多結晶鋼薄帯の疲労特性と転位組織*

兼城 英夫*, 日賀 正貴**, 真壁 朝敏*, 片桐 一宗*, 糸貫 真哉*

Fatigue Properties and Dislocation Structures of Polycrystalline Copper Film

Hideo KANESHIRO, Masaki HIGA, Chobin MAKABE, Kazumune KATAGIRI and Masaya ITOKAZU

Fatigue properties of polycrystalline copper films subjected to pulsating stresses are investigated on the basis of observations of surface topography, fracture surface and dislocation structure. Fatigue limit corresponding to 10^5 cycles of a rolled copper film is 2.3 times higher than that of an annealed one, but the fatigue limit ratio of the rolled specimen is lower than that of annealed one. From the observations of the surface crack and fracture surface, it is found that fatigue crack initiation and early-stage crack growth mechanisms of annealed bulk copper are not necessarily applicable to those of film. No striations are formed in both films. In annealed films, cell structures are formed under high-cycle fatigue whereas no band/ladder structures are formed. Dislocation structures near the fatigue crack in annealed films are similar to those of bulk specimens except for the absence of intensely elongated cells observed in the shear flow regions in the bulk specimen. No appreciable change during fatigue was found in the dislocation structures of rolled films.

Key Words: Dislocation, Fatigue, Nonferrous Metal, Copper Film, Crack Initiation, Fracture Surface, Subgrain Structure, Pulsating Stress

1. 緒 言

近年、純銅やアルミニウム、アルモラス合金等の金属薄帯が電子機器部品材料や高強度材料、耐食材料として、また家庭用品として広く利用されるようになっ

た。特に、アルモラス合金薄帯は、その電気的、磁気的、強度の優秀性により有望視されている新素材の一つである。このため、薄帯材料の強度や疲労特性については多くの研究が行われ、種々の知見が得られているが、まだ不明な点もあるようである。

鳥居らは(1)は 100 μm の純鉄薄板材の疲労き裂進展が

バルク材と同様に応力拡大係数に支配されることを明らかにしている。しかし、バルク材の疲労機構が直接的に薄帯に対しても適用できるかどうかについては未

解明である。薄帯材料は、圧縮応力に対する負荷能力がなく、結晶粒の配列も平面的であり、また純粋な平面応力状態に近い等バルク材とはかなり異なった状態下にあり、これらが疲労特性に微妙な影響を与えるの

ではないかと考えられる。実際に、アルミニウム薄帯

では、疲労き裂先端にポイドが形成され、それらの合

体によりき裂が進展するというバルク材とは異なった

報告もなされている(2)。このような観点から本報では、

多結晶純銅薄帯の焼なまし材と圧延材の薄帯材と切欠

材について片振り引張りの疲労試験を行い、表面観察、

破面観察および転位組織の観察を通じて、純薄帯材の

疲労特性について検討した。

2. 試験片および実験方法

厚さ 33 μm、幅 35 mm の市販の多結晶純銅薄帯(純

度 99.9 wt.%)から、ハサミでない図 1 に示す形状・

寸法の試験片を製作した。切欠試験片の切欠部は放電

加工機で製作した。平行試験片の R 部はハサミによる

カッティング損傷を除去するため、エメリー紙(1500)

で研磨した。以後は、このままの状態の試験片を

圧延薄帯試験片と称し、これをさらに 600℃で 1 時

間真空焼なましを行ったものを焼なまし薄帯試験片

として区別することにする。表 1 に供試材の機械的性

質を示す(参考のためバルク材の値も記載)。疲労試験

は、電気油圧サーボ式疲労試験機を用いて、繰返し振

動数 30 Hz の片振り引張応力下で行った。薄帯試験片

の試験機チェック部への取付けは、試験片にたるみが

—11—
多結晶鋼薄帯の疲労特性と転位組織

生じて応力が不均一にかかるのないように注意して、市販のシアノアクリレート系接着剤で行った。

疲労き裂の発生・成長の観察は、適当な応力線返し数で試料表面から採取したレプリカ膜に金を蒸着した後光学顕微鏡を用いて行った。破断した試験片は、走査形電子顕微鏡（SEM）による破面観察に供した。電子線の透過可能膜は以下の手順で作製した。まず、所要の応力線返しを行った試験片から、平滑材の場合は適当な箇所から、また切欠材の場合は疲労き裂を含む一辺が4mmの正方形の薄帯をハサミで切り出した。これらについて、ジェット式電解研磨、仕上げ電解研磨およびイオンシャルニングを順次行い、電子線の透過可能な薄膜試料を作製した。本研究では、特に、焼なまし材の場合、薄膜作製時に変形の恐れがあるため、正方形薄帯の周辺を市販のスキャッチテーブで補強した。得られた薄膜試料の転位組織は、透過形電子顕微鏡JEM 200 CX を用いて200 kV の加速電圧のもとで観察した。

