The Life Controlling Particular Size in Initial Pit-Like Flaws Distributed on Pristine Silica Optical Fibers

Mikio MURAOKA and Hiroyuki ABÉ

Chemically assisted growth of pit-like flaws, as blunt stress concentrators, is expected to be a realistic model for predicting static fatigue of pristine silica optical fibers, the initial inert strength of which is very high. This study simulates the flaw evolutions under constant stresses using the Hillig–Charles model together with physically valid modifications on a lower limit in the flaw tip radius, where the evolutions of the equivalent semi-elliptical flaws are formulated adequately. When the initial inert strength of a pristine fiber and the ideal (ultimate) strength of silica glass are known, one can estimate the initial shape of the equivalent stress concentrators, but not the size. We found from the simulations that the concentrator of the particular initial size, not the maximum size, controls the lifetime of the pristine fiber, where the maximum stress concentrators of different sizes may exist. Importance of curvature dependence of the surface chemical reaction is also noted in lifetime predictions of pristine silica fibers, which has been ignored in Bouden–With model.

Key Words: Ceramics, Life Prediction, Corrosion, Pristine Silica Optical Fiber, Static Fatigue, Pit-Like Flaw, Surface Chemistry, Life Controlling Initial Flaw Size

1. 統言

標準石英ガラス光ファイバー（クラッド径125μm）は、図1のような長さ方向の強度分布を有する。図1は、光ファイバーの引張試験結果（強度破断確率Fと破断応力σFの関係）を報告し、次式を用いて、単位長さ当たりの累積欠陥個数NとσFの関係を整理したものである。

\[F = 1 - e^{-LN} \] \hspace{1cm} (1)

ここにLはサンプルのゲージ長さである。また実線および破線はそれぞれ実験室環境および液体窒素中に計測された結果である。図1の実線からわかるように、低い確率（N＝10^{-4}m^{-1}）ではあるが、製造欠陥に対応する小さい欠陥の部分が存在する。このような欠陥部は長距離通信ケーブルの寿命保証の上で特に重要である。一方、σF=5～6GPa付近に傾きの大きな部分が存在する。すなわち光ファイバーは全長のほとんどの部分で5～6GPaの高強度となっている。また破線（液体窒素中）が示すように、不活性強度（水蒸気の影響を受けない場合の強度）は16GPaにも達する。なお、同様の不活性強度は室温高真空（10^{-8}Torr）でも確認されている。圧力センサなどに利用される比較的短い光ファイバーの応用では、このような高強度部の静電気特性の理解も重要となる。今後、このような高強度を示す無損傷の光ファイバー（Pristine silica optical fiber）を、高強度光ファイバーと呼ぶ。なお高強度光ファイバーにおいても、製造時の熱的ゆらぎ等に起因した微細な欠陥は存在する。

従来の静電放電測定では、高強度光ファイバーにおいても、低強度部の場合と同様に、初期欠陥としてき裂を考えたときの成長モデルが用いられている。初期欠陥として半円形表面き裂を仮定し、高強度光ファイバーの不活性強度（16GPa）および破壊破壊強度（0.8MPa・m^{1/2}）から、等価き裂の深さを見積もれば15Aとなる。ガラスの不規則網目構造の欠陥の半径が5A程度であること、また高強度光ファイバーの不活性強度が石英ガラスの理想強度（欠陥が存在しない場合の強度の推定值）20～40GPaの8～3割程度であることを考えれば、初期欠陥として破壊を想定するよりは、観察などの純化した応力集中想定したほうが妥当である。このような考えから、高強度光ファイバーの静電放電観測に関してビット欠陥モデルが提案された。

* 原稿受付 1998年7月15日。
* 正員、秋田大学工学資源学部（☎010 8502 秋田市手形学園町111）。
* 正員、東北大学（☎880-8577 仙台市青葉区平井2-1-1）。
* E-mail：muraoka@ipc.akita-u.ac.jp

