定常点熱源に対する半無限等方性弾性体のグリーン関数*

小林雅隆*1，古口日出男*2，近藤俊美*1

Green’s Functions for a Steady State Heat Source in a Semi-Infinite Transversely Isotropic Elastic Solid

Masataka KOBAYASHI, Hideo KOGUCHI and Toshimi KONDO

In this paper, we present the Green’s functions of closed form for a steady state heat source in a semi-infinite transversely isotropic thermoelastic solid when the functions are expressed as the Cartesian coordinates. For thermal boundary conditions, both cases of the adiabatic condition and/or the zero temperature prescribed on the boundary plane are treated, and for the stress and the displacement boundary conditions the following three cases are treated; (1) the stress free condition on the boundary plane, (2) the fixed displacement condition on the boundary plane and (3) only the displacement u_z in the direction z vanishes on the boundary plane. To obtain the solutions of the problem the mirror reflection method is developed by using the solution of the infinite transversely isotropic thermoelastic solid reported in the previous paper. Furthermore, the closed form solutions in a semi-infinite isotropic thermoelastic solid are also shown. Finally, the numerical results for titanium in both cases of isotropy and transverse isotropy are given.

Key Words: Anisotropy, Elasticity, Thermal Stress, Green’s Function, Thermoelasticity, Transverse Isotropy, Three-Dimensional Problem, Cartesian Coordinates, Composite Material

1. 緒言

著者等は前に、直角座標系で表した定常点熱源に対する無限等方性弾性体のグリーン関数を求めて報告した(1)。本報は、同様な定常点熱源に対する半無限等方性弾性体の半径の場合のグリーン関数を求めたもののである。また、直角座標系で表した半無限等方性弾性体のグリーン関数も併せて示す。

等方性弾性体の定常点熱源に対する軸対称グリーン関数の閉形解は、すでにMindlin(2)，Liu Hsien-Chin(3)やNowacki(4)等に見られる。また、半無限等方性体の表面加熱等の問題はレーザー加熱に関連して軸対称解として報告されている(5)(11)。山田は等方性弾性体の点熱源による接合膜を持つ半無限体の熱応力とその特異性について報告している(12)。一方、定常点熱源に対する半無限等方性弾性体のグリーン関数は、Sharmaによる積分解(13)、Wossakowska & Nowackiによる軸対称解(14)及びChoudhuryによる軸対称積分解及び一部は超幾何関数(15)が見られるのみである。

本報では、前掲文(1)の無限体の解を用い、鏡像の概念を発展させて、定常点熱源に対する直角座標系による半無限等方性弾性体のグリーン関数の閉形解を求めた。熱的境界条件は境界上で温度が零になる場合、及び境界上で断熱条件の場合はある。また、変位と応力の境界条件は、(1) 境界で応力自由の場合、(2) 境界で変位固定の場合、(3) 境界で角方向変位のみ固定の場合、(4) 三種類の場合について報告する。さらに半無限等方性弾性体の解も求め、チタン等に導入する場合等と等方性とした場合の数値計算例を示す。

2. 半無限等方性弾性体のグリーン関数

2.1 半無限等方性弾性体の変位関数の考察

直角座標系を用いた、定常熱源に対する無限等方性弾性体の変位関数は次数式で与えられる(16)。

\[
\psi_{ij} = C_0 \sum_{j=1,2,4} D_{ji} \int_0^\infty \alpha^{-1} J_0(\alpha r) e^{-\alpha r} r^l d\alpha \quad (l=0,1,2,3) \tag{1}
\]

ここで、

\[
D_{ii} = \frac{\beta_b \eta_i}{4\pi \rho_0 C_3} \tag{2}
\]

ただし、$i, j, l = 1, 2, 4, (i \neq j \neq l)$ であり、$z > 0$ のときは $+$ であるが、$z < 0$ のときは $-$ かつ $v_j - v_i$ と置く。

また、

\[
C_0 = \frac{\beta_k \eta}{4\pi \rho_0 C_3} \tag{3}
\]