3. 実験結果および考察

3.1 供試材の S-N 曲線 図2に実験に用いた純鉄薄帯の表面状態と電解腐食後の組織を示す。図2

(a) 平滑試験片

(b) 切欠試験片

図1 試験片の形状・寸法

(a) からわかるように、試料表面上には無数の圧延条痕と図中Aで示すように、圧延方向と直角な微小なき裂が多く存在した。図2(c)より、焼なまし材では薄帯の厚さ（33μm）よりも大きい結晶粒が多く含まれており、かわりの数の結晶粒が薄帯の表層に貫通していると思われる。疲労試験はすべて図2(a)の表面状態のまま行われた。図3に供試材のS-N曲線を示す。また、図2に、図3から求めた10^7回に対する疲労限度σ_0と疲労限度の引張強さに対する比、すなわち疲労限度の引張強さに対する比、すなわち疲労強度比σ_0/σを示す。圧延鋼の疲労限度は焼なまし鋼の約2.3倍であるが、疲労限度比は焼なまし鋼より若干低い値となっている。疲労限度比は、バルク材では、片振り引張りの場合0.25〜0.3の値をとることが報告されている(5)。しかしながら、純鉄薄帯の疲労限度比はバルク材よりも小さいようである。これは、薄帯では結晶粒の配列が二次元的であること、また、本研究では試料表面の微小き裂を除去せずに実験を行ったことなどが原因していると思われる。

3.2 疲労き裂の発生・成長 図4に焼なまし鋼薄帯における疲労き裂の発生・成長の様相を示す。通常、焼なまされたバルク金属では、疲労き裂の発生に先だって試料表面上にはすべり帯が形成し、疲労き裂はこのようなすべり帯を結晶粒界に沿って発生すると言われている(6)。図4(a)から、焼なまし鋼の場合も、き裂の発生に先だって試料表面上にはすべり帯が形成されており、また図4(b)からき裂はこのようなすべり帯と関連して発生しているのがわかる。これより、き裂

<table>
<thead>
<tr>
<th></th>
<th>Tensile strength オーバル (N/㎟)</th>
<th>Elongation (%)</th>
<th>Reduction of area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rolled</td>
<td>456</td>
<td>1.4</td>
<td>—</td>
</tr>
<tr>
<td>Bulk</td>
<td>172</td>
<td>15.6</td>
<td>—</td>
</tr>
</tbody>
</table>

表1 純鉄薄帯およびバルク鋼の機械的性質

図2 供試材の表面光学顕微鏡組織写真

(a) 試験片表面 (b) 圧延材の組織 (c) 焼なまし材の組織
の発生と初期段階のき裂成長については、パルク金属の組織が純銅薄帯にも適用できるものと思われる。

同様に、図5に圧延鋼におけるき裂の発生・成長の様相を示す。図5(b)からわかるように、圧延鋼薄帯では、き裂の発生に先だってすべり線の形成はまったく見られず、き裂の発生に寄与する転位の運動が観察できなかった。また、き裂発生に要する繰返し数の全寿命に占める割合が96%程度と非常に高く、それだけでき裂成長の全寿命に占める割合が極めて小さいことがわかった。本研究で使用した圧延鋼のように強加工された薄帯では、後述するように、密に絡み合った転位組織が形成されており、繰返し応力による葛の局所的に、徐々にしか起こらないものと考えられる。そのため、き裂発生に要する繰返し数は寿命のうちの大部分を占めるものと思われる。

