Cyclic Plasticity Behavior of Mild Steel with Special Emphasis on Yield-Point Phenomena

Fusahito YOSHIDA**, Misao ITOH, Tatsuo OKADA and Masayuki NAKAGUCHI

** Hiroshima University, Dept. of Mechanical Engineering, 1-4-1, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527 Japan

Annealed steels exhibit a sharp yield point and the subsequent abrupt yield drop followed by the yield plateau (Lüders deformation) in their stress-strain curve of uniaxial tension. This paper provides some typical examples of experimental data of cyclic plasticity with special emphasis on the yield-point phenomena for an annealed mild steel, i.e., uniaxial tension at several crosshead speeds; cyclic straining; stress- and strain-controlled ratcatching. In order to describe the stress-strain response characteristics such as the yield-point phenomena, cyclic hardening/softening; the Bauschinger effect and rate-dependent ratcatching, constitutive modelling of cyclic elasto-viscoplasticity is discussed on the premise that the sharp yield point and the subsequent abrupt yield drop result from the rapid dislocation multiplication and the stress-dependence of dislocation velocity.

Key Words: Constitutive Equation, Plasticity, Material Testing, Mild Steel, Yield-Point Phenomena

1. 緒 言

焼鍊した鋼の引張り試験において求め得せ、降伏点（上降伏点）および降伏脇、そのときに続く降伏段（リューデールズ帯の伝播による不均一塑性変形）が生じることはよく知られている。このような現象は、はじめCotrellにより焼鍊により固着された転位が応力の作用により固着からはずされるためであると説明された。その後Jhonston-Gilmanは，LiF単結晶の実験から可動転位の急激な増殖と転位の運動速度の応力依存性がこの特異な応力ひずみ挙動の原因であるとし、これらを考慮した構成式の基本形を提案した。HahnはJhonston-Gilman型の構成式を軟鋼多結晶体の応力ひずみ挙動を記述するのに用いている。また、同様な構成式を用いて、塩谷らは軟鋼の板や棒の引張りやねじりなどで現れる不均一塑性変形の様子を連続分布転位論で、著者らは有限要素法により引張りおよび静水圧荷負後の引張りおよびねじりの解析を行っている。

軟鋼の繰返し塑性変形（定ひずみ繰返し、ラチェット変形など）に関する実験やそのときの応力ひずみ挙動を記述する構成式については既に多くの報告73-90があるが、これら従来の研究のほとんどが降伏段以降の加工硬化域における変形挙動を問題にしている。しかし、実際には降伏段近傍の繰返し塑性変形挙動について検討することのほうが重要と思われる。というのは、実際の構造物に繰返し荷重が作用してその一部（応力集中部）に塑性変形が繰廻される場合を想定するとき、その塑性ひずみ領域は弾性域に囲まれているため塑性ひずみ幅は大きくはならえないからである。

本研究では、明確な降伏点およびその後の降伏降下現象を示す鋼の繰返し弾塑性構成式を確立するための第一歩として、焼鍊した軟鋼（熱延鋼）を用いて、主に降伏段近傍の繰返し塑性変形挙動の特徴を実験的に調べた。また、相当塑性ひずみ速度が過大応力（overstress）の関数であるとして、等方硬化と移動硬化により硬化特性を記述する弾粘塑性構成式の枠組みを前提としてこれらの実験結果について考察する。

2. 弾粘塑性構成式の枠組み

単結晶について考えると、せん断塑性ひずみ速度
と転位の速度 \(v \) の関係は、バーガースベクトルの大きさ \(b \)、可動転位密度 \(\rho_m \) を用いて、次式で与えられる。

\[
\dot{\tau} = b \rho_m \dot{v}^n \tag{1}
\]

転位速度 \(v \) は応力に依存し、これは多くの場合に有効分解せん断応力 \(\tau_e \) の関数として次のように与えられ \(\tag{11,12} \)

\[
v = \left(\frac{\tau_e}{D} \right)^n \tag{2}
\]

ここで、有効分解せん断応力 \(\tau_e \) は分解せん断応力 \(\tau \) りよりそれ以下では転位の運動が生じない臨界応力 \(\tau_c \) を差引いたものとして

\[
\tau_e = \tau - \tau_c \tag{3}
\]

のように定義される。また、式(2)において \(D \) は転位に単位速度を与える有効分解せん断応力の大きさであり、抗応力（drag stress）と呼ばれる、式(1)、(2)より速度依存型の塑性構成式として次式が得られる。

\[
\dot{\tau} = b \rho_m \left(\frac{\tau - \tau_c}{D} \right)^n \tag{4}
\]

