Evaluation of Material Properties for Particle Dispersed Composite Using Homogenization Method

Yasuhisa KAGA, Jin'i'chiro GOTOH*, Qiang YU, Masataka KOISHI and Masaki SHIRATORI

* Yokohama National University, Dept. of Mech. Eng., 79-5 Tokiwadai, Hodogayaku, Yokohama, Kanagawa, 240-8501 Japan

The homogenization method has been developed to evaluate effectively both homogenized material properties and microscopic stress/strain of composite materials. On the other hand, a particle dispersed composite is often used in many industrial field, such as making resins for electronic packaging. The authors attempted to evaluate equivalent material properties of an elastic modulus and a thermal conductivity of the particle dispersed composite made of an epoxy resin including a silica, in order to estimate the microscopic stress/strain in the next stage. Moreover the validity of the numerical method will be assured with experimental measurements and theoretical rule of mixtures. The equivalent modulus and thermal conductivity are successfully evaluated using the finite element analysis by a framework of the homogenization theory at any volume fraction of filler.

Key Words: Finite Element Method, Composite Material, Law of Mixture, Homogenization Method, Particle Dispersed Composite, Computational Mechanics

1. はじめに

均質化法(Homogenization Method)は、1970年代半ばに応用数学者らにより構築された手法*1であり、周期的に配置された微細構造を持つ構造物の等価な材料特性を予測するだけでなく、微細構造レベルでの構造応答を効率よく計算できる理論として注目されている。均質化法は他の手法と異なり厳密な数学理論として導かれており、他の手法では上界・下界しか評価できないような複雑な微細構造や、実験が困難な問題に対しても妥当な結果を導くことができる。さらに、近年では汎用有限要素プログラムをベースにした解析システム*2-3も開発されており、一般的な問題への適用が期待されている。一方、均質化法には一部の他の手法に比べて解析過程が複雑でかつ多くの時間が掛かるというデメリットがあることが知られてい

2. 粒子分散型複合材料における複合則

粒子分散型複合材料の等価材料特性評価を行う際によく用いられる複合則に関して簡単に述べる。

2.1 弾性率*2 図1に粒子分散型複合材料のモデルを示す。粒子は完全な球状であり、マトリックスは完全に密着しているとする。図1(a)のような粒子分散系は図1(b)および(c)のような同体積の立方体に近似される。このとき、図1(b)の左右の量比を
均質化法による粒子分散形複合材料の特性評価

\(\lambda_n, \lambda_m, \) 右側の絶の変比を \(\phi_1, \phi_2 \) とし、材料 1, 2 の含有比を \(\beta_1, \beta_2 \) すると、\(\lambda_1 + \lambda_2 = 1, \phi_1 + \phi_2 = 1, \lambda_1 + \lambda_m = \beta_1, \lambda_m \phi_2 = \beta_2 \) より、等価弾性率 \(E_c \)（図中 Theo. 1）は

\[
E_c = \frac{1}{\lambda_1 E_1 E_2} + \frac{\phi_1}{\lambda_1 E_1 E_2} + \frac{\phi_2}{\lambda_2 E_1 E_2} \quad (1)
\]

で表される。また、図 1(c) のとき \(f_1, f_2 \) を用いて同様に、\(f_1 + f_2 = 1, \phi_1 + \phi_2 = 1, f_1 + f_2 \phi_1 = \beta_1, f_2 \phi_2 = \beta_2 \) となり、等価弾性率 \(E_c \)（図中 Theo. 2）は

\[
E_c = \left(\frac{1}{E_1} + \frac{f_2}{\phi_1 E_1 E_2} \right) \quad (2)
\]

