ユーザフレンドリーな圧力容器構造設計システムの開発*

佐藤拓哉*, 野本妙子**, 門謙一郎***
矢川元基***, 吉村忍****

Development of User-Friendly Structural Design System for Pressure Vessels

Takukya SATO, Taeko NOMOTO, Kenichirou KADO,
Genki YAGAWA and Shinobu YOSHIMURA

This paper describes a new user-friendly structural design system for pressure vessels which is based on finite element stress analyses. A basic concept of the developed system is to minimize the input data required for the finite element analyses and to perform the analysis quickly. To realize this, the system consists of the finite element modeling module based on fuzzy knowledge processing, the input data generation module, the finite element analyzer, the graphical user-interface module for analysis results and the stress evaluation module. Fundamental performances of the present system are clearly demonstrated through the analysis of a top nozzle.

Key Words: Structural Analysis, Finite Element Method, Design Automation, Preprocessor, Automatic Mesh Generation, Stress Evaluation, Fuzzy Knowledge Processing, Expert System

1. はじめに

この20年程の間に有限要素法による構造解析法が著しく発展し, 静的弾性解析はもとより, 弾塑性やクリープなどの非弹性問題, 大変形や接触などの幾何学的非線形問題, 振動や衝撃などの動的問題, および破壊力学問題まで解析することが可能となった。特に火力, 原子力発電プラントや化学プラントにおいて高温高圧にさらされる構造機器が多く存在し, それらの構造健全性の検討のために, 有限要素法が重要な役割を果たしてきた。

しかしながら, 有限要素法に基づく詳細解析法の利用は, 新製品の開発やR&Dの色彩の強い設計に用いられた特定の技術者に限られやすく, 一般の設計現場の技術者にはなかなか浸透していない。その大きな理由として, コンピュータの急激な処理速度向上にかかわらず, 入力データの作成や解析結果の処理などのユーザインタフェース部分の効率化がそれほど進んでおらず, しかも, 解析条件の設定や解析結果の評価などに専門的な知識やノウハウが必要となる点が挙げられる。

従来も, ユーザインタフェース部分の効率化を目指して, プリ・ポストプロセッサの開発研究が進んでいるものの**-***, 総合的な構造設計システムとして一般の設計技術者にとって使いやすいものはほとんどない。

本研究では,

(1) 入力データの準備から解析結果の解釈までの全過程の処理時間を飛躍的に短縮できること,

(2) システムを利用する上で必要となる専門的な知識や経験が極めて少なくて済むこと,

(3) 簡単な操作で利用できること, という三つの要件を満足する新しい圧力容器構造設計システムを開発したので報告する。

2. システム概要

本システムでは, 1章で挙げた要件を満足するために, 次の手法を採用した。

(1) 著者らの一部が開発してきたあいまい知識処理法に基づく自動要素分割手法を採用することにより, 形状定義に要する労力を減じて, 通常の有限要素手法モデルを完全に自動的に構築できる。その際, 形状データに対して境界条件を指定するだけで, 境界条件を
含む完全な有限要素モデルを要素分割を意識することなく構築できる。この結果、解析対象の形状変更や寸
法変更に対してもわずかなデータ操作で迅速に対
応できる。

（2）有限要素モデルの作成にリンクして、解析結
果も自動的に処理され、応力評価テーブルの形式で出
力される。

（3）解析対象に適した要素分割の照査情報、境
界・荷重条件の設定法、非定常熱伝導解析における時
間増分の設定法、応力評価断面の選定法など、適切な
有限要素解析に必要となる経験的な知識やノウハウを
システム自体に組込むことにより、解析経験やノウハ
ウを持つない一般の設計者でも容易に使用できる。

（4）ワークステーションのグラフィック機能を随
所に活用することにより、解析や設計の初心者にも使
いやすくした。例えば、基本解析モデルが戸上にグ
ラフィック表示されるので、それを見ながら寸法を設
定することができ、入力後にその寸法とおりの解析モ
デルがグラフィック表示される。また、材料データは、
画面上の材料メニューからマウス操作で選択するだけ
で作成される。

システムの構成を図1に示す。本システムは、解析
モデルの作成と解析条件の設定のためのモジュール
（プリプロセッサ）、有限要素解析用データの作成モジ
ュール（インタフェイス）、解析の実行モジュール
（ソルバ）、解析結果の図化と応力評価のためのモジュ
ール（ポストプロセッサ）からなる。それぞれのモジュ
ールは中間ファイルによって結ばれている。ソルバと
図化のためのモジュールには市販パッケージを利用し
た。

