有限要素法解析を用いた接着継手/構造物のき裂進展形状および強度予測*

内藤公喜*1, 藤井透*2

Crack Propagation and Prediction of Strength for Adhesive-bonded Joints/Structures using Finite Element/Analysis

Kimiyo SHI*3 and Toru FUJII

**Mitsubishi Electric Corp., Kamakura Works, Miyashino 1-1-57, Sagamihara Shi, Kanagawa, 229-1195 Japan

An analytical investigation was performed to study the strength of adhesive-bonded joints/structures based on the fracture mechanics approach considering crack propagation using a three dimensional linear finite element analysis. An analytical model was developed and a virtual crack closure technique was applied to obtain total strain energy release rate. The distribution of total strain energy release rate at a crack front of adhesive-bonded joints/structures were calculated. The initial location of a crack and the crack geometry in the adhesive layer could be predicted from the distribution curve of total strain energy release rate. The strength of adhesive-bonded joints/structures, whose geometry was arbitrary, could be estimated using the R curve method, here the crack length was measured along the crack propagation path from the crack initiation. The proposed approach was well confirmed by the experiments.

Key Words: Crack Propagation, Adhesive-Bonded Joints/Structures, Finite Element Analysis, Crack Geometry, Fracture Mechanics, Strain Energy Release Rate

1. 緒 言

異種材料の接合部では弾性応力が特異となるため、接着継手/構造物の強度評価に当たって破壊力学的手法を用いることが多い。1)，2) 破壊が接着体と接着剤層の界面で起こることを想定し、応力特異場指数 A と応力特異場の強さ K を導入したき裂の発生予測法はある程度の成功を収めている。3)，4)，5) また、接着剤層中のき裂の成長・進展を扱った研究例も少なくない。6)，7) しかし、従来までの研究は接着面に垂直な断面でのき裂の発生、進展を着目しており、接着点の２次元的広がりは考慮されていない。そのため、従来の強度評価法では単純重ね合わせ接着継手、形状が単純な接着のみを取り扱っている。接着強度解析の立場から実際の製品組立に用いられる接着形態を対象とした強度評価法が必要である。接着接着層／構造物の形状およびき裂の発生、進展は多様であり、き裂の形状を予測できなければ接着継手／構造物の強度評価を行うことは困難である。しかし、従来の手法では試験片幅の異なる重ね合わせ接着のき裂進展を取り扱うことはできない。

一方、実際の接着継手／構造物では、応力分布のため破断荷重に比べて比較的低い荷重でも発生すると考えられる。脆性接着層を用いた接着接着層／構造物ではき裂の発生＝最終破壊となる。しかし、多くの実用接着剤ではき裂の進展に対し、R 曲線特性を有するため、接着端でき裂が発生しても直ちに破壊には至らない。実際の接着接着層／構造物の強度予測に当たってはき裂の進展を考慮しなければならない。

本研究では２次元的広がりを有する接着継手／構造物のき裂の進展解析およびき裂の進展を考慮して破断強度予測を試みる。

2. き裂進展形状と接着継手／構造物の強度予測

一般に、接着構成物ははく離負荷を抑えるように設計される。5) しかし、実際の接着構成物では、はく離負荷が全く耐えられない状態は考えられない。接着構成物の強度推定に対してもはく離負荷ははく離負荷をともに作用する単純重ね合わせ継手の試験結果が広く用いられている。9) そのため、本研究での強度予測にも単純重ね合わせ継手の試験結果より評価された R 曲線を基準値として活用する。また、き裂進展形状の予測にも単純重ね合わせ継手を用いる。
2.1 単純重ね合わせ接着の場合
延性的性質を持った接着剤では、必ずしもき裂の発生が接着層/構造物の最終破壊ではない。このような接着層/構造物では、ある程度き裂が進展するまで、その進展と同時にき裂進展抵抗も増加する。接着層/構造物の最終破壊を予測するには、接着層内部のき裂に対してもき裂進展抵抗値をき裂進展状態に依存性（R曲線）を考慮しなければならない。図1に示す一般的なR曲線ととき裂長さとエネルギー解放率の関係（B0～A0）を示す。ここでは、モデルは単純重ね合わせ接着である。R曲線は実験より求められる。B0～A0は発展すべき接着層のlength P0～P1、のときき裂が進展したと考えた場合のエネルギー解放率であり、有限要素法等の数値解析やその他の適当な方法によって求められる。図1ではき裂がラップ端から均等に発生し、進展するとして、確率の左側半分のみ示している。

![Fig.1 R-curve and relation between crack length and strain energy release rate at various loads for a single lap joint](image)