3-3 純銅薄帯の疲労破面観察 Forstyh(9)によれば、疲労き裂の進展はせん断形の第1段階と引張形の第2段階に分けられ、それぞれの段階で特徴的な破面形状が現れる。図6は、焼なまし銅薄帯の低倍率のSEM写真で、き裂が試料の左端からせん断形で発生成長し、応力軸に直角方向に少しずつ向きを変えて進展して行ったことがわかる。図6の第1段階に相当する破面は帯幅および帯厚さいずれの方向に対しても傾いていることがわたった。図7に各段階の比較的高倍率の写真を示す。図7(a)の左側部分は、ペーパ仕上げをした試験片の端部で、右側部分が疲労破面である。微細な凹凸や条痕模様が見られるが、比較的平坦でパルク材の第1段階き裂破面と似ている。条痕模様から判断すると、き裂は主として帯面から厚さ方向に進展していると考えられる。また、図7(b)は第2段階に見られた破面で、粒界破面と粒内破面が混在しており、これらパルク金属の破面とよく似ている。

通常、パルク材では、このような破面を続いて、応力サイクルに対応したストライエーションが形成されるようになるが、焼なまし銅薄帯では図7(b)の形態の破面が長く続きストライエーションはまったく観察されない。

表2 純銅薄帯の疲労限度σmと疲労限度比σm/σb

<table>
<thead>
<tr>
<th></th>
<th>σm (MPa)</th>
<th>σm/σb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annealed</td>
<td>42</td>
<td>0.24</td>
</tr>
<tr>
<td>Rolled</td>
<td>95</td>
<td>0.21</td>
</tr>
</tbody>
</table>

図3 供試材のS-N曲線

図4 焼なまし銅薄帯の疲労き裂の発生・成長（σm=63 MPa）

図5 圧延鋼薄帯の疲労き裂の発生・成長（σm=130 MPa）
れなかった。
Laird9によれば、ストライエーションはき裂先端での引張行程時の鈍化と圧縮行程時の再鈍化により生ずる。この機構に立脚すれば、薄帯では圧縮時の再鈍化過程が不充分なためストライエーションが形成されないのではないかと思われる。参考のために、板厚を500 μm から约100 μm ごとに板厚を減少させて、薄帯材におけるストライエーションの形成有無について調べたところ、片振り引張りのもとは、約80 μm の板厚ではストライエーションの形成が確認された。これらの事実は100 μm の純鉄薄帯材の片振り疲労き裂で明らかにき裂閉口が見出されたこととも符すしている9。次に、図7（c）に最終破面の形態を示す。

通常、バルク材の最終破面はへき開破面とディンプル破面である。しかしながら、図7（c）からわかるように、焼なまし鋼薄帯では、チゼルエッジ形の破壊を示し、図中のA とB を結ぶ接線は図の上下の表面が鋸られて最終的に一致したところである。したがって、A とB を結ぶ接線の上下に形成されている平行条痕は、破面上の条痕ではなく、上下両表面上の滑り線である。同様に、図8に、図5に示した圧延鋼薄帯き裂の疲労破面を示す。図8（a）は初期き裂破面で、A で示すようにrubbing mark が何箇所か存在するが、全体的に粒状でザラッとした形で、第1段階き裂破面の形成はっきりしない。後述のように、実験で使用した圧延鋼薄帯では、転位組織が強く絡み合っているために、滑り変形をするための新たな転位の増殖と運動が抑制され、第1段階のせん断形破面が形成されにくくなっているのではないかと思われる。図8（b）は図8（a）よりさらにき裂が長くなった箇所の破面で、（a）と同様に微細な凹凸模様を呈した。圧延鋼薄帯の場合も図8（b）の後にストライエーションの形成はまったく見られず、最後には図8（c）に示すチゼルエッジ形破壊様式で破断した。

