ひずみ変動を受ける TiNi 形状記憶合金の変態弾性挙動*

林 泰 華*1, 戸 伏 飛 昭*2, 田中 喜久昭*3
服 部 丈 昭*4, 牧 田 昌 之*4

Pseudoelastic Behavior of TiNi Shape Memory Alloy under Strain Variations

Ping-hua LIN, Hisaaki TOBUSHI, Kikuaki TANAKA,
Takeharu HATTORI and Masayuki MAKITA

The pseudoelastic behavior associated with the martensitic transformation (MT) of TiNi shape memory alloy under different types of strain variations has been investigated experimentally. The results are summarized as follows. (1) If strain varies within the MT region, the MT stress and the reverse transformation stress decrease under cyclic deformation. The properties of decrease in both kinds of transformation stress due to cyclic deformation do not depend on the amount of strain and the types of strain variation. (2) If strain varies beyond the complete points of the MT and the reverse transformation, the overshoot of the transformation stress appears at the starting points of the MT and the reverse transformation and the transformation stress decreases. The higher the temperature and the larger the maximum strain, the larger the amount of overshoot and the decrease in the transformation stress.

Key Words: Inelastic Deformation, Nonferrous Material, Titanium–Nickel Shape Memory Alloy, Pseudoelasticity, Martensitic Transformation, Cyclic Deformation

1. 緒 言

形状記憶合金 (shape memory alloy, 以下 SMA) では、応力の作用でマルテンサイト (martensitic, 以下 M) 変態が生じる。この M 変態の生じる応力は温度に比例して高くなる。逆変態終了温度 A_f 以上の温度では除荷過程において逆変態が生じ、M 変態で生じた数％のひずみは消滅し、材料は元の形状に戻る。この現象は変態弾性あるいは超弹性 (pseudoelasticity, 以下 PE) と呼ばれている(1)(2)(4)。PE の現れる温度において、負荷と除荷で応力-ひずみ曲線はヒステリシスループを描く。この特性を有するために、SMA の応用においては防振材料あるいはエネルギーハイ気材としての利用が注目されている(5)(6)(7).

これらの機能を有する SMA 素子を設計する場合、材料の応力-ひずみ温度関係が必要である(8)(9)。このためには、SMA の PE に関しては基本的な応力-ひずみ関係(1)(10)(12)、構成式(13)(16)、繰返し変形特性(17)(22) などが研究されている。これらの研究により、SMA の M 変態に伴う応力-ひずみ-温度関係は変形履歴に依存して著しく変化することが確認されている。材料の M 変態に伴う変形特性は SMA 素子の作動ストローカー、作動力、作動温度、および破壊と貯蔵のひずみエネルギーを規定する。したがって、SMA の実用においては、SMA 素子の設計および信頼性を評価する上で、温度およびひずみの変動に伴う変態特性が重要である。

SMA の実用においてはひずみあるいは温度が複雑に変動するので、その場合の変形特性を把握しておくことが重要である。このために、ひずみあるいは温度が一定の形式でなく、種々の振幅で変動する場合の変形特性はサブループ挙動として注目されている(10)(23)(24)。しかし、その研究報告は少なく、系統的な試験は行われていない。

本研究においては、A_f 点以上の一定温度で種々のひずみ変動を受ける TiNi SMA 線材について、M 変態に伴う PE の繰返し変形特性を実験的に調べた。すなわち、サブループ挙動において最も基本的な重要な M 変態および逆変態に伴う変態応力の最大ひずみおよび変動ひずみへの依存性とその繰返し特性を明らかにした。
2. 実験方法

2.1 供試材および試験片 供試材は古河電気工業（株）製の直径0.75 mmのTi-55.2 wt.%Ni SMA線材であった。形状記憶熱処理により直線を記憶した線材を試験片とした。形状記憶熱処理では、673 Kで20分間保持した後、水冷した。試験片の逆変態終了温度 \(A_1 \) は約323 Kであった。

2.2 実験装置 実験装置は、引張試験機および加熱・冷却装置により構成された（株）島津製作所製の形状記憶合金特性試験装置（EM）であった。試験片の加熱は、雰囲気中でヒータで熟した圧縮空気を吹付けて行った。軸力、変位および温度は、それぞれロードセル、伸び計および熱電対により測定した。伸び計の標点距離は20 mmであった。