——113——
2. 従来のピット欠陥モデル

従来モデルすなわち Bouten-With モデルの説明に先立ち、石英ガラスの表面化学について簡単に説明する。石英ガラスの表面は、水分子による Si-O 結合の切断によって浸食する。簡単にファイバ表面のピット欠陥を微小な半円孔と考えよう [図 2(a)参照]。表面化学の理論によれば、欠陥底の浸食速度 v は局所引張応力 σ_t によって次式のように加速される。

$$v = v_0 \exp \left(- \frac{\Delta E \Delta V \sigma_t}{RT} \right) \quad (2)$$

ここに ΔE, ΔV はそれぞれ材料の内部応力の活性化エネルギー、活性化体積である。$R (=8.314 \text{J/mol/K})$, T はそれぞれガス定数、絶対温度である。また v_0 は室温で p に依存しない係数である。ΔE は、欠陥底の曲率半径 ρ に依存し、次式のように与えられる [30]。

$$\Delta E = \Delta E_0 + \frac{\Delta T}{\rho} \quad (3)$$

ここで ΔE_0 は平表面における無応力活性化エネルギーよ。また $\Delta T (>0)$ は表面エネルギー等に依存する量である [30]。

き裂先端近傍という特別な場合においても、式 (2), (3) が適用できることより、ΔE, ΔV および v_0 をき裂成長の計測結果をもとに評価できる。一般に同計測結果は、次式で示すき裂成長速度 v_c と応力拡大係数 K の関係によって近似できる [31]。

$$v_c = v_{0c} \exp \left(- \frac{E^* - bK \rho}{RT} \right) \quad (4)$$

ここで、E^*, b および v_{0c} は近似係数である。き裂の場合の局所応力 (2) は次式で示される。

$$\sigma_t = \frac{2K_{ic}}{\sqrt{\pi} \rho_c} = \left(\frac{S_{in}}{K_{ic}} \right) K_t \quad (5)$$

ここで S_{in} および K_{ic} はそれぞれ強度係数および破壊耐性値である。また K_t はき裂先端半径であり、$K_t = 4K_{ic} / (\pi S_{in})$ により推定できる。なお ρ はき裂成長に伴い変化せず一定値とみなす。式 (5) を式 (2) に代入し、式 (4) と比較すれば次の対応を得る。

$$v_0 = v_{0c} \exp \left(- \frac{E^* - bK_{ic} \rho}{RT} \right) \quad (6:a)$$

また式 (3) を考慮すれば次式を得る。

$$\Delta E = E^* - \frac{\Delta T}{\rho_c} \left(1 - \frac{\rho}{\rho_c} \right) \quad (6:b)$$

このようにき裂計測結果により v_0, ΔV および ΔE を評価できる。なお ΔT については、き裂成長の下限界応力拡大係数の測定により決定できる [30]。

さて、Bouten-With [31] は、式 (6:c) 右辺第 2 項すなわち無応力活性化エネルギーの曲率依存を無視し ($\Delta E = E^*$), さらに欠陥が成長する際の ρ が一定であると仮定した簡略モデルを用いて、高強度ファイバの破断寿命を数値計算の関係を求めている。なお σ_t を円孔の解で近似している。Bouten-With のモデル [31] は、ピット欠陥の ΔE を過大評価しているため ($\Delta E = E^*$), 後述のように実験結果よりも破断時間を 2 オーダ程度大きく予測してしまうという問題を有す
高強度光ファイバの寿命を支配する特定初期欠陥寸法