本システムは、基本モデルデータファイルと材料デ
ータファイルの2種類のデータファイルを備えてい
る。基本モデルデータファイルには圧力容器の典型
な構造不連続部の形状が登録されており、設計者はこ
の中から解析モデルを選択できる。基本モデルは、形
状・寸法のほかに、材料の異なる領域、境界条件コー
ド、応力評価断面などに関する情報も保持している。
材料データファイルには、ASME CODE SEC. VIII
DIV. 2に関連する材料特性のほか、いくつかの保温材
と耐火材の材料特性が登録されている。

3章に、本システムの核となっている解析モデルの
作成と解析条件の設定のためのモジュール、自動要素
分割法、応力評価のためのモジュールについて、概要
を述べる。

3. システム構成

3.1 解析モデル作成

（1）基本モデル選択

モデルの作成にあたっては、まず基本モデルデータ
ファイルに登録されている基本モデル（軸対称モデ
ル）から、解析しようとする形状を選択する。図2に示
すように、選択メニューには登録されている各基本モ

図1 システムの構成

NII-Electronic Library Service
デルの形状が描かれており、設計者は解析に用いるモデルを見て判断して選択する。選択された基本モデルに対して、寸法を入力し、材料データコードを選択し、要素分割を行い、境界条件データを入力することで、解析モデルが作られる。また、設計者が作成した解析モデルは、任意のファイル名を付けて保存することがで、簡単に変更したり、追加することができる。

基本モデルデータには次の情報が含まれる。
- 領域を設定している面の種類
- 寸法線の入力コード
- 基本寸法
- 同一材料の領域を表す情報
- 材料データコード
- 境界条件の種類と位置を表す情報
- 荷重条件の種類と位置を表す情報
- 応力評価断面の位置情報

（2）寸法設定

有限要素モデルの形状は、一般に節点座標を入力して定義される。ここでは設計者が入力しやすいように、図3に示すような設計図に添った入力方法を採用してい。まず画面上に表示されている基本形状の上に赤色で入力箇所が表示されるので、設計者はこの指示された箇所の寸法を入力する。すでに入力済みの箇所の寸法線は、青色に変わる（画面ではカラー表示だが、図3では太線が入力指示位置を表し、点線が入力済みを表す）。このようにしてすべての寸法の入力が終了すると、自動的に解析モデル形状が作成され、画面上に表示される。

（3）材料データの設定

材料データコードとは、材料特性を材料データファイルから引き出す際に用われるコードである。材料コードテーブルには、設計者が選択しやすいように、日常使われている材料名が表示されている。材料データコードの選択画面の例を図4に示す。金属部、保温材部分、耐火材料部分と材料ごとに色別して画面に表示されるので、設計者は見て判断し、テーブル上のコードをマウスでクリックして材料コードを選択する。ここで設定された材料データコードを使い、材料データファイルから必要なデータを読み込む。読み込まれたデータは、要素分割後の各要素に材料特性データとして自動的に設定される。

（4）境界・荷重条件の設定

境界条件と荷重条件のタイプは、経験に基づいてあらかじめ基本モデルに設定されている。設計者は指示に従ってデータを入力すれば、解析に必要な入力データを得ることができる。

（a）非定常熱伝導解析の場合

容器の内面は内部流体と接触するので、内部流体の温度履歴と熱伝達係数の入力が、容器の外気には、風速と外気温度の入力が必要である。本システムでは、温度履歴と熱伝達係数を入力する際、左画面上に各履歴が折れ線グラフで表示されるので、視覚によりデータを確認しながら入力できる。またスカートモデルのホットボックス部は自動的に熱境界として扱われる。特に入力データを必要としない。

（b）応力解析の場合

応力解析は、荷重ごとに解析を行う。荷重の種類と
3.2 基本原理

本システムでは、東京大学矢谷研究室で開発されたあいまい知識処理手法による自動要素分割手法を採用した。この手法は、あいまい知識処理手法を用いて、節点分布を自動化し、解析領域における節点を発生し、この節点を Delaunay 法を用いて三角形対称要素を生成するものである。基準的

には、節点密度関数として任意の関数を使用できるが、実際に要素分割をする際に、解析領域全体に適用できる関数を設定することは難しい。解析者の感覚としては、「全体としてこのくらいの分割」としよう、「特にこの部分は細かく分割しよう」というものに近い。したがって、このシステムでは、できるだけ解析者の感覚に近い形で節点密度関数が定義できるように作成した。

