When a static load is applied to a brittle material beam, the beam fractures at the fixed end. However, such a phenomenon does not necessarily occur in the case of dynamic load. In dynamic load the fracture behavior changes with the situation of the stress wave propagation, the material properties and the shape of beam. In this research, an impact fracture behavior of free end of cantilever beam made of plaster is analyzed using the Discrete element method (DEM). This method is able to analyze the discontinuous fracture behavior of the plaster beam. The analytical results are compared with the experimental results presented previously by the authors. From the results, the impact fracture mechanism of brittle material beam, that is the condition of the crack initiation and propagation, is considered.

Key Words: Impact Strength, Fracture Mechanics, Brittle Fracture, Beam, DEM

1. 結言

破壊現象は、空間的にも時間的にも広がりをもつ現象であり、その進展過程や破壊後の挙動が設計上も防災上も大きな意味を持つ。どの形状で破壊するか、時間的には短い現象か長い現象か、どこまで破壊するか、破壊の影響はどこまで及ぶか、さらにどうすれば破壊を防止できるか、また逆にうまく壊せるのかなどが問題になる。破壊現象を数値解析する場合、用いる手法が、この広がりを持った破壊現象を的確に表現できるか否かが重要なポイントになる。

そこで、せい性材料で作られた耐荷重を加えると、固定端で破壊が起こる。しかしながら、動的荷重の場合は必ずしもそのような現象が起こるとは限らない。動的破壊挙動では、耐荷重の変化、特にその変化が大きく、その変化により破壊挙動が異なる。せい性材料の破壊挙動はき裂の発生などにより、要因が連続体であったものが徐々に非連続なものへと変化していくのが一般的である。解析対象が連続体であるFEMでは要素がひとつの要素から完全に離れたり、初期値と違った要素に接して新たな応力場を形成したりする現象への対応は難しい。

一方、個別要素法(1)（Distinct Element Method: DEM）は解析対象を連続的な要素の集合体として解析を行うため、連続体から不連続体への変化をするような解析に特に有効である。また、DEMは要素の運動方程式を前進法で解くため、方程式を連立させずにすむ。ゆえに要素数を多くしてもほとんどの連立方程式を解く方法に比べて計算時間が短く、粒状シミュレーション解析においてよく用いられている手法の一つとなっている。

本研究では、このDEMを用いて著者らの一人が以前実験的に現象解明したせい性材料ばりの動的破壊挙動の理論的解析を行うことにある、特に初期き裂の発生、伝播状況等を、実験値と比較・検討し、せい性材料ばりの衝撃破壊メカニズムを明らかにする。

2. せい性材料ばりの衝撃破壊現象

せい性材料ばりの衝撃破壊実験は、著者らの一人によって行われた。それは、直径50.8mm、重さ0.53kg
個別要素法によるせい性材料ばかりの衝撃破壊挙動の解析

の鉄球を自由落下させ，衝突したときのはりの破壊挙動を観察したものである。鉄球の落下高さは30, 60, 90, 120cmの4箇所で，それはエネルギーが少ないと考えると2.4, 3.4, 4.2, 4.8m/sの衝突速度になっている。せい性材料として石こうを使用し，その特性は表1に示すもので，はりの形状は図1である。

実験より，衝撃荷重がせい性材料ばかりの自由端に加わり，図2のように負荷速度にかかわらずはりの上半面から，はりの固定端と衝突点の間にき裂が発生し，下面に向かって衝突点から遠ざかるように伝播してゆく。ここでcはき裂が開始する場所の自由端からの長さである。速度ごとの実験結果は図3に示すものとなっている。この結果より，衝撃速度が速くなればcは短くなっていくことも明らかである。このような興味ある現象を，ここではDEMを用いて数値解析的にその破壊メカニズムを明らかにしたい。

Fig.1 Geometrical configuration of fracture specimen

50mm l=150mm

Fig.2 Fracture pattern of brittle material beam

(a) Fracture patterns of experiment (l=15cm, V=3.4m/s)