となる。

2-2 熱伝導率 粒子分散形複合材料の等価熱伝導率に関する複合則について述べる。マトリックス、フィラーの熱伝導率をそれぞれ \(\lambda_m, \lambda_c \)、体積含有率を \(V_m \) すると、粒子分散形複合材料の等価熱伝導率 \(\lambda_c \) は以下の式で表される。

\[
\lambda_c = \frac{(n \lambda_m + \lambda_c) - n(\lambda_c - \lambda_m) V_m}{n \lambda_m + \lambda_c} \quad (3)
\]

ここで、球状介在物の場合 \(n = 2 \) である。ここで示した等価熱伝導率評価に関する複合則は、一般に分散粒子の体積が 40〜50％以上の場合や、粒子が均一に分散していない場合などには適用できないと言われている。

3. 均質化法による有限要素モデル

均質化法では周期性のある構造物内のひとつひとつの微小構造を単一セルと呼ぶ。ここでは、数値解析に用いる有限要素モデルについて述べる。図 2 に有限要素解析に用いる単位セルモデルを示す。これまでの研究によれば、単位セルモデルの要素数が相対的に少ない場合、複数粒径のフィラーのモデル化が困難であることがわかっている。本研究では計算精度および計算時間を勘案し、要素数16×16×16=4,096、節点数4,913、辺の長さが1の立方体とした。フィラーは単位セル内部にある要素の材料定数を変化させることにより表現した。

3.1 単一フィラー形状モデル 図 3(a) に示すように、単一粒子のフィラーのみ封入される材料の場合、単位セルの中心から同一半径内にある要素の材料定数を変化させた。一例としてフィラーハンディ \(\gamma = 0.5 \) の場合を図 4 に示す。図 4(a) 〜(c) はそれぞれ、全体モデル、マトリックス部のモデル、フィラー部のモデルである。このような場合には、球状フィラーが立方体の重心に位置する場合、フィラーの体積含有率が52.4％以上では幾何学的に接続するフィラー同士が接触する。ここでは、フィラーの体積含有率が52.4%以上の場合でも、接続するフィラー同士が接触するものとして（この状態を一般に陸続き状態と呼ぶ）計算を行った。

3.2 混合フィラー形状モデル 数種類の径の球状フィラーが封入される材料の場合、複数径の粒子のモデル化は煩雑であるので、ここでは図 3(b) に示すように2種類の径のフィラーが等間隔で1:1の割合で混合されている場合を想定してモデル化を行った。モデルの一例を図 5 (a) 〜 (c) に示す。この場合のフィラーの粒径は \(r_1 = 0.5, r_2 = 0.2 \) である。このモデルを
用いることにより、単一粒子のフィラーの場合に比べてより高い体積含有率の場合まで変化し、実際の状態が再現される。等価材料定数の解析システムには、著者がすでに開発しているシステム(13,14)を用いた。さらに有限要素解析には、汎用コードであるABAQUSを用いた。

4. 試験片および実験方法

実際の材料特性を計測するための試験片は、さまざまなフィラーの状況における均質化の有効性を検討するため、大別して2種類を用意した。すなわち、単一粒子のフィラーのみを混合した試験片（以下、単一フィラー形式試験片と呼ぶ）とさまざまな粒径のフィラーを混合した試験片（同、混合フィラー形式試験片）である。

4.1 単一フィラー形式試験片 本試験片は電子デバイス用封止樹脂として一般的に用いられているものとし、マトリックスをエポキシ樹脂、フィラーを単一粒径の球状シリカ（SiO₂）粉とした粒子分散形複合材料とした。マトリックスであるエポキシ樹脂は軟ら、らしの異なる2種類を、フィラーは粒径の異なる2種類を用意した。さらにフィラーの含有率が(マトリックス材のみ)，27, 39%の試験片を用意した。以上のマトリックス、フィラー、含有率の組合せから、合計10種類の試験片を用意した。表1に試験片の詳細を示す。

