低合金鋼 SCM440H の長周期変動および静応力下の水素に助長されたき裂進展挙動

近藤 良之①, 久保田 祐信②, 嶋田 勝也③

Crack Propagation Behavior of SCM440H Low Alloy Steel Enhanced by Hydrogen Under Long-Term Varying Load and Static Load

Yoshiyuki KONDO*, Masanobu KUBOTA and Katsuya SHIMADA

*Department of Mechanical Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka-shi, Fukuoka, 819-0395 Japan

Crack propagation behavior of SCM440H low alloy steel enhanced by absorbed hydrogen was investigated. A continuous hydrogen charging method was designed, in which the crack tip was isolated from the solution environment and kept dry. Six materials which were tempered at different temperatures were used. Effects of stress ratio, loading frequency, hold time and material hardness on the crack growth rate were examined under long term varying load and static load. An acceleration of crack growth rate about ten times compared to the uncharged material was commonly found in all materials. In addition to this, however, unexpected acceleration of crack growth up to 1000 times was experienced in certain condition. In materials with Vickers hardness higher than 280 tested at low frequency, this marked acceleration was experienced. The crack surface morphology was quasi cleavage. This critical hardness (HV=280) is a little lower than the usually accepted critical hardness for delayed failure (HV=350). In material with Vickers hardness lower than 280, however, such a marked acceleration was not experienced. The use of low strength material is desirable to prevent the cracking enhanced by hydrogen.

Key Words: Fatigue, Crack Propagation, Hydrogen, Hydrogen Embrittlement, Time-Dependent Crack Growth

1. 緒 言

水素利用機器では金属材料が高圧水素に長時間暴露され、構成材料への水素侵入が生じて強度低下の原因となりうるので、機器の信頼性確保の観点から金属の強度に及ぼす水素の影響を明らかにしておくことが重要である。水素に起因する材料損傷のうち、引張破壊時の延性低下や、遅れ割れによる高強度鋼の強度低下が水素脆化機械による損傷として認識されてきているが、疲労についても影響を及ぼすことが明らかにされてきている。前報(1)(2)では高サイクル疲労を対象として疲労き裂進展下限界付近のき裂進展特性に及ぼす侵入水素の影響について検討を行った結果、材料に侵入した水素はき裂進展速度の加速ならびに進展下限界値の低下を引き起こすことが明らかになった。

低サイクル疲労領域のき裂進展に及ぼす周波数効果についても調べられており、両振り応力下で周波数が低下するにつれてサイクルあたりのき裂進展速度が加速するが、ある応力周波数を境にき裂進展速度の加速が飽和すると報告されている(3)。しかし水素脆化による損傷のうちで、時間依存型破壊である遅れ割れの場合は静応力下でもき裂進展が生じる。このような場合は繰返し応力の周波数が充分低下した極限として静応力下の時間依存型き裂進展になるので、低周波数領域であり進展速度が飽和する現象は生じないものと推定される。

遅れ割れは材料の引張強さが約 1200MPa またはピッカース硬さが 350 を超えると顕著となるが、本報では低合金鋼 SCM440H に対して実用的な範囲の熱処理を施した材料について、連続的に水素チャージを行いながら繰返し応力を与え、応力比、応力繰返し周期、保持時間、材料の強度レベルの影響等について調べ、静応力を含む長周期変動応力条件下の水素に助長されたき裂進展挙動について検討した。

2. 実験方法

2.1 供試材および試験片 供試材として低合金鋼 SCM440H を採用した。表 1 に供試材の化学成分を示す。材料の熱処理条件としては、焼入れ温度を 1143K で共通し、焼後温度は日本工業規格 (JIS) に規定された範囲 (803～903K) 内の 830K, 843K, 873K, 903K とともに、高めの強度をねらって JIS の範囲外で 443K

① 京都府立医科大学
② 九州大学大学院工学研究院、(独)産業技術総合研究所
③ 九州大学工学部応用機械システム専攻
E-mail: ykondo@mech.chem.kyushu-u.ac.jp

NII-Electronic Library Service
低合金鋼 SCM440H の長周期変動および静応力下の水素に助長されたき裂進展挙動

したものが、および低めの強度をねらって 923K とした合計 6 種類の焼入れ焼戻し材を使用した。表 2 に供試材の機械的性質とピッカース硬さを示す。これらの素材のうち 443K 低温焼戻し材以外は通常は遅れ割れが生じないと判断される材料である。図 1 に金属組織の SEM 写真を示す。組織は焼戻しマルテンサイト組織である。