一方、ΔE の曲率依存を考慮し、さらにρ の時間変化を考慮した理論として、Hillig-Charles の古い理論③がある。そこで、半径円欠陥表面の周方向引張応力の分布を考慮し、応力依存の浸食による欠陥形状変化を解析している。浸食形状に対し式 (2) および式 (3) で表され、また一定の外応力 σa を受けるととき、Hillig-Charles の理論によれば、欠陥先端部応力および欠陥先端曲率半径の時間変化率は、それぞれ式 (7a) および式 (7b) で表される。

\[
\frac{d\sigma}{dt} = \frac{A(\sigma, \rho)}{(\sigma - \sigma_0)} \left[1 - C(\sigma, \rho) \right]
\]

\[
\frac{d\rho}{dt} = \frac{A(\sigma, \rho) B(\sigma, \rho)}{2\rho^2}
\]

\[A(\sigma, \rho) = \frac{\mu \sigma}{\beta^2} \exp \left[(1 - \frac{1}{\rho}) + \beta \sigma \right]
\]

\[B(\sigma, \rho) = 1 - 2\beta(\sigma + \sigma_0)
\]

\[C(\sigma, \rho) = \exp \left[\frac{\beta(\sigma - \sigma_0)}{\sigma} \right]
\]

\[u = \frac{2\rho^2}{K_c T^2} \exp \left[-\frac{E^*}{K_c} \right]
\]

\[\beta = \frac{a_k}{K_c}
\]

\[\Gamma = \frac{\beta}{\rho c T}
\]

ここで σa = σa / S_w, σa = σa / S_w, σ = ρ / c である。なお、ここでは式 (6a) - (6c) を用いて、環境に依存する係数をき裂成長析出により得られる量で表している。Hillig-Charles の前提は、き裂状欠陥（半径円欠陥 a/ρ ≥ 1 を含む低強度のガラス材）に関心があったため、本研究で注目しているビット状欠陥については十分な検討を行っていない。また、同理論はρがガラス網目構造における穴の寸法を越えて無限に小さくなることを許している。この考え方は非現実であり、修正を必要とする。

3. 修正ビット欠陥モデル

高強度ファイバの寿命を予測するため、式 (7a), (7b) および修正のための付加条件を以下のようにして用いる。まず、応力分解方程式 (7a), (7b) を式 (10a), (10b) の初期条件のものとして数値的に解き、σa, σ の時間変化に関する変化を求める。

\[
\sigma = \sqrt{\frac{a_i}{\rho}} \sigma \]

\[
\rho = \rho(\mu / c)
\]

これらに ai, ri はそれぞれ初期欠陥の深さ、欠陥底の曲率半径である。また、ρ が時間とともに減少し σ = 1 となった時刻を tc とし、次の場合を用いて計算する。

\[B(\sigma, \rho) = 0 \text{ (i.e.,)}
\]

付加条件式 (11) は、時刻 tc 以降、\(\rho / \rho c = 0 \) すなわち \(\rho = \rho c \) の状態で成長することを表す。このように、欠陥底の半径がき裂の先端半径より小さくならないという物理的に妥当な条件を新たに加える。\(\sigma = 1 \) となる時刻が破壊時間 \(t_b \) である。

以上の計算のためには、初期欠陥に関するデータ (ai, ri および \(\rho c \) 値) が必要である。原子間力顕微鏡による表面形状観察例④が報告されているが、極めて平坦な面として観察される初期欠陥の寸法等に関する情報は得られていない。このことから、原子間力顯微鏡の検出分解能 (約 20 nm) 以下の極めて小さい欠陥が存在していると推測できる。一方、初期不活性強度 Sa は、初期欠陥に関し有益な情報を与える。欠陥はファイバの長さ方向に確率的に分布するため、Sa はファイバの長さに依存する。いま、ある長さの高強度ファイバの寿命を予測するにあたり、同じ長さのサンプルにより Sb を事前に計測しており、Sa は既知であるとしよう。初期不活性強度 (Sb) および理想強度 (Sb) の値より初期欠陥形状 (ai, ri) = (Sa/Sb - 1)^2/4 を見積もることができる。ai (ri) max は、図 1 (b) に示すようにファイバ表面に分布する多数の欠陥の中で、最大の応力集中係数をもった欠陥の集合 A の形状を表す。集団 A の中には、欠陥 (ai または ri) が互いに異なる多々の相似形状欠陥が存在する。また、ai, ri < (ai, ri) max の欠陥集団についても相似形状欠陥が多数存在する。そこで ai, ri < (ai, ri) max の初期欠陥が単独で存在する場合の破壊時間について、ai, ri および \(\rho c \) をパラメータとして計算し、静電気トピーに及ぼす欠陥形状・寸法の影響を調べる。

