アルミニウム合金ダイカストの破壊靭性および疲労き裂進展特性*
金沢憲一1, 久保田義之2, 中村和宏2, 平野一美3

Fracture Toughness and Fatigue Crack Growth Characteristics of Aluminum Alloy Die Castings

Kenichi KANAZAWA, Hajime KUBOTA, Kazuhiro NAKAMURA and Kazumi HIRANO

Effects of a surface layer with chill structure, specimen thickness, shape of mold and powder lubrication in a sleeve on fracture mechanic characteristics were investigated for aluminum alloy die castings ADC12 with two different types of molds (flat and staircase shapes). The results are as follows. (1) In the case of a flat mold, a decrease of thickness improves mechanical properties. A surface layer with chill structure has a substantial influence on mechanical properties, but little influence on fracture toughness. (2) In the case of the staircase mold, the mechanical properties are the same as for the flat mold. On the other hand, the powder lubrication in the sleeve improves the fracture toughness and reduces the scatter in fracture toughness. (3) There is little influence of both the surface layer with chill structure and the specimen orientation on the fatigue crack growth resistance, but with decrease of specimen thickness, the fatigue crack growth resistance decreases, especially in the region of near threshold fatigue crack growth rate. In addition, the lubricating method has no effect on the fatigue crack growth resistance for the staircase shapes die castings.

Key Words: Stress Intensity Factor, J-Integral, Fracture Toughness, Stress Intensity Factor Range, Fatigue Crack Growth Resistance, Aluminum Alloy Die Castings

1. 結 言

現在、アルミニウム合金ダイカストは、自動車部品をはじめとする機械構造部品として多用されている。その最大の特徴は、製造生産コストを極端に抑えている点にあり、今後さまざまな強度特性の適用が期待されている。しかし、その製造過程において鍛造などの難易度を含む、破壊の少ないものを求めている。従来の静的強度特性を評価するだけでは不十分であり、破壊靭性、さらには、疲労き裂進展特性を評価する必要がある。

本報では、厚さ一定のA材、厚さが階段状に変化するB材の2種類の供試材について、引張試験、破壊靭性試験および疲労き裂進展試験を行い、破壊靭性特性に及ぼす試験片の厚さ、採取方法の影響を調べた。また、ダイカストの表面にはニール層を呼ぶ微細結晶

* 原稿受付 1995年4月3日、1 東京工業大学（助教授・佐野、名鼓・明治工業大学）、2 東京工業大学（助手・赤松）、3 東京工業大学（教授・西村）.
3. 供試材および試験方法

3-1 供試材 供試材はA、B材ともに鋳造材のアルミニウム合金ダイカスト ADC12 であり、表1に示すような化学成分を有している。両材ともに普通ダイカスト法 [鋳造圧力: 64.4 MPa(A材), 54.9 MPa (B材)] で鋳造され、A材には水溶性の通常潤滑法、B材には通常潤滑法および粉体潤滑法の2種類を用いている。供試材の大きさはA材が807×1504 mmの平板状、B材が1147×1794 mmの階段状で、厚さは湯口方向から10.0、5.0、3.0 mmとなっている。鋳造後の熱処理は特に施されていない。

Fig. 1 Die casting process

Fig. 2 Morphology of material A
3.2 組織写真 A材について、板厚（深さ）方向の組織写真を図2に示す。図2(a)は板厚2.8mm、図2(b)は板厚7.8mmのものである。いずれの板厚においても、表層部には急速冷却により生成されるチル層（微細組織層）が存在している。また、板厚中央部から表層部に近づくほど初品αが微細になっている。厚さ2.8mmの板材の中央部には、粗大化した初品αが点在している。これは、板厚の薄い供試材ほどスリープ内に注湯する溶湯量が少なかったため、溶湯の温度低下が速く、金型内に射出される前にスリープ内で凝固生成した組織であると考えられる。また、冷却速度の速い板厚2.8mmの供試材のほうが、全体的に板厚7.8mmのもよりも微細な組織になっている。