試験片形状を図 2 に示す。試験片は機械加工により厚さ 2mm、角度 60°、先端半径 0.005mm の切欠きを付した切欠き材である。試験片には最大応力が試験時の 50%以下の応力によって切欠き底から深さ 0.15mm の 2 次元疲労予き裂を導入した。硬さの変化を避けるために予き裂導入後の熱処理は行っていない。

2.2 試験装置 長周期のプログラム荷負荷試験を行うために、図 3 に示す曲げ試験機を試作した。試験片に連続したレバーの先端に上下動変位を与え、試験片に均一曲げモーメントを与える形式である。プログラム荷負荷は、コンピュータ制御の 5 相ステッピングモータを用いて、ねじ構造によりスライダーの上下動変位に変換し、スライダーに取付けたベアリングを介してレバーに荷重を与えられることにより行った。試験片に負荷されるモーメントは、試験片の公称断面部分の弾性ひずみをひずみゲージにより測定することによって求めた。き裂長さ測定は背面ひずみゲージによる荷弹性コンプライアンス法によって行った。き裂長さの分解能は 0.005mm 以内であり、十分に高い。

2.3 連続水素チャージ法の考察 フェライト系鋼では材料中の水素の拡散速度が大きいために(1)。水素侵入した材料を室温大気中に放置すると、10 時間程度

Table 1 Chemical composition of SCM440H (mass%)

<table>
<thead>
<tr>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Ni</th>
<th>Cr</th>
<th>Mo</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.42</td>
<td>0.22</td>
<td>0.80</td>
<td>0.017</td>
<td>0.02</td>
<td>0.03</td>
<td>1.04</td>
<td>0.16</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Table 2 Mechanical properties of SCM440H

<table>
<thead>
<tr>
<th>Tempering Temp. (K)</th>
<th>σb (MPa)</th>
<th>σ0.2 (MPa)</th>
<th>δ (%)</th>
<th>ψ (%)</th>
<th>HV1</th>
</tr>
</thead>
<tbody>
<tr>
<td>443</td>
<td>1450</td>
<td>2033</td>
<td>13</td>
<td>38</td>
<td>587</td>
</tr>
<tr>
<td>803</td>
<td>1046</td>
<td>1151</td>
<td>17</td>
<td>63</td>
<td>368</td>
</tr>
<tr>
<td>843</td>
<td>917</td>
<td>1036</td>
<td>18</td>
<td>67</td>
<td>325</td>
</tr>
<tr>
<td>873</td>
<td>857</td>
<td>983</td>
<td>21</td>
<td>67</td>
<td>314</td>
</tr>
<tr>
<td>903</td>
<td>773</td>
<td>898</td>
<td>21</td>
<td>70</td>
<td>280</td>
</tr>
<tr>
<td>923</td>
<td>714</td>
<td>841</td>
<td>23</td>
<td>70</td>
<td>268</td>
</tr>
</tbody>
</table>

Fig.2 Test specimen

(a) Tempered at 443K (b) Tempered at 803K (c) Tempered at 843K
(d) Tempered at 873K (e) Tempered at 903K (f) Tempered at 923K
で大半の水素が放散して水素濃度が低下してしまう。長時間にわたって水素濃度の低下を防ぐためには、疲労試験中にも連続的に水素チャージを行うことが望ましい。水溶液中の選れ割れ試験では電解質溶液中で腐食あるいは陰分極しながら試験することで連続的に水素侵入させているが、本研究ではき裂を電解質溶液に接触させないようにしつつ、かつ連続的に陰分極により水素チャージする方法を考察した。

連続水素チャージ法を図4に示す。き裂部分をポリプロピレン製容器で閉じ、試験片との隙間をゴム系接着剤でシールしてき裂を電解質溶液から隔離して大気中に置く。下部に希硫酸溶液を入れた別のポリプロピレン製容器を装着する。この容器内で白金板を陽極として、試験片を陰極として疲労試験中に連続的に陰分極を行い、水素供給源とする。水素は試験片中を濃度拡散し、き裂部に到達する。ここで、き裂部の水素濃度をなるべく高くするために、陰分極箇所とき裂間の距離を可能な限り小さくすることが望ましく、本研究では7mmとした。き裂の周囲環境は大気である。陰分極の条件は、溶液をpH=2の希硫酸水溶液とし、電流は0.12A、電流密度は1744A/m²、温度は室温とした。この方法で40日間連続水素チャージを行った後に、陰分極を行った箇所とき裂部からそれぞれ厚さ2mmの薄片を切出し、昇温脱脂分析により平均水素濃度を測定した。その結果、拡散性水素は未チャージ材では0.016ppmであったが、陰分極箇所で1.32ppm、き裂部では0.21ppmであった。き裂部の水素濃度は陰分極を行っている部分よりは低いが、比較的簡便な方法でフェライト系鋼に対して長時間にわたって侵入水素の影響下での試験が可能になった。なお、疲労試験前にも予め24h水素チャージした後、連続チャージ中の疲労試験に移行した。