ここで、β_k は熱伝導率。$C_0 = C_j \sigma_j (j = 1, 2, 3$ 的和)、C_j は弾性定数、σ_j は線膨張係数、η は単位体積・単位時間当たりの熱発生量、z_0 は熱源の位置。そして J_0 は零次のベッセル関数である。また、座標系は添え字 1, 2 がx, y 座標で等方面、添え字 3 が対称方向とし、閉
定常熱源に対する半無限厚等方性弾性体のグリーン関数

形表現は点熱源の位置 \(z_0 \) で除した無次元座標である。

さて、半無限厚等方性弾性体の境界条件を満たすためには、特解 \(\phi \) と他に補足解 \(\psi \) が必要である。この \(\psi \) は上半空間に特異点が無く、下半空間には特異点が在って良いことを考慮し、

\[
\psi_k = C_n \sum_{i,j} D_{ij} \int_0^\infty a^{-4} J_0(a \sqrt{r^2 + z_0^2}) a \, da
\]

(4) とおく。この解は、デルタ関数の解であり、点

\[
z = -z_0
\]

(5)に点熱源があるが、それ以外では零の解である。従って、斉次方程式の解あるいは補足解である。また、この解 \(\psi_k \) は次式をも満足する。

\[
\left(\nabla^2 \psi_k + \frac{\partial^2}{\partial z^2} \right) \psi_k = 0, \quad \nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}.
\]

(6) 式(4)から求まる変位有限条件より、次式が必要である。

実部 \(\text{Re} \{ \psi_{2v} + \psi_{2z} \} > 0 \)

(7)

上式において、\(\psi \) は無次元の異方性弾性係数に関係する特性根であり、次式で与えられる。

\[
\begin{align*}
\psi_1 &= C_6 \sum_{i,j} D_{ij} \int_0^\infty a^{-4} J_0(a \sqrt{r^2 + z_0^2}) a \, da, \\
\psi_2 &= C_6 \sum_{i,j} D_{ij} \int_0^\infty a^{-4} J_0(a \sqrt{r^2 + z_0^2}) a \, da, \\
\psi_3 &= C_6 \sum_{i,j} D_{ij} \int_0^\infty a^{-4} J_0(a \sqrt{r^2 + z_0^2}) a \, da, \\
\psi_4 &= C_6 \sum_{i,j} D_{ij} \int_0^\infty a^{-4} J_0(a \sqrt{r^2 + z_0^2}) a \, da,
\end{align*}
\]

ここで、\(C_6 = \sqrt{C_{11}C_{12}} \)、\(\psi_0 \) は横ずみ \(\psi \) と正のポアソン比、\(\gamma \) は異方向性弾性係数 \(E_1 \) とし、\(C_{44} = \gamma E_1 \) となる無次元定数である。

2.2 点熱源の位置 \(z_0 \) で無次元化した座標系を用いて、定常

点熱源に対する半無限厚等方性弾性体の変位関数の一般解を \(z \rightarrow 0 \) で次の特解と補足解の和に仮定する。

\[
\psi = \psi_{\text{main}} + \psi_{\text{supp}}
\]

\[
= C_6 \sum_{i,j} D_{ij} \int_0^\infty a^{-4} J_0(a \sqrt{r^2 + z_0^2}) a \, da.
\]

(9)

この変位関数より求まる境界 \(z=0 \) での温度 \(T \) は、

\[
T = \frac{C_6}{\beta_N} \int_0^\infty a^{-4} J_0(a \sqrt{r^2 + z_0^2}) a \, da
\]

\[
= C_6 \sum_{i,j} D_{ij} \int_0^\infty a^{-4} J_0(a \sqrt{r^2 + z_0^2}) a \, da.
\]

(10)

ここで、\(\psi = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \) である。\(\beta_N = \frac{b_2}{4\pi\lambda_N z_0} \)

第1項は \(j=4 \) のみ残り、第2項は \(j=1, 2, 4 \) が残る。

従って、

\[
T(r,0) = C_6 \sum_{i,j} D_{ij} \int_0^\infty a^{-4} J_0(a \sqrt{r^2 + z_0^2}) a \, da.
\]

(11)

これを、係数は次式で求まる。

\[
D_{44} = \frac{1}{v_3^2 - v_2^2} \int \psi_3 \, da
\]

(12)

