Continuous Observation of Cavity Growth and Coalescence by Creep-Fatigue Tests in SEM
Masayuki ARAI, Takashi OGATA and Akito NITTA

Structural components operating at high temperatures in power plants are subjected to interaction of thermal fatigue and creep which results in creep-fatigue damage. In evaluating the life of these components, it is important to understand microscopic damage evolution under creep-fatigue conditions. In this study, static creep and creep-fatigue tests with tensile holdtime were conducted on SUS304 stainless steel by using a high-temperature fatigue machine combined with a scanning electron microscope (SEM), and cavity growth and coalescence behaviors on surface grain boundaries were observed continuously by the SEM. Quantitative analysis of creep cavity growth based on the observation was made for comparison with theoretical growth models. As a result, it was found that grain boundary cavities nucleate at random and grow preferentially on grain boundaries in a direction almost normal to the stress axis. Under the creep condition, the cavities grow monotonously on grain boundaries while they remain the elliptical shape. On the other hand, under the creep fatigue condition the cavities grow with an effect of local strain distribution around the grain boundary due to cyclic loading and the micro cracks of one grain-boundary length were formed by coalescence of the cavities. Also, cavity nucleation and growth rates for creep-fatigue were more rapid than those for static creep and the constrained cavity growth model coincided well with the experimental data for creep.

Key Words: Scanning Electron Microscope, Creep, Creep-Fatigue, Cavity Growth Model, Damage Mechanism

1. 緒 言

火力・原子力発電プラントで使用される主要機器・構造物では、定格運転時に生じるクリープ、および起動・停止時に生じる熱応力の繰返しに伴ったクリープ疲労による損傷が非可逆的に累積する。このため、このようないくむに起因する破壊を未然に防ぐために高温機器に適用うる種々の損傷評価法が提案されてきた(1)。しかし、さらにこれらの評価法の信頼性および推定精度向上させるためにはクリープ疲労条件下における微視的損傷過程を詳細に把握し、損傷メカニズムを明らかにする必要がある(2)。

著者ら(3)は、実験観察により直接的に損傷過程を把握するという目的で、オーステナイト系ステンレス鋼SUS 304を対象に破壊までの各段階で中断した試験片の観察面の金属組織観察を行うとともに、走査形電子顕微鏡(SEM)内高溫疲労試験機を用いて実機に近い低応力条件下でのクリープ疲労試験を行い、微小裂の発生から伝ばまでの連続観察を実施し、この結果、数mm以上の数十結晶粒以上の巨視き裂が形成されるまでの期間に対して約40％がキャビティ発生、成長に要されることが明らかとなった。このため、微小裂の発生につながるキャビティ発生・成長挙動を把握することはクリープ疲労条件下での損傷メカニズムを解明する上で極めて重要である。

キャビティ成長挙動については主にクリープ条件下において解釈的な研究が中心になされてきた(4)。これに関する先駆的研究として Hullら(5)は、応力軸から垂直な粒子粒度に規則的に配置した球形状キャビティが、引張応力を駆動力とした粒界拡散により成長するものと仮定し、これに基づいたキャビティ成長速度則をもって定式化した。また、Chenら(6)あるいは Needlerら(7)は粒界拡散およびマトリックスでのクリープ変形を連成したより現実的なモデルを提案し、キャビティ成長過程におけるクリープ速度およびキャビティ形状変化の影響について詳細に調査している。一方、Dyson(8)はキャビティの発生に伴い粒界に堆積する原子層の増加速度が周辺の結晶粒でのクリープ速度に伴ってキャビティ成長が抑制されることを指摘した。しかしながら、これまでに実験片表面においては内部に生じた同一キャビティの成長過程を連続観察することが実際に装置上の理由で困難であったため、上記したキャビティ成長モデルの実験に基づいた詳細な検証は行われていない。また、クリープ疲労条件
下においては解析的および実験的事実はその詳細なキャビテイ成長挙動の把握はほとんど行われていないのが現状である。

本研究では、前報18と同様にSEM内高温疲労試験機を用いて実験に近い低応力条件でクリープおよびクリープ疲労試験を実施し、試験開始後から試験片表面を詳細に連続観察することによりキャビテイ発生・成長・合体と微小き裂発生までの微視的損傷過程を把握する。さらに観察結果に基づいてキャビテイ成長挙動を定量化し、クリープキャビテイ成長に対する繰返し負荷の影響、ならびに従来提案されてきたキャビテイ成長モデルの妥当性を検討する。