3.4 平滑材の転位組織 一般に、純鉄バルク材の転位組織は応力振幅によって異なり、高サイクル領域では図9に示すようなband(or vein)組織とその中に形成される格子状組織からなり10。低サイクル領域
ではセル組織が形成されると言われていると、しかしながら、焼なまし鋼帯では、図10に示すように、高サイクル領域ではセル組織が形成されず、図9に見られるようなband組織と板帯状組織は観察されなかった。辛島らも、電子線の透過可能な薄膜部をもつ薄板のX線曲げ試験で純銅や純アルミニウムのマトリックス中にセル組織が形成されることを報告しているが、バンド組織や板帯状組織の形成については特に言及していない。パルク材では、ひずみ振幅が小さい場合や主滑り系に属する転位の運動によってband組織が形成され、ひずみ振幅が大きくなると二次すべり系の転位も作動しセル組織が形成されるようになると解釈されている。この解釈に立脚すると、薄帯では、高サイクル領域でも二次すべり系の転位の運動が起こっていることになる、片振り繰返し応力による薄帯の疲労試験では高サイクル域の応力振幅の低い場合でも最大応力は大きな値となっている。したがって、試験開始とともに二次すべり系の転位の運動が活発化起こって梯子状組織の形成が阻止され、セル組織が形成されるものと考えられる。なお、厚みのある板材のスリット鋼帯を接着して両振り疲労試験を行った場合には、梯子状組織の形成が報告されている。\[\text{図11: 疲労前の圧延鋼帯の転位組織}\]

図9 純銅パルク材の高サイクル疲労で形成されたband組織と板帯状組織（σ_u=84 MPa）

図10 焼なまし鋼帯の高サイクル疲労で形成されたセル組織（σ_u=60 MPa）

図12 疲労後の圧延鋼帯の転位組織（σ_u=125 MPa）
多結晶鈑薄帯の疲労特性と転位組織

けた純鈑の疲労前後の組織を研究し、加工材の組織は
線返し変形によって回復し、焼なまし材と同様の明り
ようなセロ組織が形成されることを報告している。ま
た上村らは、20％の圧延加工をした厚さ100μmの
炭素鋼薄板について平面曲げ疲労試験を行い、疲労
後の組織として、圧延状態のままの組織、再配列途中
の組織、焼なまし材と同様のセロ組織等を観察し、場
所により組織回復の程度が異なることを報告してい
る。よってずみ材の疲労による組織回復の程度は、予ひ
ずみ量や応力振幅に依存すると考えられがる。本実験で
用いた圧延鈑薄帯では、図11と図12の比較より、ほ
とんど組織の回復や再配列は起こらないことがわかっ
た。また、特に、最大応力を引張強さの95％に上げ
た実験でも同様の結果が得られた。これは、本実験の
圧延鈑が強加工されて転位が強く絡み合っていること
や本実験が片振りで応力振幅が小さく圧縮行程がない
ことなどが原因していると思われる。

3-5 疲労き裂近傍の転位組織

き裂近傍の転位
組織について述べる前に、薄帯とバルク材の切欠底か
ら発生・成長したき裂とき裂近傍のすべり線の様相(図
13と図14)について述べる。図13から、焼なまし鈑薄
帯では、き裂の開口量が大きくすべり線も広範囲に発
生しているが、圧延鈑薄帯では、き裂開口量が小さく
すべり線もき裂の近傍にしか発生していないことが
わかる。特に、薄帯では、図14のバルク材と比較し
て、き裂近傍のすべり線の密度に変化がなく、切欠底
からき裂先端まで一様に分布しているのがわかる。こ
れに対してバルク材では、片振りでも両振りでも、き
裂の成長に伴って、図中のAで示す領域にはき裂進展
方向に対して傾斜した著しいせん断流動を示すすべり
帯が発生し、薄帯との差異が顕著であった。このよう
なき裂近傍の転位組織を図15～17に示す。図15は焼
なまし鈑薄帯に形成されたき裂先端前方の転位組織で
ある。図(a)よりき裂先端前方5mmの領域では、
転位線は長くはば一致に分布し、部分的には互いに
絡み合って集合化しつつある。図(b)および図(c)より、き
裂先端から300μmの領域になると、まだセルの大きさ
が不揃いでセル境界も不明瞭であるが、組織と
してのセル化が進行しているのが理解される。さらに、
き裂先端に近づくと図15(c)からわかるようにセル
化がいっそう進行し、セル寸法は1～2μm程度となり
多結晶鋼薄帯の疲労特性と転位組織