従って、温度は次式で求まる。

\[
T = C_6 \sum_{i,j} J_0(a \sqrt{r^2 + z_0^2}) \psi \]
は付録A.1に記す。また、次の表現を用いた。
\[r^2 = x^2 + y^2, \]
\[R_i = r_i^2 + v_i^2(z - 1)^2, \quad Z_i = v_i(z - 1). \]
\[R_0 = r_0^2 + v_0^2(z - 1)^2, \quad Z_0 = v_0(z - 1). \]
\[R_i = R_i + Z_i, \quad R_0 = R_0 + Z_0. \]
\[R_i = R_i - Z_i, \quad R_0 = R_0 - Z_0. \]

2.3 境界z=0で応力自由の解 この場合の境界条件式は次式になる。
\[z = 0 \text{ で, } \sigma_n = \sigma_m = \sigma_{n\alpha} = 0 \] (21)

境界付近の応力は次式になる。
\[\sigma_n = C_2 \left[\sum_{i,j} D_{ij}(d - ev_i) e^{a_{ij}(x + y)} + \sum_{i,j} D_{ij}(d - ev_i) e^{a_{ij}(x - y)} \right] d\alpha, \]
\[\sigma_m = C_2 \left[\sum_{i,j} D_{ij}(d - ev_i) e^{a_{ij}(x + y)} + \sum_{i,j} D_{ij}(d - ev_i) e^{a_{ij}(x - y)} \right] d\alpha. \] (22)

\[\sigma_{n\alpha} = C_2 \left[\sum_{i,j} D_{ij}(d - ev_i) e^{a_{ij}(x + y)} + \sum_{i,j} D_{ij}(d - ev_i) e^{a_{ij}(x - y)} \right] d\alpha. \]

\[\sigma_{n\alpha} = \sigma_{n\alpha} = 0 \] (23)

これは次式の定式になる。
\[D_{ij}(d - ev_i) + D_{ij}(d - ev_i) = 0. \] (24)
\[D_{ij}(d - ev_i) + D_{ij}(d - ev_i) = 0. \] (25)

従って、式(12)以外の未知係数はz=0の場合次式になる。
\[D_{11} = \frac{(v_1 + v_2)}{(v_1 - v_2)} D_{11}, \quad D_{11} = \frac{2v_0(d - ev_0)}{(v_0 - v_1)(d - ev_0)} D_{11} \]
\[D_{12} = \frac{2v_0(d - ev_0)}{(v_0 - v_1)(d - ev_0)} D_{12}, \quad D_{12} = \frac{(v_1 + v_2)}{(v_1 - v_2)} D_{12} \]
\[D_{13} = \frac{2v_0(d - ev_0)}{(v_0 - v_1)(d - ev_0)} D_{13}, \quad D_{13} = \frac{2v_0(d - ev_0)}{(v_0 - v_1)(d - ev_0)} D_{13} \]
\[D_{14} = \frac{2v_0(d - ev_0)}{(v_0 - v_1)(d - ev_0)} D_{14}, \quad D_{14} = \frac{2v_0(d - ev_0)}{(v_0 - v_1)(d - ev_0)} D_{14} \]

また、断熱条件の場合は \(D_{ij} = D_{ij} \) 以外次式になる。
\[D_{11} = \frac{(v_1 + v_2)}{(v_1 - v_2)} D_{11}, \quad D_{11} = \frac{2v_0(d - ev_0)}{(v_0 - v_1)(d - ev_0)} D_{11} \]
\[D_{12} = \frac{2v_0(d - ev_0)}{(v_0 - v_1)(d - ev_0)} D_{12}, \quad D_{12} = \frac{(v_1 + v_2)}{(v_1 - v_2)} D_{12} \]
\[D_{13} = \frac{2v_0(d - ev_0)}{(v_0 - v_1)(d - ev_0)} D_{13}, \quad D_{13} = \frac{2v_0(d - ev_0)}{(v_0 - v_1)(d - ev_0)} D_{13} \]
\[D_{14} = \frac{2v_0(d - ev_0)}{(v_0 - v_1)(d - ev_0)} D_{14}, \quad D_{14} = \frac{2v_0(d - ev_0)}{(v_0 - v_1)(d - ev_0)} D_{14} \]