いま、荷重P0でラップ端にき裂が発生したとする。曲線B0はこの荷重でき裂が引き続き安定的に進展すると仮定した場合の接着層内部のエネルギー解放効率曲線である。弾性解析結果によれば、単純重ね合わせ接着層の場合は下記の単調増加曲線を与える。しかし、この接着層のき裂進展抵抗値が安定進展域内において一定であるならば（図中のA0で示されている）、その時点でのき裂は安定進展を生じ、最終破壊が起こる。縦割れの強度はP0で与えられる。なぜなら、A0は曲線B0を常に下回り、接着層にはき裂進展を阻止する抵抗がないからである。一方、接着層が曲線Aで示されるき裂進展抵抗値を示すならば、荷重P0でき裂がラップ端で発生しても、その後荷重が増加しなければき裂進展はしない。荷重がP0で増加するとともにき裂進展する。荷重がP0に達した時、曲線B1とR曲線の交点までき裂が進展する。荷重が増し、P1に達した時、曲線B1はR曲線と交差する。この図によれば、き裂が進展した時、き裂が不安定進展を生じ、接着層/構造物の最終破壊が起こる。強度はP1で与えられる。接着層/構造物の最終破壊は接着層のR曲線と縦割れの形態・寸法等により定まるき裂長さとエネルギー解放率曲線Bで与えられる。接着層のR曲線をモード比によらない接着層因子に与えると、各層が定めるにはそれをそれぞれの接着層/構造物についてき裂長さとエネルギー解放率を求めめる必要がある。

2.2 任意形状の接着面を有する接着の場合
単純重ね合わせ接着層では、接着層中と上に転がするならで一本の連続した曲線としてき裂は進展する。そのため、被着体厚さおよび材料の異なる接着層である曲線Bを適当な方法で求める。図1に示される関係を示す過程でき裂の進展および強度を評価することができる。Johnsonは衝撃荷重を受ける動的き裂進展を除いて重ね合わせ接着層の接着層面層部を進展する裂の（混合モード）エネルギー解放率Gで次式で与えられると報告している（11）。

\[
G \geq \frac{\sigma(a)}{2} \frac{1-v}{E} + \frac{\tau(a)}{2(1+v)}
\]

ここで、E, vはそれぞれ接着層のヤング率、ポアソング比であり、ηは接着層厚さである。また、a(a), r(a)はそれぞれ長さ a のき裂先端でのバネ応力およびせん断応力である。Goland & Reissner の理論で計算される（12）。他の論文等においても、2次元平面内での一本の連続した曲線として、き裂の進展解析は有限要素法による応力拡大係数およびき裂進展方向に対する適当な基準（13）によってなされるべきである。一方、図2に示されるように、一般的な接着層/構造物では接着層面は面としての広がりを示することから、接着面に垂直方向から見られるき裂の進展を2次元的な状態に収束する。従来の接着層に垂直な面内での解析では図2(a)の接着層き裂進展を解析することは可能であるが、図2(b)の接着層き裂進展を解析することができない。接着面を考慮したとき裂長さとエネルギー解放率の関係を求める必要がある。

(a) in the case of equal adherend width

1 一般に、接着層のき裂進展抵抗値はモード比（混合モードの組合せ比）の影響を受ける。モード比の増加によって、き裂進展抵抗値が増大する。そのため、R曲線がモードの組合せによって変化する。すなわち、モード比をパラメータとして、節点のR曲面が表される。しかし、その後の接着構造の強度予測においては、一定のR曲線を仮定すると、接着層のき裂進展抵抗値が適切な値に収束するものと仮定する。き裂の進展を考える際の接着構造の破壊強度を適切に考慮するためには、上述のようにモード比のR曲面を求める、き裂進展挙動を評価する必要がある。
有限要素法解析を用いた接着継手/構造物のき裂進展形状および強度予測

以下、面としての広がりを有する接着面内におけるき裂進展解析手法を説明する。解析を行うにあたって、き裂の進展形状を予測する必要がある。き裂進展形状に関する報告も散見されるが、白鳥らは実構造部材に存在するき裂、つまり3次元元裂に対する破壊力学パラメータを簡便に求める方法を提案している。しかし、予めき裂の形状を構円と仮定しているため、幅広いき裂形状に応じてできない。

本研究では、き裂は接着自由端から接着剤層中央部を進展するものとして、単位荷重に対する接着平面内のエネルギー解放率分布を用いて、き裂進展およびき裂進展形状の解析を試みる。解析を進めるにあたって以下のよう仮定を置いた。

① 接着剤端の自由縁にすでに微小き裂が存在する。
② き裂は接着自由端から接着剤層中央部を進展する。
③ き裂の進展は全ひずみエネルギー解放率
④ 接着剤層中のき裂進展抵抗力はき裂長さに依存する。
⑤ 被着体および接着剤のひずみおよび変形は微小で、塑性変形しない。