3. 標準的焼戻し材(843K)の応力波形の影響
通常使用される標準的な焼戻しは温度として、まず本章では843K焼戻し材について図5に示す三角波応力により検討を行った。

3.1 応力比
R=0の三角波応力の周波数実験
応力比R=0、三角波で応力緩縁し周期を60sとした場合のき裂展開試験結果を図6に示す。未チャージ材はΔKで整理することが3.1の直線となる。一方、印の水素チャージ材では、き裂展開速度が10^{-3}m/cycle程度以下では○印の未チャージ材に比べて加速するが、それより高いき裂展開速度領域では加速倍率が飽和する傾向が見られた。

つぎにき裂展開の加速に及ぼす応力周期の影響について

\[R = \frac{\sigma_{\text{max}}}{\sigma_{\text{min}}} \]

Fig.5 Triangular stress pattern

Fig.6 Crack growth behavior for triangular stress

R=60s at R=0
低合金鋼 SCM440H の長周期変動および静応力下の水素に助長されたち割進展挙動

3.2 三角波応力の応力比の効果 応力比 R の影響を調べるために R を $0, 0.4, 0.6, 0.75$ とした応力周期 $t=1800s$ の三角波の試験結果を応力拡大係数範囲 ΔK で整理したものを図 9 に示す。水素チャージ材では応力比が 0.4 以下ではほぼ 1 本のデータバンドに収まる ΔK 支配方程式である、未チャージ材のデータを上方に平行移動した形態の加速を示し、未チャージ材に対して 6 倍程度の加速が生じる、しかし、応力比が 0.6 以上に高くなると、き裂発展曲線が急激に立ち上がり顕著な加速状態に遷移し、加速倍率は 1000 倍に達した。この結果を最大応力拡大係数 K_{max} で整理したものを図 10

Fig 7 Effect of loading period on the acceleration for triangular stress at $R=0$

Fig 8 Crack propagation rate for triangular stress $t=1800s$ at $R=0$

Fig 9 Effect of stress ratio on crack growth rate under triangular stress shown against ΔK

Fig 10 Crack growth rate under triangular stress shown against K_{max}
に示す。急激な加速が生じる
\(R = 0.6 \)（■印）と 0.75（△印）については \(K_{\text{max}} \) で整理するとほぼ 1 本のデータバ
ンドに収まる \(K_{\text{max}} \) 分布型に移行し、\(K_{\text{max}} = 45 \text{MPa}^{1/2} \)
が急激な加速開始の条件である。このようにある \(K_{\text{max}} \)
を境に著しい加速が生じる現象には時間依存型の破壊
様式が介在している可能性が高いと推察される。破面
の SEM 写真を図 11 に示す。図(a)は未チャージ材の破
面であるが、ストライエーション状模様が認められる
粒内破面である。一方、図(b)は水素チャージ材で 6 倍
程度の加速を示した \(K \) 値が低い領域の破面であり、図
(c)は 1000 倍程度の大きな加速を示す \(K \) 値が高い領域
の破面であるが、水素チャージ材では加速の程度に関
わらず崩れ易い破面であった。