3.3 試験片の形状・寸法および採取方法 引張試験には、A材について図3に示す標点距離60mm、幅10mmの平板状試験片を用いた。鈍造時の湯流れ方向と平行（L-T方向）に切り出し、厚さはそれぞれ2.8、6.3、7.8mmである。また、7.8mmの板材から両表面を切削しチル層を取り除いた6.3mm厚さの試験片も一部用いた。B材については標点距離56mm、幅10mmの平板状試験片を用いた。湯流れ方向と垂直（T-L方向）に切り出し、厚さはそれぞれ3.0、5.0、10.0mmである。A材のKc試験には、1/2、1-CT試験片を使用した。1-CT試験片の切欠位置は、T方向中央部に位置し（図4(a)）、1/2-CT試験片では中央部より板幅の1/4程度T方向に移動した位置で採取した（図4(b)）。厚さは2.8、6.3、7.8mmである。また、6.3mmと7.8mmの板材からチル層を取り除いた5.5mmと7.0mm厚さの試験片も一部使用した。B材については厚さ5.0mm部より1-CT試験片のみ採取した（図4(c)）。Kc試験には1-CT試験片のみ使用した。採取方法は1-CTのKc試験片と同様である。試験片厚さはA材が引張試験片と同様で2.8、6.3、7.8mmであり、チル層を取り除いた6.3mm厚さの試験片も一部用いた。B材についてはすべて5.0mmである。疲労破壊試験片用には、いずれも1-CTを用いた。試験片厚さはA材が2.8、6.3mm、また、7.8mmの板材からチル層を取り除いた6.3mmである。B材については5.0mm一定である。なお、方位依存性を調べるためにすべてのCT試験片は、湯流れ方向と切欠きが平行なT-L方向と、垂直なL-T方向に採取加工した。

3.4 試験方法 引張試験は荷重制御により負荷

![Fig. 3 Tensile specimen (material A)](image)

![Fig. 4 Position of CT specimen](image)
4. 結果および考察

4-1 引張特性 A材について、試験片厚さと引張強さ、降伏応力および破壊ひずみとの関係を図5に示す。試験片厚さの減少に伴い、引張強さ、降伏応力および破壊ひずみが増加する傾向が認められる。この原因として、①厚い板材ほど鉄板等の製造欠陥を内包しやすい、②組織的全てで示したように、板厚が薄くなるほど冷却速度が速く組織が微結細化していることが考えられる。②については、一般化されているPetchの式\(\alpha\)により、結晶粒径の微結細化に伴い降伏強度の増大する結果について定量的説明ができます。

チル層の有無の影響については、チル層のある板厚6.3mmの試験片がチル層のない試験片より、引張強さと破壊ひずみが高い値を示している。これは、微細な組織を有するチル層が力学特性に優れていることを示している。また、供試材の凝固中心部が冷却速度に依存し、金型に接している表面から中心部に向かって進み、後後に凝固する中心部ほど鉄板を含むやすくなる。そのため、チル層（金型材両面）を削除加工することにより、破壊の起点となる鉄板が表面に露出し、その結果、引張強さと破壊ひずみが低下したためと考えられる。

B材（図6参照）についても、A材と同様に、試験片厚さの減少に伴い引張強さ、降伏応力は高い値を示している。しかし、破壊ひずみは、これと一義的な対応を示さず、試験片厚さ3.0mmにおいて減少している。冷却速度が速く、微細な組織を有する板厚の薄い試験片ほど、引張強さ、降伏応力はA材と同様に高い値を示す。3.0mmの試験片については、降伏応力が上昇し、応力一ひずみ曲線全体も上昇した結果、破壊ひずみが小さくても引張強さ、降伏応力が大きかったと考えられる。破壊ひずみはその脆性の性質から、鉄板等の製造欠陥の影響を顕著に受ける。厚さ3.0mmの試験片は逸口から最も遠く、二段階に金型の厚さが減少するために鉄板を含むなど製造状態が良好でない組織となっている。つまり、破壊ひずみの低下は、金型形状の複雑化に伴う湯回り不良に起因していると考えられる。