図3(a)の単純重ね合わせ継手を例に、き裂進展の解析過程を説明する。はじめに、接着剤層自由縁まわりに初期微小き裂を想像し、接着剤層中央部に作用したときの自由縁まわりのエネルギー解放率（分布）を求める。計算に当たって、汎用有限要素法プログラムを用いた。接着自由端におけるエネルギー解放率はコンプライアンス法により求めた。すなわち、図3(b)でUnit cell の部分の剛性を零として計算した場合は剛性を落とさない場合のコンプライアンスを比較し、対象Unit cell 部分の単位荷重に対するエネルギー解放率を求める。ここでのエネルギー解放率が最も高いUnit cell 部分にき裂が進展するものとする図3(c)。ここで第1ステップが終了する。き裂の進展が前回までのき裂の影響を受け続けるか、次のステップでは、はじめからき裂が進展した部分の剛性を零とし、第1ステップと同様の計算過程を繰り返す。このき裂進展計算過程を繰り返し、き裂進展を再現するまで繰り返す。計算終了後、き裂が進展したUnit cell 部分でのエネルギー解放率を各節点に振り分ける。これ等エネルギー解放率分布曲線からき裂の進展形状を求める図3(d)。このとき、き裂進展経路はき裂前線に常に垂直であり、き裂長さは自由縁より積分して求める。接着自由端からき裂進展経路にそってき裂長さを測ることによって、図1と同様なき裂長さエネルギー解放率関係を求める。この関係と実験により求めたR曲線からき裂が不安定進展を起こす荷重あるいは維持強度を求める。
３. 強度試験

本研究では引張強度形状および強度予測法の有効性を調べるために、引張せん断荷重を受ける単純重ね合わせ接着および平板に接着したL型鋼の強度試験を行った。

3.1 単純重ね合わせ継手の引張せん断接着強さ試験

JIS K 6850-1976に基づいて単純重ね合わせ継手の引張せん断接着強さ試験を行った。試験片形状を図5に示す。接着剤にはポリウレタン系接着剤を用いた。被着体には炭素工具鋼SK5を用いた。試験片の接着剤厚さηは0.05～0.7mm、被着体厚さtは1.6、3.2mm、ラップ長さLは5、20mmとそれぞれ変化させた。

![Fig.5 Dimensions of single lap joint.](image)

実験室環境中で接着作業を行った。単純重ね合わせ継手の引張せん断接着強さ試験には電気式油圧サーボ試験機を使用した。荷重速度は4.9KN/minとした。また、試験片端のつかみ部分をスペーサーとともに試験機のチャックに固定し、試験片の見かけの中心線とチャックの中心線を一致させ、荷重軸が正しく同一線上を通るようにして実験を行った。試験片側面にはラップ両端にクラックゲージを貼り、荷重とき裂長さの関係も測定した。

3.2 L型鋼接着構造モデルの引張／せん断試験

幅広い形状の接着継手／構造物の強度評価に本研究で提案した方法が有効であるかどうか調べるために重ね合わせ継手に比べて複雑な形状を有するL型鋼を貼り付けた接着構造モデルの引張およびせん断試験を行った。試験片形状を図6に示す。試験片の接着剤厚さη、L型鋼厚さt、被着体厚さtはそれぞれ(η, t, L) = (0.3, 3.0, 3.0mm)である。L型鋼および被着体はいずれも一般構造用炭素鋼S S S 4 0 0 を用いた。L型鋼を貼り付けた接着構造モデルの引張およびせん断試験にはインストロン型万能試験機を使用した。荷重点変位速度は0.5mm/minである。

![Fig.6 Dimensions of stiffened plate with a steel L-beam.](image)

4．実験結果および考察

4.1 単純重ね合わせ継手

単純重ね合わせ継手の引張強度形状を図7に示す。継手の寸法は(η, t, L) = (0.1, 1.6, 20mm)である。計算に用いた各材料の機械的特性を表1に示す。

![Fig.7 Predicted crack geometry for a single lap joint. (η, t, L) = (0.1, 1.6, 20mm)](image)

| Table 1 Material properties for adhesive-bonded joints |
Adhesive	Adherend	
Young's modulus, E	0.268 GPa	194 GPa
Poisson's ratio, ν	0.466	0.310

本研究では、接着剤のR曲線は接着剤厚さの影響をあまり受けていないと考え、図9に示す(η, t, L) = (0.1, 1.6, 20mm)のR曲線を基にして単純重ね合わせ継手の
引張強度と接着剤層厚さの関係を予測した。図10に（η, L）＝（1.6, 20 mm）、（1.6, 5 mm）、（3.2, 20 mm）、（3.2, 5 mm）における実験結果と計算結果の比較を示す。いずれの接着においても、接着剤層厚さが減少すれば接着強度が増加する結果が得られ、定性的のみならず定量的にも実験結果と予測結果には良い一致が見られた。

Fig.9 Relation between normalized crack length and crack extension resistance for a single lap joint. (η, l, L) = (0.1, 1.6, 20 mm)

Fig.10 Experimental and predicted adhesive strengths for four types of single lap joints.