2. 試験片および試験方法

供試材は平均結晶粒径が約40μmの溶体化処理されたオーステナイト系ステンレス鋼SUS304であり、その化学成分を表1に示す。試験片形状は図1に示す小型試験片であり、SEMによる観察が容易になるように試験片表面をサンドペーパー(目1000)にて研磨し、超音波洗浄後、塩酸(30cc)＋硝酸(10cc)の腐食溶液にてエッチングした。さらに観察領域を特定するために試験片中央部にマイクロビッカース(200g)にて図1に示される間隔で圧痕を付けた。本研究では、この領域内を対象として損傷(キャビテイおよび微小き裂)過程の連続観察を行った。

連続観察に用いた試験装置は、SEMと電気油圧サーボ式高圧疲労試験機を組合せたもので、試験過程において試験片表面の微視的損傷過程をSEMによって連続的に観察できるSEM内高圧疲労試験機である。試験機は、最大荷重9.8kN、最高使用温度712℃であり、伸びの計測はバイ#gaージ式高温伸び計を用いて行った。また、SEM内の真空度は約6.5×10^{-2}MPaである。

試験条件は、試験温度873K、引張応力147MPaのクリープ試験、および図2に示される応力制御クリープ疲労試験を実施した。ただし、クリープ疲労試験において最大引張応力で挿入される保持時間は10分と60分の2ケースを設定した。なお、本試験開始前にある程度の繰返し硬化をさせたひずみ挙動を安定させるため引張保持のない疲労試験を同応力で100サイクル実施した。

SEMによる連続観察は、400倍および1000倍で試験開始から応力負荷中約20時間の間隔で観察を行った。また、得られた観察結果からキャビテイ成長量を定量化するために、キャビテイ領域の半径と粒間の接触点距離をキャビテイ長2cと定義した。さらにキャビテイ成長速度dc/dtを次式により算出した。

\[
\frac{dc}{dt} = \frac{c_{i+1} - c_i}{t_{i+1} - t_i}
\]

ここで、c_i、t_iはi回めの観察時におけるキャビテイ半径および時間をそれぞれ表す。ただし、キャビテイが合体した時点での成長速度は算出しなかった。

3. 試験結果

3.1 表面全体の損傷観察

図3に保持時間60分のクリープ疲労試験における試験片表面の観察結果を示す。同図は、400倍でSEMにより撮影された写真をトレーシングヘクターネットキャビテイおよび微小き裂のみを転写して作成したものであり、それぞれの境界において1/2結晶粒界長以上の空けきを微小き裂と定義

NII-Electronic Library Service
試験開始後、23時間では既に粒界で多数のキャピテイが観察された。191時間ではさらにキャピテイ数を増しており、これらは偏在することなくランダムに発生している。425時間では、応力軸に対してほぼ垂直な粒界で1結晶粒長の微小裂が観察されたが、3・2節に詳細観察結果を示すようにこれも微小裂はキャピテイの合体により発生したものである。なお、保持時間10分のクリープ疲労試験およびクリープ試験においては損傷の発生・成長時間には相違があるものの、損傷形態は同様であった。

表面で発生した損傷の内部方向への進展状況、および表面と内部の損傷状態の相違を調べるために、保持時間60分では繰返し数N=639、保持時間10分ではN=2331で試験を終了し、同試験片の縦断面をSEMにより観察した。表面で発生していた微小裂は、保持時間10、60分ともに内部方向へほぼ1/2結晶粒長の粒界き裂を形成しており、さらに表面に比べ内部において発生したキャピテイは非常に少なかった。

以上の観察結果より保持時間10分、60分のクリープ疲労条件下における微視的損傷過程は、表面において結晶粒の方位、粒界の構造等といった金属組織的な影響を大きく受けて結晶粒界でランダムにキャピテイが発生し、その応力軸に対し垂直方向の粒界面に存在するキャピテイが粒界に作用する局所的な引張応力を駆動力として優先的に成長し、さらに繰返し負荷の影響を伴いながらこれらキャピテイが合体して1結晶粒長の微小裂となる。内部においては表面で発生した微小裂が粒界に沿って進展し、その後内部でもキャピテイ発生・成長が生じることで損傷が次第に進行する。