2.3 実験手順 \(A_1 \) 点以上の一定温度 \(T \) においては、引張試験機の負荷および除荷の繰返し試験を行った。試験片は、ひずみが種々に変動する次の5種類の実験を行った。各々の実験におけるひずみ-時間関係を図1に示す。

（1）種々の最大ひずみに関する負荷・除荷試験（Exp. VMS）：種々の最大ひずみ \(\varepsilon_m \) に関する負荷・除荷を一定のひずみ速度で行った。

（2）種々の除荷ひずみに関する再負荷試験（Exp. VUS）：初めに最大ひずみ \(\varepsilon_m \) まで負荷し、続いてひずみ \(\varepsilon_m \) まで除荷した。その後、ひずみ \(\varepsilon_m \) まで再負荷し、再除荷した。実験は種々の除荷ひずみに関わって行った。

（3）一定の最大ひずみに関する繰返し変形試験（Exp. CMS）：一定の最大ひずみ \(\varepsilon_m \) に関わって負荷・除荷を繰返した。

（4）ひずみ振幅の減少する試験（Exp. DSA）：初期に最大ひずみ \(\varepsilon_m \) まで負荷し、次に、ひずみ \(\varepsilon_m \) まで除荷した。このように、ひずみ振幅を半サイクルごとに順次減少させた。

（5）ひずみ振幅の増加する試験（Exp. ISA）：Exp. DSAと同様の繰返し試験であり、ひずみ振幅を半サイクルごとに順次増加させた。

いずれの実験においても、負荷および除荷は、一定のひずみ速度2%/minで行った。温度 \(T \) は333 K、353 Kおよび373 Kとした。

3. 実験結果および考察

3.1 最大ひずみの逆変態応力に対する影響

Exp. VMSの結果の一例として、\(T=353 \) Kで最大ひずみ \(\varepsilon_m \) が異なる場合の応力-ひずみ曲線をまとめて図2に示す。図2に示すように、\(\varepsilon_m = 3 \sim 6 \) はM変態域にあり、\(\varepsilon_m = 7 \) はM変態域の終了点近傍にあり、\(\varepsilon_m = 8 \)および9％はM変態終了後の加工硬化域にある。

図2からわかるように、負荷過程においてはM変
ひずみ変動を受けるTiNi形状記憶合金の変態凝弾性挙動

図3 逆変態応力と最大ひずみの関係

図4 各々の除荷ひずみについての応力-ひずみ曲線

NII-Electronic Library Service
さらに、図4から次の諸点が認められる。再荷負において最大ひずみε_m が6.5%の点において応力はσ_m - 0.9σ_mからσ_mに急激に増加する。除荷過程での逆変態応力σ_aは再荷負後に低下0.9σ_aだけ低下する。このσ_aの低下σ_aは、再荷負でのσ_mの低下σ_mに比べて小さい。除荷後の残留ひずみε_pは、いずれの場合にもほぼ同じ値をとる。これは、ε_mが同じであることによるものと考えられる。

3-3 一定最大ひずみに関する繰返し特性 Exp. CMSの結果の一例として、T=353Kでε_m=5.5%の場合の応力-ひずみ曲線を、代表の繰返し数Nについて図5に示す。

図5からわかるように、M変態応力σ_mおよび逆変態応力σ_aはNの増加とともに減少する。両変態応力は、繰返しの初期で大きく減少し、その後ほぼ一定値をとるようになる。この繰返しに伴う減少量は、σ_mのほうがσ_aより大きい。除荷後にも現れる残留ひずみε_pの増加量は繰返しの初期で大きく、その後徐々に小さくなる。このような繰返しに伴う変形特性能の生じる理由は、3-1節でも検討したように、次のように考えられる。M変態および逆変態の進展に伴いM相と母相の界面は繰返し移動する。この界面の繰返し移動に伴い生じる転位の蓄積によりε_pが現れる。また、負荷過程ではσ_mが高く、転位の発生量が大きいので内部応力が大きくなくなる。これのために、繰返しに伴うσ_mの低下σ_mのほうがσ_aの低下σ_aよりも大きくなる。

M変態の開始点においては、Nが多くなっても応力の過程が現れる。これは、次に述べるに及ぶ。各サイクルにおいては完全除荷するために、除荷でM相はすべて母相に戻る。したがって、再荷負でM変態を起こすためには、M相の核の生成が必要である。これのために応力の過程が現れるものと考えられる。この応力の過程が現れるのは、Nの増加とともに減少する。