（2）節点発生

本手法では、まず解析領域に対して節点を発生し、節点を Delaunay 法で結んで要素を作成するため、要
で、設計者は自在に要素分割を変更できる。
（3）要素生成
三角形要素を以下に示す手法で四角形要素に変換する。
まず、隣接する三角形要素のベアを集め、一つの四角形要素に変換する。ある三角形を考えたときに、隣接する三角形のうち、四角形にした場合に、四角形の長さの最大値が最大となるベアを最適ベアと呼ぶ。すべての三角形要素の最適ベアを求めた後、互いに二つの三角形が最適ベアである場合のみ、四角形を作成する。
次に、四角形にならなかった三角形要素の処理を行う。残った三角形を三つの四角形に分割する。分割は三角形の重心から各辺の中点に直線を引く、当然、接している要素との間での分割の不整合を生じさせないので、不整合がなくなるように細分割を領域境界に達するまで伝ばせる。

上記の手続きで作成した要素の中には、一部にゆがみがいるので、平滑化を行い、できるだけゆがみを取り除く。平滑化には、ラプラスシミューミングとして呼ばれる手法が用いる。この手法は、すべての節点を、その節点と隣接した節点が構成する四角形の重心へと移動する操作を繰返すものである。領域境界上の節点は、多角形の重心へと移動した後、その重心に最も近い境界へ移す。

3-3 材料データファイル
解析に必要な材料特性（熱伝導率、温度伝達率、ヤング率、熱膨張係数など）は、金属、保温材、耐火材のすべてについて材料データファイルとして用意されている。要素に設定された材料データコードに対して、各要素の材料特性が自動的に決められる。このほか、金属については解析後の応力評価に使用するため、設計応力強さと疲労曲線のデータも材料データファイルの中に用意されている。

3-4 応力評価
（1）基本方針
応力解析の結果は ASME CODE Sec. VIII Div. 2に基づいて評価される。応力評価断面は基本モデルごとに設定されており、それぞれの断面について自動的に一次応力、二次応力、ピーク応力の評価を行う。応力評価用の設計応力強さ（Sₐ）とヤング率は、材料データコードに基づいて材料データファイルから読み取り、疲労曲線も同様に材料データファイルから読み取り、システム内に組込まれた補間式を用いて、疲労曲線を設定する。
（2）二次応力評価
各応力評価断面ごとに断面の応力成分の平均応力から応力強さを求める。各荷重の応力強さを組合せて、応力評価を行い、ノズル部分の応力評価には、設計圧力に対する結果と管壁反力に対する結果を組合せる、スカート部分の応力評価には、設計圧力、自重、軸向モーメントそれぞれに対する結果を組合せて行う。

（3）二次応力評価
各応力評価断面ごと、各時間ごとに、断面の応力成分の分布を断面近似して求めた内外表面の応力から応力強さを求める。さらに、各荷重の応力強さを組合せて、えた応力評価を行う。ノズル部分の応力評価は、運転圧力（時刻歴）、温度分布（時刻歴）、管壁反力それぞれに対する結果を組合せて行い、スカート部分の応力評価は、運転圧力（時刻歴）、温度分布（時刻歴）に対する結果を組合せて行う。

（4）ピーク応力評価
各応力評価断面ごと、各時間ごとに、断面の応力成分の分布を断面近似して求めた内外表面の応力から応力強さを求める。さらに、各荷重の応力強さを組合せて、えた応力解析を行う。自重の組合せは、二次応力評価と同じである。

4. システムの適用例
システムの適用例として、リアクタのトップノズルの熱疲労問題に適用した例を示す。このノズルは、機械的荷重としては内圧と配管反力を受ける。このほかに、内部流体があるとともに繰返し変化するので、それに伴って非定常熱応力が繰返し発生する。
保険材に含む解析モデルと要素分割の例を図7に示す。ノズル部分のコーナ部に細い要素が配置されているのがわかる。これは、この部分に応力が集中しやすいことを配慮した結果である。
初期状態を常温として、内部流体温度が変化し始めてから900秒後の温度分布を図8に示す。領域ごとの熱伝達係数の差異、場所による板厚の違い、保温材の影響によって不均一な温度分布になっている。
ノズル取付部近傍の内面と外面の温度および両者の温度差の時間的変化を図9に示す。一般に、近接2点間の温度差が大きくなったときに応力が高くなる。近接2点間の温度差が最大となる900秒後の温度分布に対して応力解析を行った。このときの応力強さの分布を図10に示す。図8で温度に配向が大きくになっている領域で、高い応力が発生している。ノズル取付部近傍の応力評価断面における応力成分の分布を図11に示す。
X点に計算結果があり、これをカーブフィットして実線で表している。点数はその結果を板厚内で平均化して求めた応力強さあるいは等価曲げ応力である。
応力が一次局部変形、等価曲げ応力が二次応力、実線の曲面における外挿値から一次局部変形と二次応力を引いた値がピーク応力となる。これに機械的荷重による応力を重ね合わせて応力評価を行う。同様の処理をいくつかの応力評価断面について実行し、最終結果をテーブル形式で出力する。