3・2 キャピテイ成長運動の連続観察 クリープ条件下での代表的なキャピテイ成長・合体挙動の連続観察結果を図4に示す。試験開始から45時間で矢印(a)に示す粒界において多数のキャピテイが発生していた。これらはだ円形状を保ちながら粒界面に沿って成長し、618時間で合体して1結晶粒長の微小裂となった。一方、矢印(b)に示す粒界においては試験開始から92時間で浅いくぼみが観察されるようになっただけはキャピテイ核である。これらは、時間の経過とともに試験片内部方向へ深さを増す様相を呈し、160時間においては1000倍でも十分に観察できるほどの大きさとなった。従来、キャピテイ発生のメカニズムについてはRajmに示した介在物を起点とした粒界すべりによる発生するものと考えられてきたが、本観察結果からは上述したメカニズムというよりも粒界上での熱活性化によるゆらぎにより原子空孔が凝集し、このようなキャピテイ核が生じたものと考えられる。

保持時間60分のクリープ疲労条件下での代表的なキャピテイ成長・合体の連続観察結果を図5に示す。
試験開始から23時間では2μm程度のレンズ状キャビティが観察される。図中の矢印（C）のキャビティに注目すると、レンズ形状を保ちながら成長したキャビティは75時間で“くの字”に変形する。これは、キャビティの周囲を取り囲む結晶粒や粒界で生じた局所的に不均一なひずみ分布によるものと推測される。191時間では再びレンズ形状に回復するとともにキャビティ縁は断くなり、最終的にキャビティとの合体を繰返して286時間で1結晶粒長の微小き裂となる。

以上の観察結果より、クリープ条件下において粒界に発生したキャビティは円形状を保ちながら徐々に成長するが、クリープ疲労条件下においては形状変化に伴う不安定な成長挙動を示し、隙接するキャビティとの合体を経ることで急速に成長することから、繰返し負荷を伴って生じた粒内、粒界近傍の局所的なひずみがキャビティ成長、合体へ大きく寄与しているものと推測される。

4. 考察

4.1 クリープとクリープ疲労条件下におけるキャビティ成長挙動の相違

3章では詳細な連続観察によるクリープ、クリープ疲労条件下でのキャビティ成長・合体挙動を定性的に把握した。4.1節では先の結果によりキャビティ成長挙動の定量化を行うことで、クリープとクリープ疲労条件下に見られるキャビティ成長挙動の相違について考察する。

クリープ条件下におけるキャビティ成長挙動を図6に示す。図6は図4の矢印(a)に対応しており、図中のNo.1〜No.5は同粒界面において計測対象としたキャビティの符号である。図6よりキャビティ長は時間の経過とともに単調に増加することがわかり、このような挙動は他の粒界で発生したキャビティにおいても
見受けられた。またキャピティ合体は、No.4とNo.5において約300時間、それ以外は約1500時間で生じており、これは図1に示したキャピティ合体における時間依存性を変化させるため、各々のキャピティ成長速度は後述するように同一粒界上でほぼ同じであるが、キャピティの発生する間隔は粒界構造の影響を受けて粒界上で一定とはならない。このため、キャピティが一様に成長しても個々のキャピティ間隔が異なるために上述した相違が生じたものと考えられる。ただし、発生時間の影響も考えられるが、観察対象としたキャピティにおいて発生したものと後に発生したものとの時間差はたかが20時間であるため、この影響は非常に少ない。図7に示す(1)に基づいて算出したキャピティ成長速度とキャピティ半長に及ぼす関係を示す。図7より、すべてのキャピティ半長にわたり成長速度の大きな変動は見受けられない。その速度は10^{-10}～10^{-12} [m/s] のオーダであることがわかる。

図8に図5に対応した保持時間60分のクリープ疲労条件下でのキャピティ成長挙動を示す。図8より単調増加の成長挙動を示したクリープ条件下でのキャピティ成長速度は、なおキャピティ長の增加・減少は、観察結果に見られたように発生初期にはだ円形状であったキャピティが緩和・負荷に伴って“く”的字形状に変形することで見かけ上のような成長挙動を示したものと考えられる。また、キャピティ合体までの時間もクリープに比べて速く、これはキャピティ間の不安定な粒界半長が原因となる。図9にキャピティ成長速度とキャピティ半長との関係を示す。図9には、応力軸に対してほぼ直線で3粒界を抽出して、それぞれをA、B、Cと符号を付けたものに価した。図9より、図7とは異なりすべてのキャピティ半長にわたりキャピティ成長速度は大きく変動し、特に増加時の成長速度はクリープに比べて2オーダ程度速い。このようにクリープとクリープ疲労においてキャピティ成長・合体挙動の相違が生じた力学的因子が、保持開所直後のクリープ速度によるものなのか、圧縮引張行程中に粒界近傍で累積した塑性ひずみによるものなのかは今後発表を進めることである。
り負荷されことによる見詰めのずみ履歴とこれにより生じる粒内、粒界近傍での局所ずみとの対応を明らかにすることが今後の課題と考えられる。