多結晶体について考え、その弾性域が次式で表されるとする。

\[
f = \frac{3}{2} \frac{(s-\alpha)}{(s-\alpha)-(Y_s+R)^2} \leq 0 \tag{5}
\]

ここで、\(s \) および \(\alpha \) はそれぞれ偏応力および偏応力（backstress）であり、\(Y_s \) および \(R \) はそれぞれ初期降伏応力および等方硬変応力を表していない。粘塑性変形は降伏（弾性限界）応力を超えた応力の作用により生じると考えると基準応力構成式は単結晶についての式(4)に対応しており、そのひとつの形は次のようにすることができる。

\[
\dot{\varepsilon} = \frac{b \rho_m}{M} \left(\frac{\tau - \tau_c}{D} \right)^n, \quad \dot{\varepsilon} = \frac{3(s-\alpha)^2}{2\sigma} \tag{6}
\]

\[
\sigma = \sqrt{\frac{1}{3}} \frac{3(s-\alpha)}{(s-\alpha)}
\]

ここで、\(M \) はテーラー因子(Taylor factor)であり、Taylor-Bishop-Hill\(^{11,12}\)の結晶塑性モデル（いわゆるTBHモデル）によれば鉄鋼材料については \(M=2.8 \) と計算された。なお、式(6)における抗応力 \(D \) は単結晶における抗応力 \(D_0 \) と \(D = \rho D_0 \) のような関係がある。この形は単軸応力状態についてはHahnの提案したモデルと基本的には同じものであるが、Hahnは \(m \) のかわりに分解せん断応力が最大となるすべり方向に対応する値として2（シュミット因子0.5）を用いており、彼のモデルでは移動硬化を考慮しておらず(初期降伏応力 \(Y_s=0 \) として)線形等方硬化のみが考えられている。以下では式(6)の枠組みを前提にして線返し塑性の実験結果について検討することにする。

そこで、上述した結果およびその後のリューダース帯の伝播による降伏段を記述する構成式として式(6)を考えた場合の材料要素のスケールについて述べておこう。この式は、リューダース帯先端近傍の現時点すペリが生じている（転位が運動している）領域の平均的な応力一ひずみ応答を記述するものである。Imamura-Hayakawa-Taoka\(^{15}\)は40～2000μmの粒径の0.007％-C鉄板についてエッチビット法によりリューダース帯先端近傍ですべきが生じている領域の観察を行い、例えば40～50μmの粒径についてこれが3～4個の結晶粒のサイズに対応していることを見い出している。

3. 実験結果および考察

3.1 実験方法 試験片材料には厚さ2.5mmの熱延軟鋼板（0.07％-C、1.30％-Mn、0.50％-Si）を用いた。試験片の形状を図1に示すが、これは圧縮時の座屈を防ぐために2枚の板を接着剤で接着して作製した。熱処理は実験で空気中で1000℃で1時間、1050℃で1時間の3条件で加熱・保持後に炉冷した。得られた平均結晶粒径はこれらの焼純条件でそれぞれ10、27、71μmであった。

実験には、油圧サーボ材料試験機（島津サーボパルサー）を用いた。荷重はロードセルにより、ゲージ長さ14mmにおける試験片の伸縮の測定には作動トランスによる押下当て式変位測定器を用いた。実験は、クロスヘッド速度制御、ひずみ速度（ゲージ長さにおける平均ひずみで以下では「ゲージ長ひずみ速度」と呼ぶ）制御あるいは応力速度制御で行った。

Fig. 1 Specimen

3.2 引張り試験 図2(a), (b)にはそれぞれ粒径10, 27μmの試験片を用いて3種類のクロスヘッド速度(0.5, 0.05, 0.0005mm・s⁻¹)で引張り試験を行ったときの応力ひずみ曲線を示す。いずれの実験結果でも明確な上降伏点とそれに続く下降段(降伏段)、その後の急激な軟化が観察される。また、引張り速度が早いほど塑性変形が大きくなる著しい応力のひずみ速度依存性がみられる、こうした降伏点現象は可動転位の急激な増殖と転位の運動速度の強い応力依存性により説明することができる。

とりわけ焼純された軟鋼では、転位が炭素や窒素原子により固着されており、この転位が応力作用により固着から解放されて可動性を持ち、さらにこの活性化された転位の増殖およびその近傍の転位源の活性化の結果として急激な転位増殖が生じる。可動転位の急激な増殖は、構成式(6)において可動転位密度 \(\rho_s \) が変形に伴い急激に増加することにより表現できる。例えば、Hahnは可動転位密度 \(\rho_s \) を全転位密度 \(\rho \) と可動転位率 \(f_s \) との積として次のように表現している。

\[
\rho_s = f_s \rho
\]