本試験範囲内において、スリープ薄板法の違いによる力学特性への影響は特に対認められなかった。

4-2 破壊靭性 A材について、破壊靭性と試験片厚さとの関係を図7に示す。E399に準拠すれば厳密にはvalidな条件、とくに板厚条件を満足しておらず、Kic試験の結果はすべてKcである。板厚の薄い2.8mmの試験片の破壊靭性が最も高い値を示し、板厚5.0mm以上において一定値となっている。また、
J_{IC}試験より換算した$K_{IC}(J)$についても、これと同傾向を示している。その値を変動帯として示せば、厚さ2.8 mmにおいては、14～16.5 MPa \sqrt{m}、厚さ5.0 mm以上においては11～14 MPa \sqrt{m}となる。組織写真で示したように、板厚の減少に伴う供試材は急速冷却され微細な組織を有する。また、引張試験において示したように、延性が増大し硬断ひずみは高い値を示す。そのためダイカストにおいては、板厚の薄い供試材ほど、組織の微細化に起因した塑性変形能の增大より、破壊靭性が高い値を示すと考えられる。

チル層の有無、試験片採取方位による破壊靭性への影響は特に認められなかった。

Fig. 7 Fracture toughness and specimen thickness (material A)

Fig. 8 Distribution of fracture strength of flat test piece

Fig. 9 Influence of lubrication method in a sleeve on fracture toughness
アルミニウム合金ダイカストの破壊靭性および疲労き裂進展特性

4.3 疲労き裂進展特性

4.3.1 チル層の有無の影響 一様な厚さをもつA材について、チル層の有無が疲労き裂進展抵抗に及ぼす影響について検討した結果を図10に示す。全速度領域においてチル層の有無は疲労き裂進展特性に顕著な影響を及ぼさない。この理由として、疲労き裂進展挙動は試験片内部の挙動に支配され、表層部の影響を受けないことが考えられる。

アルミニウム合金2024-T3, A6061-T6などは、実線、破線でそれぞれ示す。A6061-T6はAl-Si-Mg系の合金で、ADC12に近い組成をもつ、ΔK_{th} 近傍の低ΔK領域において、ADC12はA6061-T6と比較して、疲労き裂進展抵抗
抗に大差はない。しかし、高ΔK領域において、Critical flow growth特性である破壊靭性を反映し、ADC12はA6061-T6よりも、疲労き裂進展抵抗が小さい。

4・3・2 採取方位の影響 A材については、チル層の有無と採取方位が、疲労き裂進展抵抗に及ぼす影響について検討した結果を図10に併せて示す。微視組織の影響を受けやすい下限界値ΔK_{α}近傍の低ΔK領域において、疲労き裂進展特性の採取方位依存性はチル層の有無により逆転している。すなわち、チル層がある場合、通常の採取方位依存性と同様にΔdaldN-ΔKに対するL-T方位（印）、daldNはT-L方位（印）のそれよりも小さく、疲労き裂進展抵抗が大きいことがわかる。一方、チル層がない場合、逆にΔdaldN-ΔKに対するL-T方位（印）、daldNはT-L方位（印）のそれよりも大きくなり、疲労き裂進展抵抗が小さいことがわかる。そこで、下限界値近傍に注目した追加試験を行った。その試験結果を図11に示す。ΔK_{α}近傍の低ΔK領域において、チル層があるもの（印）は通常の採取方位依存性を示し、再現性が認められるが、チル層がないもの（印）は採取方位依存性が消失し、再現性が認められない。したがって、チル層の有無による採取方位依存性の逆転現象の存在については、今後の詳細な検討が必要である。

4・3・3 板厚の影響 A材については、板厚の違いが疲労き裂進展抵抗に及ぼす影響について検討した結果を図12に示す。低ΔK領域において、板厚の違いが疲労き裂進展特性に顕著な影響を及ぼし、板厚の減少に伴って、疲労き裂進展抵抗が小さくなる。ΔdaldN-ΔKに対する板厚2.8mm（印）、daldNは板厚6.3mm（印）のそれよりも大きく、疲労き裂進展抵抗が小さい。この理由について、組織観察からもわかりるように、板厚の薄いものは厚いものと比較して、冷却速度が速いため組織が細部化している。組織が細部化することで強度は向上するが、ΔK_{α}レベルの低下を引き起こす。これより、ΔK_{α}近傍の低ΔK領域において、き裂閉口レベルが低く、疲労き裂進展抵抗が小さくなるためと考えられる。