4・2 クリープキャピティ成長モデルの比較 4・1 節のクリープ条件での結果をもとに以下に述べる2種類のキャピティ成長則の妥当性について検討する。

（1）粒界拡散律連（Hull-Rimmer）モデル 本モデルはHullらにより提案されたものであり、キャピティが無限に長い粒界面に等間隔に配置され、粒界から垂直方向の局所所陥弾性を駆動力をとした原子空孔の移動、すなわち粒界拡散によりキャピティが成長すると仮定したものであり、これによるキャピティ成長速度は、

\[
\frac{dc}{dt} = D\left(1 - \frac{1}{c} \right) - \frac{\sigma - \sigma_0}{2 \left(\frac{1}{c} + \sigma_0 \right) - c}
\]

である。ここで、Dは粒界拡散パラメータと呼ばれ、

\[D = D_0 e^{Q/kT} \]

で表される。ただし、cはキャピティ半径、2c0はキャピティ間隔であり、D0は粒界拡散係数、δは粒界幅、Qは原子容、kはボルツマン定数、Tは絶対温度をそれぞれ表す。また、σきは無限遠方での引張応力、σ0はキャピティ表面での表面応力を表しているが、本計算において表面応力は簡単のため無視した。なお、式(2)は文献(5)の等価条件を二次元平面問題に置き換えで導出し直したものである。

（2）拘束条件下拡散律連（Dyson）モデル 本モデル（1）では、キャピティの成長に伴って粒界面が自由に相互移動するものとしているが、Dysonは粒界拡散により粒界に堆積する原子層の増加速度が粒界の周囲で生じているクリープ速度よりも速ければ、粒界での堆積速度がクリープ速度に達されることを指摘した(8)。ただし、Dysonは概念的なモデルのみを提案しているだけであるため、Riceモデル(9)を参考にして、本研究では上記概念を以下の要領で定式化し、これにより得た成長速度式を用いる。

図10に本モデルの概念図を示す。特定の粒界ファセットを取り囲む多結晶体はNorton則に従うものとし、また対象とされる粒界ファセットは二次元平面応力状態下にある無限平板中の中央き裂に等価なものと考える。このため中央き裂長さは結晶粒径2dに等しい。粒界ファセットの平均原子堆積速度は、無限遠方有作用された引張応力と中央き裂上面に作用させた引張応力との差で生じるものとすれば、

\[\delta = \beta ((\sigma - \sigma_0) /\sigma)^{\epsilon_d} \epsilon \]

ここで、\(\epsilon_d\)は粒界ファセット近傍に作用する局所的な引張応力、\(\epsilon\)は無限遠方でのクリープ速度、\(\beta = \sqrt{3} \pi \epsilon_d / 2\)、\(n\)はNorton則におけるクリープ指数を表す。一方、キャピティは式(2)で表される粒界拡散により成長することを目的とするため、これによる平均原子堆積速度は、

\[\delta = D_0 e^{Q/kT} \left(1 - \frac{1}{c} \right) - \frac{\sigma - \sigma_0}{2 \left(\frac{1}{c} + \sigma_0 \right) - c}
\]

表2 計算に用いた物性値

<table>
<thead>
<tr>
<th>Atomic volume Ω</th>
<th>1.21 × 10^{-29} [m^3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boltzmann's constant k</td>
<td>1.38 × 10^{-23} [J/K]</td>
</tr>
<tr>
<td>Creep constant n</td>
<td>14.3</td>
</tr>
<tr>
<td>Grain boundary diffusion coefficient δ D0</td>
<td>5.48 × 10^{-22} [m^2/s]</td>
</tr>
<tr>
<td>Absolute temperature T</td>
<td>873 [K]</td>
</tr>
<tr>
<td>Minimum creep rate ε_m</td>
<td>8.32 × 10^{-5} [1/hr]</td>
</tr>
<tr>
<td>Stress σ</td>
<td>147 [MPa]</td>
</tr>
<tr>
<td>Grain boundary length 2d</td>
<td>22 [μm]</td>
</tr>
<tr>
<td>Cavity spacing 2c0</td>
<td>5 [μm]</td>
</tr>
</tbody>
</table>
を得る。なお、式 (6) において、2d→∞ なる極限をとると式 (2) と一致する。ここで、

\[L = \left(\frac{Dn_s}{\varepsilon c} \right)^{1/3} \]

(7)