2.4 境界z=0で変位固定の解 この場合の境界条件式は次式である。
\[z = 0 \text{ で, } u_x = u_y = u_z = 0. \] (27)
同様な方法により求まるz=0の場合の式(12)以外の未知係数は次式になる。
\[D_{11} = \frac{v_1(b - kv_1)(1 - av_1^2) + v_2(b - kv_2)(1 - av_2^2)}{v_1(b - kv_1)(1 - av_1^2) - v_2(b - kv_2)(1 - av_2^2)} D_{11}, \]
\[D_{12} = \frac{-2v_0(b - kv_1)(1 - av_1^2)}{v_1(b - kv_1)(1 - av_1^2) - v_2(b - kv_2)(1 - av_2^2)} D_{12}, \]
\[D_{13} = \frac{2v_0(b - kv_2)(1 - av_2^2)}{v_1(b - kv_1)(1 - av_1^2) - v_2(b - kv_2)(1 - av_2^2)} D_{13}, \]
\[D_{14} = \frac{v_1(b - kv_1)(1 - av_1^2) + v_2(b - kv_2)(1 - av_2^2)}{v_1(b - kv_1)(1 - av_1^2) - v_2(b - kv_2)(1 - av_2^2)} D_{14} \]
\[D_{15} = \frac{v_1(b - kv_1)(1 - av_1^2) + v_2(b - kv_2)(1 - av_2^2)}{v_1(b - kv_1)(1 - av_1^2) - v_2(b - kv_2)(1 - av_2^2)} D_{15} \]
\[D_{16} = \frac{v_1(b - kv_1)(1 - av_1^2) + v_2(b - kv_2)(1 - av_2^2)}{v_1(b - kv_1)(1 - av_1^2) - v_2(b - kv_2)(1 - av_2^2)} D_{16} \]
\[D_{17} = \frac{v_1(b - kv_1)(1 - av_1^2) + v_2(b - kv_2)(1 - av_2^2)}{v_1(b - kv_1)(1 - av_1^2) - v_2(b - kv_2)(1 - av_2^2)} D_{17} \]
\[D_{18} = \frac{v_1(b - kv_1)(1 - av_1^2) + v_2(b - kv_2)(1 - av_2^2)}{v_1(b - kv_1)(1 - av_1^2) - v_2(b - kv_2)(1 - av_2^2)} D_{18} \]

2.5 境界z=0でz方向変位のみ固定の解 この場合の境界条件式は次式である。
\[z = 0 \text{ で, } \sigma_n = \sigma_m = \sigma_{n\alpha} = 0. \] (30)
同様な方法により求まるz=0の場合の式(9)以外の未知係数は次式になる。
\[D_{11} = 0, \quad D_{12} = 0, \quad D_{13} = 0, \quad D_{14} = 0, \]
\[D_{15} = \frac{2v_0(d - ev_0)(b - kv_1) - (d - ev_0)(b - kv_2)}{v_1(d - ev_0)(b - kv_1) - (d - ev_0)(b - kv_2)} D_{14} \]
\[D_{16} = \frac{2v_0(d - ev_0)(b - kv_2) - (d - ev_0)(b - kv_1)}{v_1(d - ev_0)(b - kv_1) - (d - ev_0)(b - kv_2)} D_{14} \]
\[D_{17} = \frac{2v_0(d - ev_0)(b - kv_1) - (d - ev_0)(b - kv_2)}{v_1(d - ev_0)(b - kv_1) - (d - ev_0)(b - kv_2)} D_{14} \]
\[D_{18} = \frac{2v_0(d - ev_0)(b - kv_2) - (d - ev_0)(b - kv_1)}{v_1(d - ev_0)(b - kv_1) - (d - ev_0)(b - kv_2)} D_{14} \]