4.2 混合フィラー形式試験片 一般に広く用いられている粒子分散形複合材料では、フィラーの体積含有率を高めるために粒径の異なるフィラーを数種類用意し、それらを適当に混合させて用いることが多い。ここでは4.1節の単一フィラー形式試験片に対して、さまざまな粒径のシリカ（SiO₂）粉をフィラーとして、エポキシ樹脂の母材に混ぜた試験片（体積含有率の異なる数種類）を用意した。マトリックスにはアルカリディット AER 250（旭化成株）と硬化剤変性脂肪族ポリアミン HY 956（長鋼化学株）を重量比1:1で硬化させたものを用いた。2表に用意した試験片の一覧を示す。

4.3 実験方法（等価弾性率） 樹脂の粘弾性特性を考慮し、弾性率の測定には動的粘弾性試験を行い、計測された時差弾性率E′の短時間（低温）における値を材料の等価弾性率Eaとした。試験にはRheometrics, Inc. 製の動的粘弾性アナライザRSA IIを用い、試験片形状はフィルムタイプとした。計測条件を表3に示す。

Table 1 Specimen of composite material 1

<table>
<thead>
<tr>
<th>Sample Code</th>
<th>Matrix</th>
<th>Diameter of Filler μm</th>
<th>Volume Fraction %</th>
<th>Specific Gravity g/cm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF0</td>
<td>Epoxy A</td>
<td>-</td>
<td>-</td>
<td>1.17</td>
</tr>
<tr>
<td>LF27D2</td>
<td>↑</td>
<td>2.0</td>
<td>27</td>
<td>1.48</td>
</tr>
<tr>
<td>LF39D2</td>
<td>↑</td>
<td>2.0</td>
<td>39</td>
<td>1.69</td>
</tr>
<tr>
<td>LF27D05</td>
<td>↑</td>
<td>0.5</td>
<td>27</td>
<td>-</td>
</tr>
<tr>
<td>LF39D05</td>
<td>↑</td>
<td>0.5</td>
<td>39</td>
<td>-</td>
</tr>
<tr>
<td>HF0</td>
<td>Epoxy B</td>
<td>-</td>
<td>-</td>
<td>1.19</td>
</tr>
<tr>
<td>HF27D2</td>
<td>↑</td>
<td>2.0</td>
<td>27</td>
<td>1.50</td>
</tr>
<tr>
<td>HF39D2</td>
<td>↑</td>
<td>2.0</td>
<td>39</td>
<td>1.70</td>
</tr>
<tr>
<td>HF27D05</td>
<td>↑</td>
<td>0.5</td>
<td>27</td>
<td>-</td>
</tr>
<tr>
<td>HF39D05</td>
<td>↑</td>
<td>0.5</td>
<td>39</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2 Specimen of composite material 2

<table>
<thead>
<tr>
<th>Sample Code</th>
<th>Volume Fraction %</th>
<th>Specific Gravity g/cm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF0</td>
<td>0</td>
<td>1.10</td>
</tr>
<tr>
<td>EF50</td>
<td>50</td>
<td>1.65</td>
</tr>
<tr>
<td>EF55</td>
<td>55</td>
<td>1.71</td>
</tr>
<tr>
<td>EF60</td>
<td>60</td>
<td>1.76</td>
</tr>
<tr>
<td>EF65</td>
<td>65</td>
<td>1.82</td>
</tr>
</tbody>
</table>

Fig. 5 Example of the FE model, Mixed filler type model, (a) Full model, (b) Matrix and (c) Inclusion

Fig. 6 Dynamic modulus E' depends on temperature
4.4 実験方法（等価熱伝導率） 熱伝導率の計測にはレーザーフラッシュ法を用いた。この方法では試料の熱拡散率 a および比熱容量 C_p を計測すれば、所望の熱伝導率 $λ$ は、それらの計測値と材料の密度 $ρ$ の積 $aC_pρ$ で表される。計測機には真空技術工業（株）の Thermal Constants Analyzer TC-7000 を用いた。