(7)

ここで、全ての転位密度 \(\rho \) はエッチビット法による実験やSEM観察の結果として概ね次の実験式で与えられることが知られている3)、10)

\[
\rho = \rho_0 + CE^a
\]

(8)

そこで、\(\rho_0 \) は初期転位密度で10⁶cm⁻²オーダーであり、定数 \(C \) は10⁶ ~ 10⁸cm⁻²、定数 \(a \) は0.7 ~ 1.5程度であることが多くの研究者によって求められている3)、10)。Hahnは初期転位密度 \(\rho_0 \) が小さい程、また塑性ひずみ速度に対する応力感受性指数 \(n \) が小さいほど遅い上降伏点と急激な降伏応力低下が生じることを明らかにしている。可動転位率 \(f_s \) に関するデータは著者らが知る限り公表されたものがないので、まずはHahnにならいこれを一定 \(f_s = 0.1 \) と仮定し、実験条件に対応した一定ひずみ速度の単軸引張りの数値シミュレーションを行ってみる。図3(a)は一例として、移動硬化および等方硬化を無視し、初期降伏応力を \(\sigma_Y = 100 \) MPa、

\[D = 100 \text{ MPa}, \sigma_Y = 100 \text{ MPa} \]

\[C = 3 \times 10^5 \text{ cm}^{-2}, \]

\[a = 1 \]

\[\sigma_f = 0.1 \]（一定）という仮定には問題があると思われる。なぜなら、焼純された軟鋼ではほとんどの転位が炭素や窒素原子により固着されているため \(f_s \) は初期には極めて小さく、変形に伴って急激にその値が大きくなると考えられるからである。そこで、そうした挙動を表現するため、可動転位率 \(f_s \) の初期値が \(f_{so} \) であり、\(f_s \) が変形とともにある一定値 \(f_{st} \) に収束すると仮定し、これを次のような式で表現してみる。

\[f_s = f_{so} + (f_{st} - f_{so})[1 - \exp(-k)] \]

(9)

ここで、\(k \) は時間常数で時の増加とともに急速に減少する。Fig. 3 Effect of crosshead speed on the stress-strain responses in uniaxial tension tests for the specimens of the grain diameter of (a)10μm and (b) 27μm.

[図3] 敏感度と応力-ひずみ曲線の関係を示す。実験条件は、\(\sigma_Y = 100 \) MPa、\(D = 100 \) MPa、\(C = 3 \times 10^5 \) cm⁻²、\(a = 1 \)、応力感受性指数 \(n = 25 \)として計算した応力-ひずみ曲線を示す。しかし、\(f_s = 0.1 \) (一定)という仮定には問題があると思われる。なぜなら、焼純された軟鋼ではほとんどの転位が炭素や窒素原子により固着されているため \(f_s \) は初期には極めて小さく、変形に伴って急激にその値が大きくなると考えられるからである。そこで、そうした挙動を表現するため、可動転位率 \(f_s \) の初期値が \(f_{so} \) であり、\(f_s \) が変形とともにある一定値 \(f_{st} \) に収束すると仮定し、これを次のような式で表現してみる。
ここで、nは定数である。図3(b)には式(9)において
\(L=20, f_{m}=0.1\)とし、\(f_{n}=10\)の場合について計算した応力ひずみ曲線を示すが、この結果は\(f=0.1\)の場合
(図3(a)に比べて鈍い上降伏点とそれに続く急激な降伏応力降下を示している。従って、このモデルを
単純ひずみの数值シミュレーション(最も有効な方法
としては有限要素法による)に用いれば、\(f=0.1\)(一定)
の場合に比較してより現実的なひずみ局所化
(リューダース変形)の計算結果が得られることが期待できる。

ところで、図2に示す結果から、降伏段においてと
りわけ応力の依存性が顕著なことがわかる。これは
降伏段での変形がリューダース帯の伝播による不均
一塑性変形であるため塑性変形が進行している領域
(リューダース帯先端付近)のひずみ速度は均一変形
である加工硬化領域のそれよりも大きいためと思われる。また、降伏段における塑性変形では軸位の
相互作用が少ないのに対し、硬化領域においては軸位
同士からみ合い(ひずみが大きくなった結果化や粒界の
粒界)の形成により、硬化を支配していくので、降伏段近傍とそれに続く硬化域では軸位
速度に関する応力依存性に差が生じることも考えられ
る。また、変形速度が速いほど降伏段におけるひずみ
(以下では「リューダースひずみ」と呼ぶ)は大きく
なっている(すなわち高密度化が起こる)ことがわかる。この傾向は軟鋼、および純鉄
にたいする他の実験結果からもみることができる。図
4には、リューダースひずみ\(\varepsilon_{L}\)に及ぼすゲージ長ひず
み速度\(\varepsilon\)の影響についての本実験およびYoshida-
Murakami\(^{27}\)(0.036%-C軟鋼)およびFujita-Miyazaki\(^{18}\)
(0.09%-C極軟鋼)の実験結果を示す。これらの結果
から、このリューダースひずみの速度依存性は粒界が
小さいほど顕著であることがわかるが、いずれの実験
結果も概ね次式で近似することができる。