(b) General fracture pattern of beam

Crack initiation part

平均値のc:5.2cm

5.8cm

8.7cm

14.1cm

Fig.3 Fracture patterns for several specimens

Table 1 Mechanical properties of specimen

<table>
<thead>
<tr>
<th>Materials</th>
<th>Density ρ [Kg/m³]</th>
<th>Young's modulus E [GPa]</th>
<th>Poisson's ratio ν</th>
<th>Tensile strength σ_B [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plaster</td>
<td>1.08 × 10³</td>
<td>1.65</td>
<td>0.174</td>
<td>0.735</td>
</tr>
</tbody>
</table>

3. DEMについて

3.1 DEMの概要

DEMは解析対象物を離散的な剛体の集合体として表現し，それら個々の要素ごとに独立した2階差成分の運動方程式をたて，これを差分近似して前進解法で解くことによって解析対象物の動的挙動を求める方法である。要素間の力の伝達，要素が互いに接触している時にのみ行われ，ある要素とそれに接触している要素との間に図4に示すように接線方向および法線方向にばね（ばね係数Kc, Kτ）とダッシュポット（減衰係数κ, η）を配置し，弾張，圧縮，せん断力を伝達させることによって材料の弾性および非弾性性質を表現している。ある一つの要素（半径r，質量m，慣性モーメントI）に注目すると外力f(t)と外力モーメントg(t)が作用するためにその並進（u）および回転（w）
\[
\begin{align*}
\dot{m}[\ddot{u}] + \eta[\dot{u}] + K[u] &= f(t) \quad (1-a) \\
I[\ddot{\phi}] + \eta_r[\dot{\phi}] + K_r[\phi] &= g(t) \quad (1-b)
\end{align*}
\]

ここで上式の \(\eta \) および \(\eta_r \) は接触しているすべての要素のばねとダッシュポットを合成したものとなる。すべての要素についての運動方程式を連立させて解くことによって解析対象物の挙動を解析することができる。しかし、実際には前進法で解いていくため、各要素の運動方程式は連立させずである。前進法の流れは、次のようになっている。解析の時間ステップを \(\Delta t \) とすると、まず、ニュートンの第二法則より現在要素に加わっている力より要素の加速度が更新される。

\[
\begin{align*}
\dot{m}[\ddot{u}] + \eta[\dot{u}] + K[u] &= f(t) \quad (2-a) \\
I[\ddot{\phi}] + \eta_r[\dot{\phi}] + K_r[\phi] &= g(t) \quad (2-b)
\end{align*}
\]

加速度を時間 \(t \) について数値積分することにより、速度は \(\dot{u} \), \(\dot{\phi} \), 要素座標は \([u] \), \([\phi] \) に更新される。そして式(1)より要素に加わる力が \(f(t + \Delta t) \) に更新される。解析が次のステップになると、また式(2)からの一連の計算を繰り返し、これを解析終了時間まで逐次行うことによって運動方程式を解く。時間ステップ \(\Delta t \) が小さすぎると解析時間の増大や誤差の集積といった問題もあるため、計算が発散しない程度、もしくはステップにおける力の伝達距離が要素半径を超えない程度の大きさがあれば有効な解を得ることができるが知られている。DEMのフローチャートを図5に示す。

Fig.5 Flow chart of impact fracture simulation by DEM

\[
K_s = \frac{EA}{2r} \quad (3)
\]

\[
K_I = \frac{K_s}{2(1 + \nu)} \quad (4)
\]

ここに、\(E \) は材料のヤング率、\(A \) は円柱要素の投影面積 (2\(rd \)), \(d \) は円柱要素の長さ、\(\nu \) はポアソン比である。