5. 等価弾性率の評価
5.1 実験による等価弾性率の評価 動的粘弾性試験により得られた貯蔵弾性率 E' の一例を図 6 に示す。図 6 は HF 39 D 2 の試験片の実験結果である。図 6 に示すとおり、本材料の温度 423 K を中心として ±20 K の範囲で顕著な粘弾性挙動を示すことがわかる。さらに周波数の異なる 3 種類の実験結果とも定性的に同様な変化を示し、さらに短時間（低温）側、長時間（高温）側とも貯蔵弾性率の值がほとんど一致していることから、本材料が線形粘弾性理論における時間・温度換算則が適用可能な材料であることがわかる。なお、他の試験片に関しても同様の粘弾性特性が見られた。

今回の研究では材料の弾性率に着目すること、さらに短時間（低温）側の貯蔵弾性率 E' の値にほとんど変化が見られないことから、周波数の異なる (0.3, 3.0, 30 Hz) 三つの短時間（低温）側の貯蔵弾性率 E' の平均値をとり、複合材料の等価弾性率 E_{eq} として代表させた。

5.2 単一フィラー形試験片 2-1 節で述べた複合則および均質化法の計算において、マトリックスの弾性率はそれぞれの試験片の実験計測値と同一とし、シリカの弾性率は 4.0 GPa とした。図 7 に実験（Exp.）、均質化法（H.M.）および複合則（Theo.1 および Theo.2）により得られた等価弾性率 E_{eq} の一例を示す。図 7 の実験結果は HF 39 D 2 の試験片のものである。図中実線 Theo.1 および Theo. 2 は、それぞれ複合則の式 (1) および式 (2) に対応する。フィラーの体積含有率が 0～30% 程度までと 70% 以上の場合は、均質化法により求めた等価弾性率と複合則により求めたそれらは比較的近い値となる。

5.3 混合フィラー形試験片 混合フィラー形の試験片に関しても单一フィラー形試験片と同様の実験（Exp.）を行い、均質化法（H.M.）および複合則（Theo.1 および Theo.2）と比較を行った。单一フィラー形試験片と同様に、マトリックスの弾性率は実験値と同様とし、シリカの弾性率は粒度分布を勘案し 5.0 GPa とした。

これによれば、複合則と均質化法とが差を生ずる場合、30% 以上の高い体積含有率の場合、均質化法による評価値は実験結果とよく一致することがわかる。一方、複合則は実験結果と 30% 程度の差を生じていることがわかる。以上から、粒子分散形複合材料の等価弾性率評価に関して、均質化法は有効な手法の一つであるといえる。これらのモデルを用いれば、粒子分散強化材料の巨視的な応力・ひずみばかりではなく、微視的な応力・ひずみも高い精度で解析できると考えられる。

Fig.7 Equivalent modulus E_{eq} depends on volume fraction; Single filler model

Fig.8 Equivalent modulus E_{eq} depends on volume fraction; Mixed filler model
6. 等価熱伝導率の評価

6.1 単一フィラー形試験片 熱伝導率も弾性率と同様に複合則、実験および均質化法の比較を行った．
実験（試験片タイプHF）、複合則および均質化法により得られた等価熱伝導率λ_{eq}を図9に示す．なお、
このときのマトリックスの熱伝導率は実験計測値とし、シリカの熱伝導率は1.30 W/(mK)としとして計算を行った．5章の等価弾性率の評価と同様、体積含有率が40%程度を越えると均質化法と複合則との差が
生じる一方で、0%から40%程度までは、均質化法も複合則も大きな違いはない．

体積含有率が39%の場合の実験結果は、均質化法や複合則の評価値よりも多少大きいのが奇なが、こ
れは計測誤差によるものと思われる．しかしながら、今回用いた単一粒子のフィラーのみ混じした試験片
は、体積含有率が27%と39%の2種類であったため、
実験にによる等価熱伝導率試験結果は均質化法も複合
則とも比較的よく一致した．このような場合には精度
の点で複合則でも十分であり均質化法の優位性が出ない
ことが考えられる．