\[
\varepsilon_{L} = \varepsilon_{0} + A \log \left(\frac{\varepsilon}{\varepsilon_{0}} \right)
\]

ここで、\(\varepsilon_{0}\)は基準ひずみ速度\(\varepsilon_{0}\)におけるリューダース
ひずみを表し、\(A\)は定数である。

3.3 定ひずみ振幅繰返し試験
図5(a)および
(b)にはそれぞれ繰返しひずみ(ゲージ長ひずみ)幅
が0.005、0.01の場合(ひずみ速度10^-4)の応力ひず
み応答を示している。ひずみ幅が0.005の場合には繰
返し硬化が見られないのに対し、0.01の場合には繰返
し硬化しているのがわかる。繰返し硬化は主に可動軸
位密度の増加により、繰返し硬化は析出物、セル、亜
結晶粒などの(方向性のない)障害物により軸位が可
動性を失う結果により起こるものと考えられ、構成式
(6)ではこれらの現象はそれぞれ可動軸位密度\(\rho_{n}\)の繰
返し変形に伴う増大と等方硬化応力\(R\)の発展により表
現することができる。

繰返し硬化挙動のひずみ幅依存性は、構成式のうえ
からは大野\(^{39}\)あるいはChabocheら\(^{36}\)により提案され
ている非(等方)硬化ひずみ範囲の概念を用いること
により記述できる。これは、応力反応後ある塑性ひず
み範囲内では等方硬化の発展はなく、等方硬化のみが
発展するものである。この考えはある方向の応
力作用のもとで不動化した軸位の一部が応力反時
によって可動性を回復する過程として理解できるもので
ある。

Fig. 4 Effect of gauge-length strain rate on the Lüders strain.

Fig. 5 Stress-strain responses during cyclic straining for strain
ranges of (a) 0.005 and (b) 0.01.
降伏点現象を示す軟鋼の繰返し塑性変形挙動

ここで，C, aは定数である。

降伏段の中途でのひずみ反転を振動で特徴的であること，及延性軟化を示した後に再び降伏段が劇的に増加したように見える（弾性破壊の下での反応応力とそれに伴う圧縮による非破壊）領域が存在していることである。

3.4 ひずみ制御ラチッティング試験 図6は，一例として，粒径27μmの試験片を用いたひずみ制御ラチッティング試験（ひずみ幅$\Delta e=0.007$，各サイクルごとのラチッティングひずみ増分$\Delta e=0.002$，ゲージ長ひずみ速度10^{-4} s^{-1})における応力をひずみ応答を示している。

このような観点より，材料の繰返し硬化特性と，繰返し数の増加に伴う応力振幅の増大など，等方性硬化と非等方性硬化が共に発展していることがわかる。

3.5 応力制御ラチッティング試験 図7は，ひずみ制御ラチッティング試験の後，連続弾性ひずみが200%以上では，塑性ひずみに対してほぼ線形近似で増大していることがわかり，すなわち塑性ひずみ領域では等方性硬化は次式に示される線形移動硬化則で表現されることがわかる。

$$\Delta e_x = \frac{2}{3} H \epsilon^p$$
(12)

このような線形移動硬化は，主に析出物，結晶粒界への転位の堆積による長範囲応力場（long-range stress field）の形成によるものであると考えられる。結晶，移動硬化（背応力の発生）は式(11)で与えられる非線形移動硬化と式(12)の線形移動硬化の和で表されることがになる。なお，このような定式化は316ステンレス鋼に対するChaboche(22)，304ステンレス鋼に対するYoshida(23)の論文にもみられる。