Fig.4 Discrete element model

3.2 要素間弾性係数

各要素を図6に示すような長さ \(d \) の円柱とみなすとき、法線方向・接線方向ばね係数 \((K_s, K_I) \) は次の式で近似的に求められる。

Fig.6 Cylindrical element
4. DEM による衝撃破壊解析と考察

4.1 解析モデルと条件
ここでは2章の実験で明らかになったせい性材料ばりの衝撃破壊現象を、理論的に明確にするため、DEMを用いてせい性材料ばりの衝撃破壊挙動解析を行う。解析モデルとして図1と同様のモデルを考える。つまり、図7にそのモデルを示す。これは、左端完全固定された長さ150mm、高さ30mmの2次元ばりに鉄球をモデル化した要素半径25.4mm。質量0.53kgの要素を2.4、3.4、4.2、4.8m/sの4種の衝突速度でのりの自由端(右端)に衝突させるモデルとした。

ここで、このばかりモデルの左端の固定方法について述べる。実験条件での固定方法は図8(a)に示されるような、Fの部分の要素を完全固定(変位ゼロ)した状態で試験片を固定している。しかしながらこの方法で解析を行うとき、図8(b)に示すよう、固定方法と比べると、要素の数が多くなり解析に時間がかかる。よって、この2つの固定方法によるき裂の発生位置cの変化を、あらかじめ解析をしてみた。

V=4.2m/sでの解析の結果、図8(a)ではc=4.6cm。図8(b)でc=4.6cmとなり、固定方法によるき裂の発生位置cの変化は見られなかった。また、き裂開口の伝播挙動もほとんど差異が見られなかった。この理由としては、鉄球が片持ちばりに衝突することによって発生する弾力波が固定部に到達する前に、はしの上にき裂が発生するためと考えられる。また、この結果より、以後の解析は図7に示す通り左端を完全固定したモデル、つまり図8(b)の固定法で行うこととする。一方、実験と同様に、はしの材料は石膏を用いた。はしは要素半径0.75mm。一列100個、層数25層の2488層で構成されており、すべての要素は接触判定に時間のかからない円柱剛性要素とした。その要素配置は図9に示すよう、2種類が考えられているが、ここではこれに従わせるようににするために要素を密に配置することのできる同図(a)の六角形要素配置を採用した。また、要素の質量は円柱要素に相当する六角形の質量とした。はしの材料は石膏なので粘性係数をゼロとした。解析に用いた主なパラメータは表2に示す。破壊基準として引張破壊のとき、以下の式のように定義した。

\[D = \sigma_x / E \times \alpha \] (5)

\(D \) : 要素間の相対変位 \(\sigma_x \) : 引張強さ
\(E \) : ヤング率
\(\alpha \) : 修正係数

ここで\(\alpha \)の値は理論的には1.0であるが、はしを円柱要素に離散化しているため、通常これをより少し大きさの値を用いる。本研究では、この値をせい性材料棒の一軸衝撃解析をDEMで行い、その結果を一軸応力波の理論解と比較し、\(\alpha = 1.075 \)と決めている。

![Fig.7 Analytical model](image)

![Fig.8 Fixed patterns](image)

![Fig.9 Element layout](image)

<table>
<thead>
<tr>
<th>Table 2 Material properties used in calculation</th>
<th>Plaster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of constant</td>
<td>Plaster</td>
</tr>
<tr>
<td>Density (\rho) (kg/m³)</td>
<td>1.08×10³</td>
</tr>
<tr>
<td>Young's modulus (E) (GPa)</td>
<td>1.65</td>
</tr>
<tr>
<td>Poisson's ratio (\nu)</td>
<td>0.174</td>
</tr>
<tr>
<td>Tensile strength (\sigma_t) (MPa)</td>
<td>0.73</td>
</tr>
<tr>
<td>Compressive strength (\sigma_c) (MPa)</td>
<td>7.3</td>
</tr>
<tr>
<td>Normal spring constant (K_n) (MN/m)</td>
<td>18.97</td>
</tr>
<tr>
<td>Shearing spring constant (K_s) (MN/m)</td>
<td>8.08</td>
</tr>
</tbody>
</table>
4.2 解析結果と考察