また、再荷負過程におけるε_m=5.5%の点では応力が増加する。ε_mの点で応力の増加する現象は図4の再荷負の場合と同じであり、Nが多くなっても現れる。

3-4 減減ひずみ振幅に関する繰返し特性 Exp. DSAにおいて初期ひずみε_m=6.5%でひずみ振幅が0.5%あるいは1%ずつ漸次減少する場合の応力-ひずみ曲線を、各温度Tについて図6に示す。図中のNは負荷-除荷の繰返し数を表す。

図6からわかるように、Nの増加とともにM変態が減少する。
応力 σ_N は減少する。繰返しに伴う σ_N の減少量は繰返しの初期で大きく、その後徐々に小さくなる。逆変態応力 σ_n も N の増加とともに減少するが、その減少量は σ_N の減少量に比べて小さい。繰返し変形を受けることにより σ_n および σ_N の減少する性質は、図 5 で観察された一定最大ひずみ下での変態応力の繰返し挙動とほぼ一致する。

また、繰返しに伴う σ_N の減少量および除荷後に現れる残留ひずみ、温度 T が高いほど大きい。これは、T の高いほど σ_N が高く、対応して発生する転位の量が多いことにより生じるものと考えられる。

M 変態の開始点における応力の行い過ぎは、最初の負荷でのみ現れる。この応力の行い過ぎの量は、T が高いほど大きい。

また、$T=333 \text{ K}$ の場合、最初の負荷過程において約 200 MPa の近傍で応力-ひずみ曲線が折れ曲がっている。この曲線の折れ曲がりは R 相変態によるものである（19）-（20）。

3-5 滅増ひずみ振幅に関する繰返し特性

Exp. ISA において初期ひずみ $\varepsilon_{m_1}=4\%$ でひずみ振幅が 0.5\%あるいは 1\%ずつ渐次増加する場合の応力-ひずみ曲線を図 7 に示す。図中の N は負荷・除荷の繰返し数を表す。

図 7 の応力-ひずみ線図では、線が複雑に交差しており、詳細な挙動はわかり難いが、非常に規則的な挙動をしている。この点を明確に示すために図 8 にその模式図を示す。図 8 の応力-ひずみ曲線上に示した矢印の数は、負荷・除荷の繰返し数 N に対応している。

図 7 と図 8 からわかるように、M 変態応力 σ_N について、$0\varepsilon_{m_1}$ での値と、$\varepsilon_{m_1}\varepsilon_{m_2}$、$\varepsilon_{m_2}\varepsilon_{m_3}$、$\varepsilon_{m_3}\varepsilon_{m_4}$ の間の値はほぼ一致する。しかし、$\varepsilon_{m_1}\varepsilon_{m_2}$、$\varepsilon_{m_2}\varepsilon_{m_3}$ の再負荷過程での M 変態応力は $\Delta\sigma_N$ だけ低下する。この M 変態応力の低下 $\Delta\sigma_N$ は、N の増加とともに大きくなる。

この σ_N の繰返し挙動の生じる機構を説明するために、M 相と母相の界面の移動を、ルーダース帯の成長と消滅に対応させて模式的に図 9 に示す。図 9 では、M 変態した部分を M-phase, 未変態部分を A-phase とし、負荷・除荷過程における変態応力と過程の終点のひずみを示している。図 9 に示すように、$0\varepsilon_{m_1}$ までの負荷では、M 相域は σ_N のもとで ε_{m_1} まで進展する。次に、$\varepsilon_{m_1}\varepsilon_{m_2}$ の除荷では、逆変態により M 相域は ε_{m_2} まで後退する。続いて $\varepsilon_{m_2}\varepsilon_{m_3}$ の再負荷では、まず $\varepsilon_{m_2}\varepsilon_{m_3}$ の間は最初の負荷で M 変態を 1 回経験しているので、$\Delta\sigma_N$ だけ低い応力で M 変態が生じる。次に、$\varepsilon_{m_2}\varepsilon_{m_3}$ の間は未変態域であり、初めて M 変態を経験するので、$0\varepsilon_{m_1}$ の間と同じ σ_N で M 変態が生じ