Proctor による高強度石英ガラスファイバの価値試験結果（大気中で 20°C, 50% rh における \(t_b \) と \(\sigma_a \) の関係、樹脂被覆なし）を S = 13.6 GPa で取り上げ、本モデルによる予測と比較する。式 (9a), (9b) の \(a, \beta \) を求めることで、き裂成長パラメータ \(\Gamma, b, c \) および \(K_c \) として、著者ら (11) が行った実験の光ファイバにおけるき裂成長解析の結果を用いる。表 1 のこれらのパラメータの値をまとめて示す。また \(\Gamma \) については、石英ガラスの値が不明なため、ソーダガラスの値 (\(\Gamma = 11.5 \)) を参照し種々の値 (\(\Gamma = 0.3, 6, 12 \)) を仮定して、その影響を調べる。理想強度 (Sa) に関

NII-Electronic Library Service
しても、その推定値には不確さ（$S_a=20 \sim 40 \text{ GPa}$）があるため、$S_a=20 \text{ GPa}$、$40 \text{ GPa}$の2種類について計算する。

図3は、σ_r, ρおよび$a (=a/c)$の時間変化の計算例である（$\sigma_a=2 \text{ GPa}$, $\Gamma=3$, $S_a=40 \text{ GPa}$）。図中の太線は修正条件式（11）を用いた結果である。なお参考のために式（11）を用いない場合の結果を細線で示す。図3（a）は欠陥が成長し続け、破断に至る場合である。物理的に妥当な修正条件式を用いた結果（太線）と用いない場合の結果（細線）は、互いに大きく異なっている。図3（b）は欠陥が消滅する場合である。これ

Table 1 Parameters for lifetime predictions

<table>
<thead>
<tr>
<th>Crack growth measurements for silica optical fibers Ref.[12]</th>
<th>$E^*=109 \text{ kJ/mol}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b=0.169 \text{ m}^{5/2}/\text{mol}$</td>
<td>$\nu_C=0.32 \times 10^{-11} \text{ m/s}$</td>
</tr>
<tr>
<td>$K_{IC}=0.8 \text{ MPa m}^{1/2}$</td>
<td>$\rho_a=2.0 \text{ mm}$ for $S_a=20 \text{ GPa}$</td>
</tr>
<tr>
<td>Estimated crack tip radius $\rho_a=2.0 \text{ mm}$ for $S_a=20 \text{ GPa}$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lifetime predictions for pristine silica fibers</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T=293 \text{ K}$</td>
</tr>
<tr>
<td>$p=1169 \text{ Pa}$</td>
</tr>
<tr>
<td>$u=5.70 \times 10^{-11} \text{ s}^{-1} \text{ Pa}^{-2}$</td>
</tr>
<tr>
<td>$\beta=55.4$</td>
</tr>
<tr>
<td>$\Gamma=0, 2, 3, 6, 12$</td>
</tr>
<tr>
<td>$S_i=13.6 \text{ GPa}$</td>
</tr>
<tr>
<td>$S_a=20, 40 \text{ GPa}$</td>
</tr>
</tbody>
</table>