一連の処理の多くは自動化されており、必要最小限のデータ入力によって非常に短時間で最終結果を得ることができる。従来この種の解析には少なくとも数日を要していたが、このシステムを利用して数時間、場合によっては数十分で処理が可能となる。

5. おわりに

一般的の設計技術者による利用を目的として、有限要素法による詳細応力解析に基づく圧力容器の構造設計システムを開発した。本システムでは、あいまい知識処理手法に基づく自動要素分割手法を組込むことにより、有限要素モデルの作成プロセスを効率化した。また、解析・設計に係わるさまざまな経験の知識やノウハウをシステム内に組込むことにより、解析経験やノウハウを持たない一般的の設計者でも容易に利用できるようにした。さらに、グラフィック機能の活用により、ユーザフレンドリーなシステムとした。
本システムを利用してることにより、一般の機器設計者が非常に短時間に圧力容器の応力解析を行うことが可能となった。しかし、機器設計者の作業でカバーされていない部分がある。一つは、線形解析を行うか非線形解析を行うか、どのような非線形解析モデルを用いるか、あるいは二次元モデルで解析するか三次元モデルで解析するかなどの、解析法や解析モデルの決定プロセスである。これは、今回開発したシステムがカバーする範囲よりも上流工程にあたるプロセスである、設計段階で必要となる解析は常に同一とは限らないため、経験豊富な解像エンジニアの知見に基づき決定されているのが現状である。この点については、よりメタな知識の抽出とシステム化が望まれる一方、ただブラックボックス化するのではなく、どのようにして、そのような高級な解像技術者を教育していくかについて考える必要があります。

一方、本システムを用いて応力評価を容易に行えるとすると、その評価結果が設計の許容値を満足しなかった場合、なんらかの設計変更あるいは解析条件の変更が必要となる。設計の現場では、非定常温度分布に起因する熱応力による疲労解析のような複雑な問題を対象とすることが多いために、経験豊富な解析技術者の知見に依存することが多い。しかし、この点については、エキスパートシステム技術やニューラルネットワークに基づく新しい設計手法も提案されており、それらの技術の取り込みが望まれる。

文献

（1）矢川, 90年代の CAE と計算力学, 日本機械学会第69期
（2）大宮, 計算力学統合システム, 日本機械学会第69期
（3）三好, シューバイオニングにおけるプリ・ポスト
プロセッシング, 日本機械学会第69期通常総会講演論文
集, No.920-17, D(1992.4), 420-422.
（4）門・吉村・矢川・佐藤, あいまい知識処理手法による自動
要素分割と対話型 FEM 解析システム, 日本機械学会材料
（5）矢川・吉村・中尾・飛塚田, あいまいな知識処理手法によ
る自動要素分割システムの開発, 機論, 56-532, A(1990),
225-232.
（6）矢川・吉村・中尾・鶴, あいまい知識処理手法と計算幾何
学に基づく大規模自動有限要素分割法, 機論, 58-551, A
(1992), 243-251.
（7）矢川・浜田・吉村, ファジイ理論と計算幾何学に基づく3
次元自動要素分割と汎用 CAD システム, 日本機械学会第69
期通常総会講演論文集, No.920-17, A(1992.4), 118-119.
（8）Watson, D. F., Computing the n-dimensional Delaunay
tessellation with application to Voronoi polytopes,
（9）Sloan, S. W., A fast algorithm for constructing
Delaunay triangulations in the plane, Adv. Eng. Soft-
（10）Pourazady, M., and Radhakrishnan, M., Optimization
of a triangular mesh, Computers & Structures, 40-3
（11）Johnston, B. P., et al, Automatic conversion of triangu-
lar finite element meshes to quadrilateral elements, Int.
（12）望月・矢川・飛塚田, ニューラルネットワークに基づく
ブレンディング手册, 自動探点法, 機論, 60-579, C
(1994), 3649-3656.