遺伝的アルゴリズムを用いた筐体設計支援システム*

山口貴次*1, 江澤良孝*2, 小室勲*2

A Design Support CAE System Using Genetic Algorithms

Takashi YAMAGUCHI*3, Yoshitaka EZAWA and Isao KOMURO

*3 Mechanical Engineering Research Laboratory, Hitachi, Ltd.
Kandatsu-chou 502, Tsuchiura-shi, Ibaraki ken, 300-9013 Japan

A design support CAE system was developed to reduce production cost, weight, and design time of box structures. This system assists users in: modeling structures for FEM analysis; estimating structural dynamics, production cost, weight, and weight balance of box structures; optimizing structures by using genetic algorithms. We applied this system to optimum problems of riveted joint structures and researched the convergence performance. We could reduce the number of rivets by 55.7 percent in a riveted box structure.

Key Words: Genetic Algorithms, CAE, Optimum Design

1．緒 言

電子機器、電源装置等の外枠である筐体の軽量化、開発期間の短縮、及び原価低減を目的として、筐体構造の設計支援システムを開発している**1。これまで、溶接、レベット、ポルト及びネジの総合部材を簡便にモデル化できる評価モデル作成機能、及びFEM解析、コスト評価、軽量性評価、及び重量計算によって設計仕様を評価する各種評価機能を用い、設計者が種々の設計条件を考慮しながら筐体構造を設計する対話型の最適化機能を開発してきた。対話型の最適化機能を用いる理由は、設計変数が任意に変えることができる（規格寸法、整数値など）用いる）場合や、最適性の評価が複雑な場合など、設計者の判断が必要な場合に対応するためであった。今回、このような設計変数及び評価項目が複雑な場合でも対応可能で、かつ効率良く最適解が求められるように、遺伝的アルゴリズム*2・*3（以下GAと略す）を用いた自動最適化機能を開発した。本システムを利用することにより、特に、総合部材の配置方法に関する最適化が実現できる。本稿では、GAを用いた最適化機能の概要、及びレベットの最適配置問題への適用について報告する。

2．GAを用いた最適化機能の概要

GAを最適化問題に適用するには、設計変数をGAで扱う遺伝子配列の表現に変換するコーディング方法、制約条件や目的関数に対応する最適性を評価するための適用関数、及び最適解を探索するためのGAリーパーク（選択、交又、突然変異等）を決定する必要がある。

2．1 コーディング方法

GAの適用性を表1に示す。各要素に、それぞれの遺伝子コードを配置した。
接、リベット、ボルト、及びネジの締結方法（ビッチ、従数等）に関するパラメータが指定でき、締結部材の配置方法に関する最適化が実現できる。これらの設計変数をGAで扱う遺伝子配列を表現するには、1次元配列を用いて、配列の各要素に1つの設計変数を応答させる手法を用いた。ただし、各要素には、直接、設計変数の値を設定せずに、図1に示すように、各設計変数に対する規格データベースから制約範囲を満たす値を出して並べた規格リストのリスト番号を設定する。これにより、開発元が製造ごとに異なる規格手法を利用する問題にも、規格データベースを取替えるだけで容易に適用できる。さらに、評価要素値に応じる設計変数の値は、規格データベース内に必ず存在するので、致死遺伝子の生成を防止できる。

2. 2 適応度関数 表2に本システムで最適解を評価する評価値の種類を示す。評価値には、FEM解析によって得られる変位、応力、及び固定値の他に、重量、転倒性（重心位置と転倒角度）、及びコストが指定でき、本システムの各種評価値因子が自動計算される。GAの適応度の判断は、各種評価値因子を自動算出した評価値に対し、表3に示す必要関数を用いて変換した評価値の適応度を用いる。評価関数は、制約範囲内でいきいきと異なる関数が用意されており、設計者が最適化の問題に応じて選択する。実際の設計問題では、本数の評価値を考慮する必要があるため、式(1)に示すように、各評価値の適応度を線形変換によって重み付け、加算することによって、1種類の適応度を置き換えたものを利用する。