また、断熱条件の場合は \(D_{ij} = D_{ij} \) 以外次式になる。
\[D_{11} = \frac{(v_1 + v_2)}{(v_1 - v_2)} D_{11}, \quad D_{11} = \frac{2v_0(d - ev_0)}{(v_0 - v_1)(d - ev_0)} D_{11} \]
\[D_{12} = \frac{2v_0(d - ev_0)}{(v_0 - v_1)(d - ev_0)} D_{12}, \quad D_{12} = \frac{(v_1 + v_2)}{(v_1 - v_2)} D_{12} \]
\[D_{13} = \frac{2v_0(d - ev_0)}{(v_0 - v_1)(d - ev_0)} D_{13}, \quad D_{13} = \frac{2v_0(d - ev_0)}{(v_0 - v_1)(d - ev_0)} D_{13} \]
\[D_{14} = \frac{2v_0(d - ev_0)}{(v_0 - v_1)(d - ev_0)} D_{14}, \quad D_{14} = \frac{2v_0(d - ev_0)}{(v_0 - v_1)(d - ev_0)} D_{14} \]
定常点熱源に対する半無限板等方性弾性体のグリーン関数

\[D_{ij} = D_{ji}, \quad D_{ii} = 0, \quad D_{ij} = 0, \quad D_{ij} = 0, \quad i, j = 1, 2, 3 \] \quad \text{(32)}

以上により、全ての係数が決定されることになる。これに式(14)と(15)に代入し、等方である無限板の解に加えれば、全ての変位と応力が計算できる。

3. 半無限等方性弾性体のグリーン関数

等方性弾性体の場合には、前章の係数が変化するように使用が許可される。この場合、文献(1)で述べた二重根の解 \(\psi_p \) の鏡像解と文献(1)で記した、 \(\phi_1 \) を用いる必要がある。\(\phi_1 \) は \(\psi_1 \) に対する変位関数で、温度場に影響を与えない（付録A2参照）。

\[\phi_1 = C_0 \int_0^T \frac{J_0(\sigma)}{\alpha^2} [B_1 + R_2 \alpha \alpha(z + 1)] e^{-\mu \alpha(z + 1)} d \alpha \quad \text{(33)} \]

最初に、定常点熱源に対する等方性無限体の解とその鏡像点による解は上付き添え字pを付けて次式に書ける。

\[\begin{align*}
\sigma_{11}^p &= \frac{1}{C_r} \left[\frac{x^2 + x}{r^2} - \frac{1}{R_1} + \frac{1}{R_2} \right], \\
\sigma_{22}^p &= \frac{1}{C_r} \left[\frac{2x}{R_1} + \frac{2x}{R_2} \right], \\
\sigma_{33}^p &= \frac{1}{C_r} \left[\frac{1}{R_1} + \frac{1}{R_2} \right], \\
\sigma_{12}^p &= \sigma_{21}^p = \frac{1}{C_r} \left(\frac{x^2}{r^2} \right), \\
\sigma_{13}^p &= \sigma_{31}^p = \frac{1}{C_r} \left(\frac{x}{r^2} \right), \\
\sigma_{23}^p &= \sigma_{32}^p = \frac{1}{C_r} \left(\frac{1}{r^2} \right).
\end{align*} \]

上式中 \(v_i = 1 \) であり、写像の解は付録A3に記す。

4. 数値計算例

本報では境界上で温度約0かつ応力自由となる(1)の場合について数値計算を行い、チタンを例に半無限体の応力分布の様子を調べる。ここでは熱的に等方と仮定する。また、チタンは本来横等方性弾性体であるが、等方とした場合と横等方とした場合を数値計算し、その違いを数値的に比較する。その材料定数を表1から表3に示す。全ての値は、等方性弾性体の係数

\[C_{11} = 4 \pi \mu_0 (1 + v), \quad C_{12} = 4 \pi \mu_0 v, \quad C_{13} = \frac{\alpha E}{4 \pi \mu_0 (1 - v)}, \]

で割って無次元化した値を示す。

チタン等を通じう場合及び横等方性を示す場合の数値計算結果は、比較のために同じ図の上に示す。

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
\textbf{Table 1. Elastic constants of transversely isotropic titanium} & & & & & \\
\hline
\textbf{Elastic constants} & \textbf{C}_{11} & \textbf{C}_{12} & \textbf{C}_{13} & \textbf{C}_{33} & \textbf{C}_{44} \\
\hline
\hline
\textbf{GPa} & 162 & 92 & 69 & 181 & 46.7 & 35.2 \\
\hline
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
\textbf{Table 2. The other material properties of titanium} & & & & & \\
\hline
\textbf{Property} & \textbf{Value} \\
\hline
\hline
\textbf{W/(m*K)} & 3.7 \\
\hline
\textbf{1/K} & 8.7 \times 10^{-6} \\
\hline
\textbf{1/(kg*K)} & 125 \\
\hline
\textbf{kg/m^3} & 4.51 \times 10^3 \\
\hline
\end{tabular}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
\textbf{Table 3. Elastic constants of isotropic titanium} & & & & \\
\hline
\textbf{Young's modulus} & \textbf{E} & \textbf{G} \\
\hline
\hline
\textbf{GPa} & 117.6 \\
\hline
\textbf{GPa} & 44.1 \\
\hline
\end{tabular}
\end{table}
定常点熱源に対する半無限等方弾性体のグリーン関数

