動的電気弾性相互干渉問題の
解析法を示し、動的電気応力拡大係数に及ぼす電場の
影響について検討を行った。電場の増大に伴い、動的
応力拡大係数は増大する。また、電場の増大に伴い、
動的応力拡大係数は極大値を示し、動的応力拡大
係数に及ぼす慣性効果は、$E_0=\sqrt{\varepsilon_0/\mu}$ $E_0, \rho_0/\mu$ に依存
する。

文 献

(1) Kurlandrzva, Z. T., Bulletin de L'Academie Polonaise
des Sciences, Series des Sciences Techniques, X X I I -
7(1975), 333 [571].
(2) Pak, Y. E., Herrmann, G., Int. J. Engng Sci., 24-
8(1986), 1365.
(3) Pak, Y. E., Herrmann, G., Int. J. Engng Sci., 24-
8(1986), 1375.