衝撃速度4.2m/sの解析結果を図10に示す。解析は衝撃子が試験片に衝突した時刻をT=0とし、き裂がはりの下面に達するまでとした。図の黒丸（●）は要素間のばねが引張破壊を起こした場所を表している。

<table>
<thead>
<tr>
<th>インパクト速度</th>
<th>長さ（cm）</th>
<th>実験値（cm）</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4m/s</td>
<td>14.55</td>
<td>14.1</td>
</tr>
<tr>
<td>3.2m/s</td>
<td>6.50</td>
<td>8.7</td>
</tr>
<tr>
<td>4.2m/s</td>
<td>4.65</td>
<td>5.8</td>
</tr>
<tr>
<td>4.8m/s</td>
<td>4.20</td>
<td>5.2</td>
</tr>
</tbody>
</table>

Table 3 Calculation results

Fig.10 Analytical result

Fig.11 Dynamic strain distributions
つまり、黒丸が連続して現れている部分はき裂が発生・進展していることを意味している。図を見ると実験結果と同様に、衝突点と固定端との間のはりの上面からき裂が開始し、衝突点から遠ざかるように弧を描いて伝播しているのが時系列を追って見ることができ、解析結果における各衝突速度でのεの結果を実験値とともに表3に示す。ここで、実験値のεの値は平均値であるが、この表より分析値は実験値より少し小さい値でもあるが、速度が高くなるとが短くなっていく傾向はよく似た傾向であることがわかる。また、衝突速度4.2m/sのひずみ分布（要素間の相対変位により求めたひずみ）図を図11に示す。ひずみ分布図で、引張破壊を起こした場所は空白となっている。

この時系列的結果より次のごとことが確認される。まず、図12(a)に示されるように、鉄板がはりに衝突し下方に圧縮波が伝播する。次に同図(b)のように、はりCompressional waveの下面に到達した圧縮波が反射し引張波に変わる。このとき、はりの上下面では引張波、はりの下面では圧縮波が固定端方向に伝播している。よって同図(a)のように、はりの下側で反射した引張波が上側を伝播する引張波と重なり引張破壊基準を超えたときにその位置で破壊が起こる。このような傾向は他の衝突速度の場合も同様にみられる。

衝突速度の変化により速度が速くなるとが短くなる理由として、衝突速度が大きければ最初に発生する下面方向の圧縮波が大きく、下面で反射した引張波も大きくなくなる。よって、はりの上側を伝播する引張波も大きくなり、早期の段階で、はりの衝突点より近い部分が破壊基準に達するのは短くなると考えられる。また、き裂が衝突点から遠ざかるように弧を描いて入っていく理由として、図12で示したように、最初の圧縮波は衝突点から放射状に伝播していき、その後、反射した引張波は上側固定端方向に伝播していき、一方、図13に示されるように、破壊は衝突方向と直角に進むので、き裂が開始すると引張波が斜めに進んでいるので、それに対してき裂が直角に入っていくためと考えられる。

5. 結言

本研究では、すでに実験的にはその挙動が明らかになっているせい性材料ばりの衝突破壊挙動をDEMを用いて詳細に解析し、その破壊メカニズムについて考察し、以下のような結論を得た。

(1) 衝突速度が速いと伝播する応力も大きいために、早期の段階で破壊が起こり、εの値が小さくになっていることがDEM解析により明らかになった。

(2) 衝突点より、放射状に応力ポアが伝播していくので、それに反し直角に波が起こるために、衝突点から遠ざかるように曲線を描いてき裂が進展していく。なお実験値と類似した結果を得ることができ、DEMの衝突解析への有効性も明らかになった。

文献

(1) 伯野元彦, 破壊のシミュレーション, 森北出版町会社, 1997
(3) 尾田十八, 坂井, 機論, 64-623A(1998-7), 1767-1772