Fig. 3 Simulations for growth and size reduction of an equivalent semi-elliptical flaw under a constant applied stress of $\sigma_a=2 \text{ GPa}$. The initial flaw is the maximum stress concentrator of $\sqrt{(a/c)_{\max}}=0.971$ in pristine silica fibers of $S_i=13.6 \text{ GPa}$, where $S_a=40 \text{ GPa}$ is assumed. The initial tip radius is selected to be $\rho_a (=\rho/c) =3$, where $\rho_a=0.5 \text{ nm}$.
える初期欠陥伝(\(\times \), ○印, \(\bar{\rho}_i = 4.5 \sim 11 \))が存在することがわかる。また期待されたように, \(a_i/\rho_i = (a_i/\rho_i)_{\text{max}} \)のとき破断時間が最小となる(○印)。このことから, 図2(b)に示した最大の応力集中係数を有する初期欠陥集団Aの中で, ある特定の伝の初期欠陥が最も速く破断条件を満たし, 高强度ファイバの寿命を支配すると言える。したがって寿命予測では当該特定伝の欠陥のみに注目すれば十分である。以降, 当該特定欠陥伝に関する量は(\(\bar{\rho}_i \))のように添字を付けて表す。なお次章において, このような特定欠陥伝が存在する理由について考察する。図5は, \(a_i/\rho_i = (a_i/\rho_i)_{\text{max}} \)の初期欠陥に関する破断時間に及ぼす \(\bar{\rho}_i \)と負荷応力(\(\sigma_c \))の影響である(\(\Gamma = 3, S_A = 40 \) GPa)。図5においても, \(\sigma_c \)の各値に対して, それそれぞれの破断時間を与える初期欠陥伝 [○印, (\(\bar{\rho}_i \))] が存在する。他の場合についても同様に最小の破断時間を与える初期欠陥伝が存在する。これらをまとめて図6に示す。図6からわかるように, 高强度ファイバの寿命を支配する欠陥は, ナノ・メートル・オーダの微細な欠陥である。

さて, 当該特定伝の初期欠陥のみに注目し, 高強度ファイバの破断時間と負荷応力の関係を予測すれば, 図7の実線(\(S_A = 40 \) GPa)および点線(\(S_A = 20 \) GPa)のようになる。図7からわかるように, \(\Gamma \)が大きくなるに従い, すなわち無応力活性化エネルギーの曲線性が大きくなるに従い, 破断時間の予測値が低下していく。また \(\Gamma = 3 \sim 6 \)の場合の予測結果は実

![Fig. 4](image)

Effects of size and aspect ratio of initial flaws on failure time for pristine fibers under an applied stress of \(\sigma_c = 3 \) GPa, where \(\Gamma = 3 \) and \(S_A = 40 \) GPa are assumed.

![Fig. 5](image)

Effects of initial flaw size and applied stress on failure time, where the initial flaw is the maximum stress concentrator, and \(\Gamma = 3 \) and \(S_A = 40 \) GPa are assumed.

![Fig. 6](image)

Initial flaw size giving the minimum failure time among distributed flaws in pristine fibers of \(S_c = 13.6 \) GPa. Values of \(\rho_c \) are estimated to be 0.5 nm for the case (a) and 2.0 nm for the case (b), using \(\rho_c = 4K/\sqrt{\pi S_A} \).
4. 寿命を支配する特定初期欠陥寸法

\(a_i/\rho_i=\langle a_i/\rho_i \rangle_{\max}\) の相等を形成する初期欠陥の数の初期欠陥の中で、最大寸法の欠陥ではなく、ある特定の寸法 \(\rho_i=\langle \rho_i \rangle_{\max}\) の欠陥が高強度ファイバの寿命を支配すること、すなわち図 5 のように、\(a_i/\rho_i=\langle a_i/\rho_i \rangle_{\max}\) の単一の初期欠陥が寿命を支配する。欠陥の値を種々変化させた際に、破断時間の予測値に極小値が存在することを説明しよう。