図 8 ひずみ振幅が増加する場合の応力-ひずみ曲線の模式図
ひずみ変動を受けるTiNi形状記憶合金の変態繊弹性挙動

図9 ひずみの増加・減少に伴う変態域と変態応力の関係

4.36 変態応力の繊返し特性

図10 M変態応力と逆変態応力の繊返し挙動（T=353K）

図11 ひずみ振幅が異なる場合のM変態応力と繊返し数との関係

図11からわかるように、いずれのひずみ変動の場合においても、温度が高いほど繊返しに伴うσMの低下は大きい。これは、温度が高いほどσMが高く、繊返し変形で生じる応力の発生量が多く、対応して生じる内部応力も高くなるためである。また、T=353KでのσMの比較から、ひずみ振幅の変動形式が異なる場合においても、σMはほぼ一様していることがわかる。これは、図2～図4で確認したσAとσMが最大ひずみあるいは除荷ひずみに依存しないことに対応する。すなわち、M変態と逆変態はM相の成長と消滅で現れるので、負荷・除荷の繊返し変形を受ける部分においては、繊返し振幅が増加あるいは減少する場合においても、ひずみ振幅一定の場合と同じ変態の繊返しを経験し、このため同じσMの低下が現れる。

4. 結 言

TiNi SMAのM変態に伴うPEの研究として、様々なひずみ変動を伴うサブループに関する繊返し特性を実験的に調べ、得られたおもな点は次のよう
まとめられる。
（1）ひずみがM変態域内で変動する場合、M変態応力および逆変態応力は繰返し変形を受けることに
より減少する。繰返し変形により減少する両変態応力
の性質は、ひずみ変動の形態に依存しない。
（2）M変態および逆変態の終了点を越えてひず
みが変動する場合、M変態および逆変態の開始点にお
いては、変態応力の行き過ぎが現れ、変態応力は減少
する。変態応力の行き過ぎ量および減少量は、温度が
高く、最大ひずみが大きいほど大きい。

本研究を行うに当たり実験に協力された愛知工業大
学の学生諸君、多大のご援助をいただいた木村朋教授
ならびに岩永弘之助教授に感謝する。また、文部省
科学研究費補助金一般研究（C）の援助を受けたことを
記し謝意を表す。

文献
（1）舟久保敏、形状記憶合金、（1984）、34、産業図書
（2）鈴木、実用形状記憶合金、（1987）、46、工業調査会
（3）田中・戸伏・宮崎、形状記憶合金の機械的性質、（1993）、30、
貴賢堂
（4）三浦、材料、37-418（1988）、735。
（5）今山・山本研、機能性金属材料、（1985）、19、東京大学出版
会
（6）Miyazaki, S., Imai, T., Igo, Y. and Otuka, K., Metall.
（7）鳥取、機械の研究、39-6（1987）、653。
（8）戸伏・大橋・川口、材料、39-444（1990）、1242。

（9）Srinivasan, A. V., Cutts, D. G. and Schetky, L. M.,
（10）Duerig, T. W. and Melton, K. N., MRS Int'l. Symp. on
（11）Duerig, T. W. and Zadno, R. (Duerig, T. W., Melton, K.
N., Stockel, D. and Wayman, C. M. 编), Engineering
Aspects of Shape Memory Alloys, (1990), 369, Butter-
worth-Heinemann。
（12）戸伏・田中・島・沢田・服部、機器、58-549, A (1992)
（13）Tanaka, K., Kobayasi, S. and Sato, Y., Int. J. Plasticity,
2 (1986), 59。
（14）田中・佐藤、機器、53-491, A (1987), 1368。
（16）戸伏・岩永・田中・島・沢田、機器、57-543, A (1991), 2747。
（17）宮崎・坂本、日本金属学会会報、24-1 (1985), 33。
（1989), 2245。
（20）穂美・木村・岩永・戸伏、機器、55-511, A (1989), 628。
（21）川口・大橋・戸伏、機器、56-521, A (1990), 150。
（22）宮崎、材料、39-445 (1990), 1329。
（23）Tanaka, K., Hayashi, T., Itoh, Y. and Tobushi, H.,
（25）戸伏・田中・木村・島・沢田、機器、57-543, A (1991), 2753。
（26） Daisy, 日本金属学会誌, 45-6 (1985), 639。
（28）沢田・戸伏・木村・服部・田中、機器、58-553, A (1992)
1696。