4・3・4 スリーブ潤滑法の影響 階段状の厚さをもつB材について、スリーブ潤滑法が疲労き裂進展抵抗に及ぼす影響について検討した結果を図13に示す。全速度領域において、通常潤滑法、および粉体潤滑法
という潤滑法の違いは疲労き裂進展特性にはほとんど影響を及ぼさない。この理由として、通常潤滑法と粉体潤滑法による微視組織にはほとんど差異がないことが考えられる。粉体潤滑法の適用は、疲労き裂進展抵抗の改善にほとんど寄与しない。なお、低ΔKの領域において、粉体潤滑法により、疲労き裂進展特性の採取方位依存性が消失する傾向が認められる。

4-4 フラクトグラフィ的検討 図14は、A材について、引張試験後の破面のSEM写真である。（a）は板厚2.8mm、（b）は板厚6.3mmのものである。（a）は、ディンプル状破壊が支配的となっている。一方、（b）では、擬き裂状破壊が支配的となっている。したがって、板厚減少にも伴う力学特性の向上、塑性変形能の増大に起因したその破壊様式の違い（ディンプル状破壊の増大）により考えられる。

図15は、A材について、ΔKtn近傍での疲労破面写真である。いずれも疲労破面特有の粒内割れが支配的であるが、ΔKtnが最も大きい疲労破面には一部粒界割れが観察される。このこととは、疲労き裂が粒界を進むことで折れ曲がり、き裂閉口が顕著に現れるため、本研究では背面ひずみ法により確認、疲労き裂進展抵抗が大きくなることとよく対応している。

5. 結 言

本研究で得られた結果は以下のとおりである。
（1）試験片厚さの減少に伴い、A材では引張強さ、破断ひずみいずれも上昇する。B材では破断ひずみが減少するが、降伏応力が上昇することにより引張強さは低下しない。
（2）チル層が破壊靭性、疲労き裂進展特性に及ぼす影響は特に認められないが、引張強さ、降伏応力よび破断ひずみについてチル層がない試験片よりもチル層がある試験片のほうが大きい値を示す。

（3）階段状鉄造材の引張強度特性は平板状のそれと同傾向を示すが、通常潤滑法の破壊靭性に採取方位依存性が認められる、スリーブ潤滑法として粉体潤滑法を採用することにより破壊靭性の方位依存性を抑えることができる。

（4）疲労き裂進展特性には、チル層の有無による採取方位の影響は存在しない。

（5）疲労き裂進展特性には、板厚の影響はΔKtn近傍の低ΔKの領域において観察に存在し、板厚の減少に伴って、疲労き裂進展抵抗が小さくなる。

（6）疲労き裂進展特性には、通常潤滑法および粉体潤滑法という潤滑法の違いによる影響はほとんど認められない。なお、粉体潤滑法の適用により、低ΔKの領域における疲労き裂進展特性の採取方位依存性が消失する。

文献

（1）鈴木宗男・吉本一之、軽金属、21（1971）、36-36。
（2）千々岩健二・金沢理一・木村一郎、粉末冶金、60（1988）、784-789。
（3）青山俊三・赤穂誠・田代正巳、板本勝美・梅村茂男、日本ディカスト会議論文集、（1992）、13-28。
（4）海拔武・中上一・林郁彦・岡村弘之、破壊力学学論法、（1984）、朝倉書店。

（5）ASTM standard, E399-78, (1978), ASTM.
（6）ASTM standard, E813-81, (1981), ASTM.
（7）ASTM standard, E647-81, (1981), ASTM.
（9）小林英男・中小島誠・中村春男・中村一、材料、31（1982）、346。
（10）江頭弘晃・広田郁也・小林俊郎・酒井茂男、軽金属、39（1989）、886-892。