であり、式 (7) は Rice(12) により導入された material length scale と等価なものである。このパラメータによりキャピティ成長メカニズムは次のように分類することができる。すなわち、L が c より大きいときは散乱支配、小さいときは周期の結晶粒での転位挙動が支配的な成長メカニズムとなる。本実験の場合、表 2 の物性値を用いると \[L = 15.18 \mu m \] となり、キャピティ成長メカニズムは粒界拡散が支配的となることからモデル化で仮定された粒界拡散支配は本実験に対しては妥当な仮定といえる。

図 7 に示した 2 種類 [モデル(1), (2)] のキャピティ成長速度と本実験結果との比較を示す。また、本計算で用いた物性値を表(3)に示した。図 7 によりキャピティが周囲の結晶粒からの拘束を受けていない成長則、すなわちモデル(1)の結果は本実験値に比べて速い一方、周囲の結晶粒変形からの拘束効果を考慮したモデル(2)はモデル(1)に比べて本実験値に近いことがわかる。また、c が c_c に近づいているとモデル(1)のキャピティ成長速度は急激に増加しているが、このモデルではキャピティが合体することで材料が破壊することを意味している。一方、モデル(2)ではキャピティ成長速度はモデル(1)に見られるような急激な増加現象を生じていないが、これはキャピティ合体により 1 結晶粒の微小さ裂になったことを意味し、上述した傾向を踏まえてモデル化としては後者すなわちモデル(2)のほうが現実的といえる。本比較では実験結果との十分な一致を示さなかったが、その理由として計算に用いた微視的物性値、例えば粒界拡散係数は本供試材では厳密には一致しており、さらにモデルの簡素化、すなわち特定な粒界ファセット以外は連続体としたこと、ファセット近傍での不均一なひずみ分布を無視したことと考えられる。

本研究では、クリープ疲労条件下におけるキャピティ成長速度の理論的検討にまで踏み入っていなかったが、本実験結果はキャピティ成長挙動を理解するための、そして理論的検討を行う上での貴重な結果と考えられる。今後、キャピティ成長への微小さ裂締めの影響を詳細に調べるために粒内、粒界近傍での微視的形状挙動を把握し、これに基づいた成長モデルの導出を行うことを考えている。

5. 結 言

SEM 内高温度荷疲労試験を用いて SUS 304 鋼を対象に実験に近い応力条件でのクリープおよびクリープ疲労試験を実施し、試験片表面に生じた微視的損傷、すなわちキャピティ発生、成長から微小さ裂発生までの連続観察を行った。この結果、SEM による連続観察からは、(1) 負荷形態がクリープ、クリープ疲労によらずキャピティは粒界でランダムに発生するが、応力軸からはほぼ垂直な粒界面に存在するキャピティが成長、合体して 1 結晶粒長の微小さ裂となる。このことから、キャピティ成長の駆動力には粒界面に垂直な方向に局所的に作用する引張応力が関与しているものと推測される。(2) クリープ条件下では粒界で浅いくぼみとなってキャピティ核が発生し、試験片内部方向へ深さを増すことでだ円形状キャピティが形成され、これらが粒界面に沿って成長する様子が観察された。一方、クリープ疲労条件下においては同様のメカニズムで発生したキャピティが繰返し負荷の影響を受けながら成長し、隔離するキャピティとの合体を経て 1 結晶粒長の微小さ裂となる様子が観察された。一方、連続観察結果を定量化したことにより、(3) クリープ条件下においてはキャピティ長は時間の経過とともに単調に増加し、その成長速度は約 10^{-12} [m/s] のオーダーである。また、キャピティ合体はキャピティ成長により隔離するキャピティを縫合するこ

一方、クリープ疲労条件下においては繰返し負荷に起因したキャピティ長の増加、減少が観察され、キャピティ合体はキャピティ間の不安定な粒界はく離により生じ、これが微小さ裂発生までの時間を加速する。また、クリープ条件下に比べてクリープ疲労条件下のほうが成長速度は 2 オーダー程度速いことが明らかとなった。(4) クリープ条件下においては、本実験結果に基づいて従来提案されてきたキャピティ成長モデルの妥当性について検討した。この結果、周囲の結晶粒変形からの拘束効果を考慮した粒界拡散律速キャピティ成長モデルが本実験結果に近いことが明らかとなった。

文 献

(2) 荒井・斎方, 電力中央研究所調査報告, TW3032 (1993).
(3) 紐方・荒井・新田, 材料, 44-486 (1995), 52.
走査形電子顕微鏡内クリープ疲労試験によるキャピティ成長、合体挙動の連続観察

(13) 絹方・荒井・新田, 電力中央研究所報告書, T93018(1993).