本説明のために、欠陥先端曲率半径の変化速度および平坦外表面の浸食速度（\(v_{\text{tan}}\)）を無視する [式 (7a), (7b) において \(B(\sigma_i, \rho)=C(\sigma_i, \rho)=0\) および \(\rho=\rho_i\)]。欠陥の局所応力（\(\sigma_i\)）が理想強度に達した時点まで即时破断となることから、局所応力の増加速度が大きいほど、破断時間が小さくなると考えられる。局所応力の増加速度 \(d\sigma_i/\rho_i\) は、単位成長量当たりの局所応力の増加率 \(d\sigma_i/\rho_i\) と成長速度 \(da/dt\) の積で表される。簡単のために \(d\sigma_i/\rho_i\) の初期値に注目しよう。

\[
\frac{da}{dt} = v_{\text{tan}} \exp \left(-\frac{E_i}{RT} \right) \exp \left(\frac{1}{\rho_i} \right) \left(1 - \frac{1}{\rho_i} \right) + 2\sigma_i
\]

Fig. 7 Comparison of failure time predicted by the present model with the experimental data [Ref. (11), symbols ●] for pristine silica fibers.
し、負荷開始時の局所応力の初期増加速度のみに注目した。しかしながら、ここで導いた特定欠陥寸法に関する式 (ρ,), = Γ は、図 6 の数値計算結果からわかるように、Γ = 0 を除く様々な Γ 値について、高負荷応力側ではほぼ成立している。

5. 結 論

高強度を示す無損傷の石英ガラス光ファイバを対象として、その静疲労 (定張力下の水溶液使用の破壊) の予測のために、ビット欠陥モデル (微小半径円ノッチモデル) について検討した。以下、本研究の結果をまとめる。

（1）光ファイバを対象とした Bouten-With [4] のモデルでは、ビット欠陥表面の化学応力に関する無応力活性化エネルギー ΔE の表面曲率依存を無視している。そのため、同モデルによる破断寿命の予測値は実験結果と大きく異なる。

（2）一般的ガラス工を対象とした Hillig-Charles のモデルでは、ΔE の表面曲率依存を考慮しているが、欠陥底の曲率半径 ρ が無限に小さくなることを許すという問題を有する。しかしながら同問題を修正すれば、高強度ファイバの寿命予測に有用である。

（3）ρ が少し先端半径よりも小さくなるという修正条件を新たに加えた (2) 項の修正モデルを用いて、ビット欠陥の成長を数値解析した。その結果、高強度ファイバの寿命を支配する特定初期欠陥寸法が存在することが明らかになった。高強度ファイバの初期不活性応力の価値から、ファイバに分布する初期欠陥の中でも、最大の応力集中数を有する初期欠陥形状 (半円のアスペクト比) を検討することもできるが、その大きさは特定できない。また、大きさの異なる同一形の欠陥は確率的に分布すると考えた方が自然である。しかしながら、このような相対形初期欠陥の中で、最大寸法ではない、ある特定の寸法の初期欠陥が最も速く破断条件を満足し高強度ファイバの寿命を支配する。

（4）定荷重応力下にある同一形状の初期欠陥に関し、その寸法が大きくなるほど ΔE の表面曲率依存の影響により欠陥成長は速くなる。これは欠陥底の局所応力 σ₀ の増加速度を大きくする効果である。一方、単位成長当たるの σ₀ の増加率は、初期欠陥寸法が大きくなるほど大きくなる。両者の互いに逆の効果によって σ₀ の増加速度は、特定初期欠陥寸法において极大値をとる。これが（3）項の特定初期欠陥寸法の存在する理由である。

（5）ΔE の表面曲率依存度は予測寿命に大きく影響する。

終わりに、本研究の一部は、文部省科学研究費補助金 [平成 10 年度奨励研究 (A) 09750097] によったことを付記する。

文 献

（1）大久保 越, ISDN 時代の光ファイバ技術, (1989), 193, 理工学社

（6）村岡光夫, 阿部博也, 機論, 55 5-512, A(1989), 798-802.