3.5 応力制御ラチッティング試験 図8は，粒径27μmの試験片を用いた応力制御ラチッティング試験およびその後の単軸引張りにおける応力をひずみ応答を示す。ここで，応力速度は1 MPa · s^{-1}，最大応力はほぼ250MPaで，完全塑性変形に\(\sigma_{eq}=250\)MPaで，完全塑性変形に
比$\alpha_{\infty} / \sigma_{\infty} = 0$の結果である。本実験では、ひずみ0.005までひずみ制御（$\dot{\varepsilon} = 1 \times 10^{-4}$s⁻¹）で引張り予ひずみを与え、その後に応力速度$\sigma = 100$MPa・s¹で20サイクルの応力繰返しを行っている。その後$\sigma = 1$MPa・s¹で応力繰返しを行った結果を示している。この図にみられる応力-ひずみ曲線から明らかのようにラチェット変形は主に粘塑性変形により生じており、ラチェットひずみ進行は応力速度に強く依存している。すなわち応力速度$\dot{\varepsilon} = 100$MPa・s¹ではほとんどのラチェットひずみが進行しないが$\dot{\varepsilon} = 1$MPa・s¹では顕著なひずみ累積がみられる。また、ラチェット変形はほぼ単軸引張りにおけるリューダースひずみ程度でシェイクダウンしているのがわかる。この現象を構成式(6)をもとに考えると、リューダースひずみの加工硬化程度において等方硬化応力が発生する結果として、超過応力$\sigma - (Y_{f} + kR)$が小さくなるため、塑性ひずみ速度が小さくなり、ラチェット変形のシェイクダウンに至ると解釈できる。

4. 結 言

焼鉄した軟鋼を用いた種々の繰返し粘塑性実験により明らかとなった変形挙動の特性は以下のとおりである。

- 單軸引張り試験における応力-ひずみ曲線は明確な降伏点を示し、その後の降伏段階において、リューダース帯の伝播による降伏段階の形成に引き続きはほぼ均一変形をみせ、加工硬化領域が観察された。応力のひずみ速度依存性が非常に小さいほど顕著で、特に降伏応力におけるひずみ速度依存性は硬化域におけるそれよりも大きかった。リューダースひずみは粒径が小さいほど、またひずみ速度が速いほど大きくなる（式(10)）。

- 定ひずみ繰返し試験においては、繰返し硬（軟）化特性はひずみ幅に依存し、とくに繰返し硬化はリューダース変形が終了して以降発達する。また、降伏段（リューダースひずみ）の途中でのひずみ反転でも明確なパウシンガー効果（遷移軟化）が観察された。

- ひずみ制御ラチェット試験結果からは硬化域における移動硬化と等方硬化のそれぞれの発達の様子が観察できた。とくに移動硬化（背応力）が塑性ひずみに対してほぼ線形に近い形で増大していることがわかった。

- 降伏段における応力制御ラチェット試験では、ラチェット変形が主として粘塑性変形であることがわかり、ひずみ累積挙動が強く応力速度に依存すること、ほぼ単軸引張りにおけるリューダースひずみ程度でシェイクダウンすることなどがわかった。

こうした応力-ひずみ応答の特性は、超過応力理論に基づく弾粘塑性構成式を用いてを記述することが可能であることがわかったが、その場合の留意点については以下のように整理できる。

- 上記したとそれに引続いて、下述のとおりである。その応力のひずみ速度依存性は可動転位の急激な増殖と軸位の運動速度の強い応力依存性により説明することができる。これは式(6)で記述できるが、このとき固着転位の解放を考慮した急激な可動転位密度の増大（式(7)～(9))の表現が必要となる。

- パウシンガー効果（遷移軟化）の記述は非線形移動硬化則により可能であるが、ひずみ制御ラチェット試験で観察された非線形移動硬化則を同時に考慮する必要がある。

- 繰返し軟化は可動転位密度の変形に伴う増大で、繰返し硬（軟）化特性のひずみ幅依存性は（非）等方硬化の概念を用いることにより記述できる。

降伏点現象は不均一粘塑性変形の結果でもあるので、構成式中の材料パラメータの決定にはそのことが考慮できる弾塑性解析（例えば有限要素法による数値シミュレーション）が不可欠となる。従って本論文の範囲では構成式にたいする議論が定性的なもの（格組みのみを与えるもの）にとどまることであるが、今後こうした解析を通じて具体的な構成式の提案を行いたいと思う。
文献

(4) 増谷義, 機論, 41-341 (1975), 117-125.
(7) 吉田総仁・山本修治・ほか2名, 機論 (A編), 50-454 (1984), 1253-1258.
(14) Bishop, J. F. W. and Hill, R., Phil. Mag., 42 (1951), 1298-1307.
(16) 幸田成康, 金属物理学序論, (1973), コロナ社
(19) 大野信彦, 機論 (A編), 48-434 (1982), 1342-1349.