ここで、n及びmは、個体数、評価値の個数であり、ai及びbiは、線形変換の係数である。

2. 3 GAオペレータ 本システムは、選択処理（エリート保存、ルーレット選択、期待値選択、ランク選択）、交叉処理（1点交叉、2点交叉、一様交叉）、及び突然変異の一般に利用されるGAオペレータが用意されており、設計者が問題に対応に選択できる。さらに、遺伝子配列の要素に整数の多値を設定する場合の交叉処理の問題点を補うため、関数選択の変更を伴う交叉処理を追加している。表4に示す遺伝子配列の要素が整数の多値と2値を取る場合の単純GA（1点交叉、突然変異）の処理結果を比較して、この多値に対する交叉処理の問題点を説明する。多値に対する交叉の場合、各配列要素の値は、既に集団内に存在する値の交換になるため、新しい整数値を生成することができなくなるという問題が生じる。2値の場合、各設計変数の値を整数の要素（ここでは3要素）を用いて表現されているので、交叉によって新しい設計変数の値を生成することができ、問題は生じない。実際の手法で、この多値に対する問題を解決するには、集団数を増加し配列要素の取りうる値をできるだけ多く用意した上、突然変異の実施する確率を増加して新しい値を生成することが考えられる。しかしながら、集団数を増加する方法では、計算時間が増加するため、収束状態に近づくに従い、配列要素の取りうる値が限定されるので、効果が低下する。また、突然変異を増加する方法では、ランダム探索の状態に近づき、GAとしての探索効果が低下し、収束点の近傍探索の効果が低下することになる。そこで、本システムでは、図2に示すように、従来の交叉処理に、交叉点に隣接する要

--- 129 ---
素を変更する処理を追加した。その後は以下の通りである。
(1) 従来の交叉処理を行う。
(2) 交叉点の隣接要素を変更するかを確率（隣接要素の変更率）で決める。変更する場合は（3）へ、変更しない場合は処理を終了する。
(3) 交叉点の左右どちらの隣接要素を変更するかを決める。
(4) 変更する隣接要素の値を増加させるか減少させるかを決める。
(5) 増加させる場合、隣接要素の値を1増加させ、減少させる場合、隣接要素の値を1減少させる。
これにより、図表内に存在しない設計変数の値を持つモデルを生成することができる。表2の例では、8種類の新しい個体が生成される可能性があり、特に、①と②の個体は、表3に示す2値の場合の交叉処理によって生成された個体と同じものである。また、本手法は、突然変異のようなランダム探索ではなく、隣接要素を±1変更する近傍探索の性質を持たせており、収束状態に近づいているときの収束性を改善できると考えられる。

3. 適用例

3.1 3枚の板から構成された維手のリベット配置設計 図3に示す3枚の板を組合せた維手構造に対し、5箇所のリベット締結部でのリベットの配置方法を決め る。設計変数は、表5に示すように各種締結部に配置するリベットの個数である。制約範囲は、0～5個とする。よって、本システムのコーディング手法によって生成される遺伝子配列は、要素数が5個で、各要素の取りうる値が0～5の値になる。評価項目は、表6に示すように板Aを固定し、板BのY軸方向に荷重を加えたときの、3枚板のY軸とZ軸方向の変位、及びリベットの総数であり、許容値は、Y軸方向変位が0.0～20.0 mm、Z軸方向変位が-10.0～0.0 mm、及びリベット総数が125個である。適応度計算のための評価項目の評価関数は、Y軸方向変位とリベット総数がタイプ1の関数、Z軸方向変位がタイプ2の関数を用いる。
種々のリベット配置パターンに対してFEM解析を実施した結果、許容値を満たし、リベット総数が最小となるのは、リベット総数が12個で、各リベット総数の配置個数が14, 0, 0, 0, 3\]、及び\[13, 0, 0, 0, 4\]となることがわかった。ただし、今回の適用で用いた適応度の計算手法では、\[14, 0, 0, 0, 3\]の適応度が若干大きくなるので、GAによる最適化では、\[14, 0, 0, 0, 3\]が最適解となり、\[13, 0, 0, 0, 4\]は準最適解となる。この問題に対し、表7に示すように、4種類の集団数、3種類の隣接要素の配置数、及び5種類の突然変異数の処理パラメータを用いてリベットの最適配置を求め、最適解に対する収束性及び隣接要素の変更を伴う変異処理の有効性を評価する。図4に集団数に対する収束までの世代数及び解析数（重複するモデル数を除く）を示す。図4より、集団数を増加させると、収束までの世代数は減少する傾向にあるが、逆に解析数が増加する傾向にあることがわかる。解析に膨大な時間を食う問題の場合、最適解を効率良く求めるには、解析数も考慮したパラメータ設定が必要である。本適用対象の場合、集団数5の結果で、世代数及び解析数共に低く抑えられているケースが多く、それ以上の集団数を設定しても大きな改善効果が見られない。図5に集団数50における変更要素数に対する収束までの世代数を示す。ここで、横軸の変更要素数とは、隣接要素の変更を伴う変異数及び隣接変異数によって変更される遺伝子配列内の要素の個数である。例えば、隣接要素の変更を伴う変異数では、隣接要素の変更率が100％のとき、1つの隣接要素が常に変更されるので、変更要素数は1となる。突然変異数では、突然変異数が20％のとき、遺伝子配列の5つの要素のうち1つの要素が選択される確率なので、変更要素数は1となる。図5より、同一個数の変更要素数に対する収束までの世代数を比較すると、隣接要素の変更を利用した手法が突然変異のみを利用する手法よりも世代数が減少する傾向にあることがわかる。