6.2 混合フィラー形試験片 図10に混合フィラ
ー形試験片を用いた計測値と、均質化法および複合則
により計算された等価熱伝導率λ_{eq}を示す．このとき
のマトリックスの熱伝導率は実験計測値とし、シリカ
の熱伝導率は6.1節と同様に1.30 W/(mK)として計
算を行った．フィラーの体積含有率が50％以上と高
い場合、実験結果は複合則よりも均質化法の評価値と
よく一致することがわかる．これらのことから均質化
法は等価弾性率だけでなく等価熱伝導率の評価に対し
ても有効な手法であることがわかった．

Fig. 9 Equivalent thermal conductivity λ_{eq} depends on volume fraction ; Single filler model

Fig. 10 Equivalent thermal conductivity λ_{eq} depends on volume fraction ; Mixed filler model

7. 考察

粒子分散形複合材料の等価材料特性、ここでは等価
弾性率と等価熱伝導率に関して、実験、複合則および
均質化法を用いて評価を行ったところ、以下のことが
わかった．

フィラーの体積含有率が0%から40%程度までは、
均質化法も複合則も評価値に大きな違いはない．一方
でフィラーの体積含有率が40%を超えると、均質化法
の評価値は実験のそれと非常に近くならない．これらのこ
とは、複合則が一部にマトリックス/フィラー材料の
体積比のみに依存し、フィラー同士の力学的な相互干
渉の影響に関して考慮されていないのに対して、均質
化法はそれらを正確に考慮した上で評価しているため
であると考えられる．したがって、フィラーの相互干
渉の影響がより顕著になる高体積含有率時に均質化法
と複合則との差が生じるものと考えられる．

さらに、複合則と均質化法を比較したいくつかのシ
ミレーションの結果から、マトリックスとフィラーの
物性比が高くなるにしたがって、両手法の評価の値
に差が生ずることがわかった．

以上のことから、均質化法は粒子分散形複合材料の
材料特性評価法として精度の高い手法であり、その解
析結果は複合材料のマクロな応力・ひずみ解析に用い
ることができるものである．一方、等価材料特性の評
価において、強化剤の体積含有率が低い場合には複合
則を用いた評価でも工学的には十分な精度を有してい
るとといえるので、材料特性の評価結果の使用目的にあ
わせて、複合則と均質化法とを使い分けることが重要
であると考えられる．
8. まとめ

均質化法といわゆる複合則理論を用いて、代表的な
電子デバイス用モールド樹脂である粒子分散形複合材
料の等価弾性係数の評価を行った。フィラーの体積含
有率が40～50%以上の場合に均質化法と複合則との
差が生じた。さらに、均質化法により評価を行った等
価弾性係数および等価熱伝導率は実験による計測値と良
い一致を示したことから、均質化法は精度の高い等価
材料係数の評価手法のひとつであることが確認され
た。

動的粘弾性試験に際し青山学院大学工学部教授・隆
雅久博士および同大学大学院助手・米山聡氏、熱伝導
率計測にあたり古河電気工業(株)・木村直樹氏および
川畑賢也氏に多大なご指導とご協力をいただきました。さ
らに一連の実験にあたり横浜国立大学工学部学生・中山
尚武氏にご協力をいただきました。ここに記して謝意を表
する。

文 献

（1）Lions, J. L., Some Methods in the Mathematical Analy-
sis of Systems and Their Control, (1981), Science
Press.
（4）小石正隆・ほか2名, 材料システム, 15, (1995), 57-64.
（8）日本材料学会編, 機械材料学, (1991), 318-320, 日本材料
学会.
（9）日本熱物性学会編, 熱物性ハンドブック, (1990), 285-289, 養賢堂.
（10）日本熱物性学会編, 熱物性ハンドブック, (1990), 545, 養賢堂.
（11）日本機械学会編, 機械工学便覧, (1987), A 6-177, 日本機
械学会.