4. 三角波応力下のき裂進展の急激な加速に及
ぼす焼戻し温度の影響

前章では焼戻し温度を 843K とした標準的な
SCM440H でも、連続水素チャージした場合には高応
力比条件下で著しいき裂進展の加速が認められた。
SCM440H は広く用いられる低合金鋼であるので、強
度レベルを変えることによって、顕著な加速を防止で
きる可能性があるかどうかについて、異なる焼戻し温
度の材料について検討した。応力波形は三角波、応力
比 \(R \) を 0.6、周期を 1800s (30min) とした場合の各温度
の焼戻し材の結果を図 12 に示す。とくに、焼戻し温度が
843K 以下の材料では、ある \(K \) 値を境に進展曲線が
立ち上がり顕著な加速が生じ、焼戻し温度が低いほど
低い \(K_{\text{max}} \) で加速開始した。なお、加速の判断は次のように
した。加速有無の判断は加速が無い基準線からの
乖離を基準に判断するが、基準線を実験的に求める事はで
かない。そこで、図 9 において \(\Delta K \) 配分である□と△
の比から水素による加速倍率を 6 倍として、未チャー
ジ材のき裂進展特性は焼戻し温度には比較的鈍感であ
ることから、□印の 843K 焼戻し材未チャージ材のデー
タを上方に 6 倍平行移動した破線を基準特性とするこ
ととした。焼戻し温度が 843K を超えても軽微ではあ
るが加速現象が認められ、JIS の最高焼戻し温度であ
る 903K 焼戻し材でも加速が生じた。一方、焼戻し温
度を JIS の規定範囲を超えて 923K まで上げると急激
な加速は生じないことが分かった。各温度の焼戻し材

Fig. 11 Fracture surface of 843K tempered material
at \(R = 0.6 \) under triangular stress

Fig. 12 Effect of tempering temperature on acceleration
of crack growth at high stress ratio (triangular stress, \(R = 0.6 \))
低合金鋼 SCM440H の長周期変動および静応力下の水素に助長されたき裂進展挙動

Fig.13 Effect of tempering temperature on fracture surface for triangular stress

(a) 443K, $K_{max}=16$MPam$^{1/2}$

(b) 803K, $K_{max}=53$MPam$^{1/2}$

(c) 903K, $K_{max}=62$MPam$^{1/2}$

(d) 923K, $K_{max}=60$ MPam$^{1/2}$ 10μm

Fig.14 Effect of stress ratio on crack growth of material tempered at 803K (triangular stress, $r=1800s$)

Fig.15 Effect of stress ratio on crack growth of material tempered at 443K (triangular stress, $r=60s$)

加速を開始する限界条件をまとめたものを図 16 に示す。顕著な加速を開始する限界の応力拡大係数 $K_{max,cr}$ は応力比、焼戻し温度の影響を受け、焼戻し温
度が 903K 以下では感受性を示し、JIS の規定を超える 923K の高温焼戻し材で初めて顕著な加速現象は現れなくなることが分かった。図の矢印は試験した最高の K_{max} 値でも顕著な加速は認められず、加速が生じるとしてもブロット点以上であることを示している。顕著な加速に対する感受性が現れた限界の材料である焼戻し温度が 903K の材料のピックサース硬度は 280 であり、通常焼戻し限界とされている HV=350 より低く、連続的に水素が侵入する条件ではこの限界値が低下することが示唆されているが、高温で焼戻した材料を使用することにより感受性を低減できる可能性がある。

5. 静応力下の時間依存型き裂進展の検討結果

前章のき裂進展の大きな変化は水素に助長された静応力下の時間依存型破壊機構が関与する可能性が高いと推定されたので、本章では静応力下のき裂進展試験を行った。応力波形を図 17 に示す。$	au_H$ の応力保持時間が経過するに応じて比 $R=0.6$ で周期 60s のき裂長さ計測サイクルを挿入した。

供試材として標準的な硬度を有する 843K 焼戻し材を用いて、応力保持時間 1800s (30min), 7200s (2h) および 18000s (5h) の 3 種に変えた試験における 1 サイクルあたりのき裂進展速度を図 18 に示す。0.5-1 日間は保持なしの半黒印と同様の速度で進展する潜伏期間を経た後、き裂進展速度は急に増大し、それぞれの保持時間に対して K_{max} 値に依存しないブロット状の挙動を示した。ブロット部の 1 サイクルあたりのき裂進展速度を保持時間に対してブロットした結果を図 19 に示す。1 サイクルあたりのき裂進展量は保持時間にほぼ比例しており、負荷時間に比例してき裂進展する時間依存型き裂進展であることが示された。

![Graph](image)

Fig. 16 Conditions for the onset of acceleration of crack growth under triangular stress

![Graph](image)

Fig. 17 Stress pattern for time-dependent crack growth

![Graph](image)

Fig. 18 Time-dependent crack growth in material tempered at 843K under stress hold

![Graph](image)

Fig. 19 Relation between hold time and crack growth rate of material tempered at 843K