3.2 リベット接体のリベット配置設計 図6に示す接体は、床板、4本の柱、天井板、柱と床板及び柱
Table 8 GA parameter

<table>
<thead>
<tr>
<th>No</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Population size</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>Selection</td>
<td>Elitist preserving selection : 1 Roulette selection</td>
</tr>
<tr>
<td>3</td>
<td>Crossover</td>
<td>One point crossover Probability of crossover : 50%</td>
</tr>
<tr>
<td>4</td>
<td>Mutation</td>
<td>Probability of mutation : 3%</td>
</tr>
</tbody>
</table>

Table 9 Design Variable

<table>
<thead>
<tr>
<th>Number of design variable</th>
<th>Constraint</th>
<th>Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[2, 3]</td>
<td>0 5 10 50</td>
</tr>
<tr>
<td>2</td>
<td>[2, 4]</td>
<td>3 4 2 2</td>
</tr>
<tr>
<td>3</td>
<td>[2, 4]</td>
<td>3 2 3 3</td>
</tr>
<tr>
<td>4</td>
<td>[1, 2]</td>
<td>2 3 1 1</td>
</tr>
<tr>
<td>5−24 (Corner)</td>
<td>[0, 1]</td>
<td>3 6 9 2 1</td>
</tr>
<tr>
<td>25</td>
<td>[2, 4]</td>
<td>3 2 4 2</td>
</tr>
<tr>
<td>26</td>
<td>[2, 5]</td>
<td>3 3 2 3</td>
</tr>
<tr>
<td>27−30 (Stiffener)</td>
<td>[1, 2]</td>
<td>2 [1, 2] 1</td>
</tr>
<tr>
<td>31−35 (Stiffener)</td>
<td>[1, 2]</td>
<td>2 [1, 2] 1</td>
</tr>
<tr>
<td>Number of analyses</td>
<td>1 133 330 975</td>
<td></td>
</tr>
<tr>
<td>Number of rivets</td>
<td>348 210 164 154</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 7 Riveted corner structure

7に50世代までの設計変数No. 5～24（コーナ金具）のリベット締結状態を示す。10世代と50世代のリベット締結状態には、コーナ金具と締結されていない部材（設計変数No. 10～16で締結される部材）が存在することが、これは、床板及び天井板内の部材間でリベット締結されていること（設計変数No. 1～4、25、26）及び設定した荷重条件がY軸方向の横荷重しか考慮していないことから削減されたと考えられる。

4．結論

GAによる構造最適化機能を用いた建築設計支援システムを開発した。本システムは、以下の特徴を持つ、（1）設計変数に、溶接、リベット、ボルト及びネジの締結方法（ピッチ、個数など）に関するパラメタが指定でき、締結部材の配置方法に関する最適化が
実現できる。
（2）開発元は製品ごとに異なる規格寸法を利用する問題にも、規格データベースを取替えるだけで容易に適用できる。
（3）交又処理に構成要素の変更処理を追加して近傍探索の機能を拡張することにより、収束状態に近づいておきの収束性が改善でき、効率的に最適解を求めることができる。

本システムをリベット鋼板のリベット配置設計に適用し、集団数やGAオペレータのパラメータに対する最適解への収束状況を評価した。また、リベット鋼体のリベット配置設計に適用し、リベット総数を55.7%削減できる鋼体構造を求めた。

文献
（1）山口貴男 他2名、板金鋼体の設計支援システムの開発、日本機械学会論文集、Vol.63、pp228-233、1997
（2）水野宏明編、遺伝的アルゴリズム、（1993）、産業図書
（3）伊藤周志、遺伝的アルゴリズムの基礎、（1994）、オーム社