Fig.11 3D finite element meshes for stiffened plate with a steel L-beam.

Fig.12 Predicted crack geometry of stiffened plate with a steel L-beam.

Fig.13 Photographs of fractured surface for stiffened plate with a steel L-beam.

4.2 L型鋼構造モデル
単純重ね合わせ接着と同様に、L型鋼構造モデルも左右対称である。図11に示すようにモデルの1/2を要素分割し解析を行った。

Fig.11 3D finite element meshes for stiffened plate with a steel L-beam.
5. 結 言

き裂進展形状とき裂の進展を考慮した接着継手／構造物の強度予測法を提案した。本研究の結果、以下のこと
がわたった。

1. 接着剤層からの等エネルギー解放率分布曲線から、
任意に形状を有する接着継手／構造物の2次元的
広がりを持つ接着剤層内のき裂の進展形状を予測
することができる。

2. き裂発生点からのき裂進展経路をき裂長さとして
R曲線法を用いることにより幅広い接着継手／構
造物の強度予測が行える。

本研究は文部省私立大学学術研究推進事業の補
助による同志社大学大学院 RCAST およびハイテク
サーチプロジェクトの支援を受けて

参考文献

(1) H. L. Groth, ‘A Method to Predict Fracture in an
Adhesively Bonded Joint’, Int. J. Adhesion and
Adhesives, 5, 1, 1985, 19-22

(2) 能野英介, 破壊力学の接着継手への応用, 日本接着
協会誌, 22, 2, 1986, 31-39

(3) 肇部敏雄, 坂田喜雄, 初田俊雄, 村上元, 応力特性
場パラメータを用いた接着界面強度推定, 日本機械
学会論文集 (A編), 54, 499, 1987, 597-603

(4) S. Mall and G. Ramamurthy, 'Effect of bond thickness
on fracture and fatigue strength of adhesively bonded
composite joints', Int. J. Adhesion and Adhesives, 9,
1989, 33-37

(5) 東南鉄, 結城明治, 石川晴雄, 中野裕, 接着継手の
強度評価への破壊力学の応用（第1報, D C B試験
片と単純重ね接着の破壊特性）, 日本機械学会論文
集 A編, 54, 506, 1988, 1895-1902

(6) 前田郁博, 高性能が生む接着剤選び, 技術評論社,
1983, 90-96

(7) J. L. Nicholas, 福村勉治, 金尾接, 近代編集社,
1975, 65-88

(8) M. Tsuchida, K. Naito and T. Fujii, 'Effects of CNBR
Modification on Mode I Fracture of Epoxy Adhesives
for Automotive Application', SAE Technical Paper
Series, 950130, 1995

(9) G. Fernlund and J. K. Spelt, 'Analytical Method for
Calculating Adhesive Joint Fracture Parameters', Eng.

(10) S. C. Pradhan, N. G. R. Lyengar and N. N. Kishore,
'Finite Element Analysis of Crack Growth in
Adhesively Bonded Joints', Int. J. Adhesion and
Adhesives, 15, 1, 1995, 33-41

(11) W. S. Johnson, 'Stress Analysis of the Cracked-Lap-
Shear Specimen: An ASTM Round-Robin', J. Testing
and Evaluation, JTEVA, 15, 6, 1987, 303-324

(12) M. Goland and E. Reissner, 'The Stresses in Cemented
Joints', J. Applied Mechanics, Trans. ASME, 66, 1944,
A-17-A-27

(13) 矢川元基, 破壊力学 (理論・解析から工学的応用ま
で), 輿論社, 1988, 229-254

(14) A. N. Kumar, 'Thickness Effect on Slow Crack Growth
Measurement', Int. J. Fracture, 36, 1988, R29-R32

(15) 白鳥正樹, 三好俊郎, 谷川克己, 任意分布を受ける
表面き裂の応力拡大係数の解析 （第2 報, 平面中
の半円表面き裂に対する応力係数の解析とその応
用）, 日本機械学会論文集 (A編), 52, 474, 1986,
390-398

(16) 白鳥正樹, 三好俊郎, 藤井義明, 張光栄, 任意分布
を受ける表面き裂の応力拡大係数の解析 （第3 報,
丸棒中の半円表面き裂に対する影響係数の解析
とその応用）, 日本機械学会論文集 (A編), 53,
488, 1987, 779-785