図 16 焼なまし鋼薄帯のき裂近傍の転位組織（σe=40 MPa）

セール壁も明りょうになる。き裂はこのようなセール組織中に進展することになるが、進展後のき裂近傍の転位組織を図16に示す。本実験では、図16に見られるように、薄膜作製過程でき裂面直下が消失しており、したがってき裂面直下の情報は得られないが、き裂側面近傍には転位密度の低い領域と転位壁が現んだ明りょうなセール組織が形成されているのがわかる。これらは、バルク材に関するこれまでの研究、すなわち、鈴部結晶を用いたPurellら（11）の研究やAl1.2％Mg合金に関するWilkinsら（18）の研究、純鉄に関する栗谷ら（19）の研究と定性的によく一致している。したがって、き裂通過後の転位組織には薄帯とバルク材との間に有意差はないように見える。しかしながら、図13と図14に示したように、き裂近傍に形成されたすべり帯の様相については両者間に明らかに差異がみられる。バルク材のき裂近傍に形成されるせん断帯に対応した転位組織についてはKatagiriら（12）の研究がある。彼らはき裂進展方向に約70°傾いている引き延ばされたセールを観察し、これらのセールの転位形態が冷間加工された鋼の下部組織と似ていることを報告している。本研究の焼なまし鋼薄帯でも、いくらか延びたセールも観察された。しかし、焼なまし鋼薄帯では引裂進展に伴うせん断変形が主として板厚方向に生じ、き裂進展方向に±70°をなす大規模無れず断変形が限られていたためと考えられる。

次に、図17に圧延鋼薄帯で形成されたいき裂先端近傍の転位組織を示す。図中には、薄膜作製時に生じた人工き裂も見られるが、組織の全体の様相は図11に示した疲労前の組織とよく似ており、疲労き裂の進展による組織の回復や再編列はこの観察からは見い出せることはできなかった。

また、本研究では、マトリックスやき裂近傍にポイドはまったく観察されず、ポイドの発生と合体によるき裂成長機構を支持する証拠は得られなかった。

4. 結言

焼なまし鈍薄帯と圧延鈍薄帯について、片振り引張りの疲労試験を行い、試料表面や破面ならびに転位組織を観察した結果、以下のことが明らかになった。

（1）10^5回に対する疲労限度は、焼なまし鋼で42 MPa、圧延鋼で95 MPaとなり、また、それらの疲労限度はそれぞれ0.24、0.21となり、バルク金属よりも低く価となった。

（2）焼なまし鋼薄帯では、き裂はすべり帯に沿って発生・成長したが、圧延鋼ではすべり帯は観察されずき裂発生との関係は認められなかった。

（3）バルク材と比較して、薄帯の場合は、特に圧延鋼では、き裂進展の全寿命に占める割合の低いことがわかった。

（4）焼なまし鋼薄帯については、初期き裂領域までバルク材の疲労機構が適用できることがわかった。しかしながら、薄帯ではいずれにおいてもストライエーションは形成されず、き裂先端における再観化過程の不十分さが示唆された。

（5）焼なまし鋼では、高サイクル領域でも、マトリックスの組織はセール組織となった。き裂近傍の転位組織はほぼバルク金属のものと同様であったが、バルク金属に見られるき裂斜方前方への滑り流動域に形成される著しく延ばされたセール組織は観察されなかった。
た。
（6）圧延鋼の平滑材の組織やき裂近傍の組織は疲労前の組織と明りような差異は認められず、圧延時に生じた組織の安定なことがわかった。

文 献

（1）西畑・ほか3名、第32回材料研究連合講演会前刷集、（1988-12）、109。
（2）鳥居・ほか3名、機論、59・563、A（1993）、1575。
（3）Ogura, T., ほか2名、Script. Met., 8（1975）、109。
（5）小倉・辻島、金属学会誌、34（1970）、746。
（6）石黴、金属の疲労と破壊の防止、（1967）、27、賢賢堂。
（7）兼城・ほか2名、機論、51・465、A（1985）、1298。
（8）Forsyth, P. J. E., Acta Met., 11（1963）、703。
（9）Laird, C., ASTM STP, 415（1967）、131。
（11）Hancock, J. R. and Grosskreutz, J. c., Acta Met., 17（1969）、77。
（12）辻島・ほか2名、金属学会誌、31（1967）、674。
（14）Malin, A. S. and Hatherly, M., Met. Sci、（1979）、463。
（15）上村・ほか2名、材料、20・214（1971）、839。
（17）Purcell, A. H. and Weertman, J., Acta Met., 5（1974）、1805。
（19）栗谷・ほか4名、材料、27-294（1978）、257。
（20）Katagiri, K., ほか4名、Met. Sci、（1980）、485。