Fig.1 Nondimensional generalized displacements at the section y = 0, x = 0.1, due to an unit heat source at (0,0,1) in titanium.

Fig.2 Nondimensional stresses at the section y = 0, x = 0.1, due to an unit heat source at (0,0,1) in titanium.

Fig.3 Nondimensional generalized displacements at the section y = 0, z = 0 or z = 0.9, due to an unit heat source at (0,1,0) in titanium.

Fig.4 Nondimensional stresses at the section y = 0, z = 0 or z = 0.9, due to an unit heat source at (0,0,1) in titanium.

件を満足する。図1のx方向変位の差は小さく、z方向変位の差は最大約10％である。図3の変位はx=0.9の断面で差がわずかに見られる。変位の差は約10％である。図2のx方向応力は点熱源付近では圧縮であるが、境界上では引っ張りである。等方と横等方の差は約13％である。z方向応力は全て圧縮で、せん断応力は点熱源の上下で符号が反転する。図4のx=0.9でのx方向応力の等方と横等方の差は約22％に達する。また、z方向応力は約2％の差、境界上のx方向応力は約14％の差である。

5. 結 言

定常点熱源に対する直角座標系による半無限等方弾性体中の変位と応力の閉形のグリーン関数を、無限体の解を用い、鏡像の概念を発展させることにより求める。熱的境界条件を境界上で温度が雑の場合、及び断熱条件の場合であり、また変位と応力の境界条件は、（1）境界で応力自由の場合、（2）境界で変位固定の場合、（3）境界でx方向変位のみ固定の場合、の三種類である。さらに、直角座標系で表した半無限等方弾性体の閉形のグリーン関数を誘導した。最后に、横等方弾性を示すチタンを例に数値計算を行い、変位と応力に及ぼす異方性の影響を明らかにした。
4.3 等方性弾性体の断熱条件の解（付加項のみ）

(4) 境界\(z=0\)で断熱、応力自由の解

\[
\begin{align*}
\sigma_{xx} &= C_a \left[\frac{1}{R_{ax}} - 2(1-v) \frac{1}{R_{ax} R_{ay}} - \frac{z}{R_{az}} \right] , \\
\sigma_{yy} &= C_a R_{ay} \left[\frac{1}{R_{ax}} - 2(1-v) \frac{1}{R_{ax} R_{ay}} - \frac{z}{R_{az}} \right] , \\
\sigma_{xy}^{ext} &= C_a R_{ay} \left[2(1-v) \frac{1}{R_{ax} R_{ay}} - \frac{z}{R_{az}} \right] , \\
\sigma_{zz}^{ext} &= C_a R_{az} \left[2(1-v) \frac{1}{R_{ax} R_{ay}} - \frac{z}{R_{az}} \right] .
\end{align*}
\]

(5) 境界\(z=0\)で断熱、変位固定の解

\[
\begin{align*}
\sigma_{xx}^{ext} &= C_a R_{ay} \left[2(1-v) \frac{1}{R_{ax} R_{ay}} - \frac{z}{R_{az}} \right] , \\
\sigma_{yy}^{ext} &= C_a R_{ay} \left[2(1-v) \frac{1}{R_{ax} R_{ay}} - \frac{z}{R_{az}} \right] , \\
\sigma_{xy}^{ext} &= C_a R_{ay} \left[2(1-v) \frac{1}{R_{ax} R_{ay}} - \frac{z}{R_{az}} \right] , \\
\sigma_{zz}^{ext} &= C_a R_{az} \left[2(1-v) \frac{1}{R_{ax} R_{ay}} - \frac{z}{R_{az}} \right] .
\end{align*}
\]