つぎに、焼戻し温度の異なる供試材について保持時間を 1800s(30min) とした試験を行い、時間依存型き裂進展に及ぼす焼戻し温度の影響を調べた。1 サイクルあたりのき裂進展速度を K_{max} に対してブロットした結果を図 20 に示す。焼戻し温度が高くなるにつれてき裂進展速度は低下するものの、JIS の規定範囲内のいずれの材料でも時間依存型き裂進展に対する感受性が
あることが示された。 JIS の範囲を超える 923K 焼成材（シリン）では、データが少ないが、応力保持による加速はわずかであり、他の温度の焼成材に比べると著しく軽微である。時空間依存型試験段を生じた試験片の破面拡大写真を図 21 に示す。破面はいずれも傾き開破面であり、時空間依存型試験段も過去の三角波の場合と同様に傾き開破面によって生じたことが示された。加速が比較的軽微であった図(e)では、かなり延性的様相を強っている。

1 サイクルのき裂進展量から計測サイクルの応力変動によるき裂進展の寄与分を差引いて求めた時間当たりのき裂進展速度と焼成し温度との関係を図 22 に、ピッカース硬度との関係を図 23 に示す。前章の三角波の場合と同様に、焼成し温度が 903K 以下およびピッカース硬度が 280 以下の材料では、時空間依存型試験段に対して有意な感受性があることが分かる。また焼成し温度が 923K、ピッカース硬度が 268 の材料では感受性が格段に低くなることが示されており、この限界硬度は前章の長周期変動で急激な加速が現れる限界硬度と同一であった。

低合金鋼の時間依存型破壊の例として 3.5NiCrMoV 鋼製の原子力タービンロータの応力腐食割れがある。この材料の SCC 感受性には材料強度が影響し、降伏強度が低いほど SCC 感受性が低下し、0.2%耐力が 700MPa 程度以下ならば感受性が著しく低下することが報告されている(3)。その材料のピッカース硬度は約 250 であり、本研究の急激な加速が発生する下限界硬度とはほぼ同じである。材料因子としては、焼成し温度が高くなるに伴い炭化物が M₇C₃ から M₇C₅、M₂₃C₆

Fig.20 Effect of tempering temperature on time dependent crack growth under stress hold (t=1800s, R=0.6)

Fig.21 Effect of tempering temperature on fracture surface of time-dependent crack growth under stress hold
と変化し、感受性が軽微となる強度レベルでは M_2C_6が主体であることと SCC 感受性との関係が論じられているが、詳細なメカニズムは十分に解明されていない。本研究とは環境も材料も異なるが、いずれの事象も巨視的支配因子は材料単体であり、時間依存性破壊の感受性発現に対する硬さの下限値がほぼ同じであるという事は興味深く、今後の課題としたい。

Fig.22 Effect of tempering temperature on time-dependent crack growth rate

Fig.23 Effect of material hardness on time-dependent crack growth rate

6. 結 言

低合金鋼 SCM440H に対して、連続的な水素チャージ条件下で、低サイクル疲労領域のき製進展挙動に及ぼす応力比、応力繰返し周期、保持時間、材料の強度レベルの影響等について調べ、静応力に加える長周期変動応力条件下の水素に助長されたき製進展挙動を検討した。得られた結果は以下のとおりである。

(1) 疲労試験中にき裂を電解液溶液に接触させることなく陰分極法により連続的に試験片に水素チャージを行う方法を考案し、乾燥状態で侵入水素が存在する状態でのき製進展試験法を考案した。

(2) 水素チャージ材のき製進展の加速に対する応力周波数効果としては、応力周波数 600s (2h) に至る長周期荷重でもサイクルあたりのき製進展速度が飽和する傾向は認められなかった。

(3) 443K 低温焼鉄材を除き、水素の存在下ではいずれの温度の焼鉄材でも未チャージ材のき製進展速度線図を平行移動した形態の加速が基本事象として生じる。さらに焼鉄し温度と応力比によってはある K 値で限界なき製進展の加速が生じることが明らかになり、加速を生じる条件のマップを得た。903K 以下の焼鉄し材では、静応力下で時間依存性き製進展が生じた。破面形態はいずれの場合も凝集き間であった。

(4) 上記(3)に示した急激な加速に対する感受性はピッカース硬さが 280 以上で現れる。ピッカース硬さが 268 の材料は感受性が格段に減少したことから、急激なき製進展の加速を避けるためにはこれ以下の硬さの材料を使用することが望ましい。

参考文献

