熱応力割断問題における熱的境界の影響*

才 本 明 秀*1, 今 井 康 文*2, 本 村 文 孝*2

Influence of Thermal Boundary on the Problems of Thermal Stress Cleaving

Akihide SAIMOTO*1, Yasufumi IMAI and Fumitaka MOTOMURA

* Graduate School of Science and Technology, Nagasaki University,
1-14 Bunkyo-machi, Nagasaki-shi, Nagasaki, 852-8521 Japan

A closed-form expression of the stress intensity factor is derived for a problem of straight crack in an infinite plate under thermal stresses induced by a temperature rise at an infinitesimal area. The present solution is applicable to wide range of uncoupled thermoelastic problems and is especially useful to understand the mechanical behavior of cracks in thermal stress cleaving (TSC). For instance, the present solution is useful for the prediction of an optimal temperature distribution in TSC, which is a function of various conditions such as shape of the plate, crack path, cleaving velocity and so on. Some basic problems of TSC formerly analyzed by the use of thermoelastic fields induced by a heat source were examined to confirm the applicability of the present solution.

Key Words: Elasticity, Thermal Stress, Fracture Mechanics, Thermal Stress Cleaving, Uncoupled Problem, Complex Variable Method, Body Force Method

1. 緒 言

熱応力が集進展を抑制して材料を切断したり、表面に深い龺を形成する工法（熱応力割断）が電子デバイスや液晶板などの高精度性材の加工に実用化されている。熱応力割断の特徴は、砥石や刃物が不要な非接触工法であり、適切な温度上昇の制御により微細な龺の少ない強じんな断面が得られる点である（2）。熱源形状や加熱媒体など、温度変化の与え方には種々の選択肢があり、目的に応じて適切な加熱方法を選ぶことができる。最も基本的な熱応力割断の形状は移動する熱源を用いるものであり、熱源から離れた位置に生じる引張応力が割断進展を駆動する一方で、熱源近傍の圧縮応力が割断進展を制動する。そのためき裂先端は移動する熱源を後方から追従するように準備的に進展し、得られる割断形態は熱源の移動軌跡とほぼ同一となる。この計は移動熱源を用いた熱応力割断に限った特徴ではなく、加熱領域を線状に引き延ばした線割断の場合においても、得られる割断形態はほぼ加熱線に沿う直線となることが数値解析や実験で確認されている（3）。

与えられた熱エネルギーが弾性体の温度上昇ののみに寄与し、温度場とひずみ場の連成効果が無視できる準静的熱弹性状態では、温度場は熱伝導方程式を温度境界条件のもとで解けば求められる。一方、温度変化に伴って生じるひずみに対する応力場は、一般には境界における力学的境界条件を満たさず、そこで熱ひずみに対する応力場に適切な温度変化を導入し、力学的境界条件を満たす解を求めめるのが熱弹性問題の標準的な解といえる。さて、境界形状が不変の準静的熱弹性問題では、時間依存性は温度場のみに現れる。数値解析により精度良く温度分布を求めるには十分小さい時間刻みで計算する必要があり、熱応力問題の計算時間の大半は温度場計算に費われる。熱源を用いた割断の問題に限れば、移動熱源がもたらす熱弹性場を効率的に評価することが、全体の計算時間を短縮化に大いに寄与する。そこで本研究では、き裂と熱源が種々の温度境界条件に存在する場合の熱応力拡大係数を数値解析して、応力拡大係数に及ぼす温度境界条件の影響を調査した。温度境界条件が実際とは異なるとしても、応力拡大係数への影響が小さならば、温度計算に既知の単純な解を利用するなどの近似計算が可能となり、計算時間を節約的に短縮できる。また熱源を追従するき裂の問題では、明確な温度上昇域は熱源とき裂先端を含む比較的狭い範囲に限られるので、き裂先端近傍の温度上昇のみを考慮して熱応力拡大係数を近似計算する場合の近似の精度についても検討した。
2. 線き裂の熱応力拡大係数と自由縁の温度境界条件

2-1 無限板に生じた瞬間点熱源による熱弾性場

厚み b の無限平板内の一箇所 (ξ, η) に強さ dq の瞬間点熱源が時刻 t に生じるとき, 点 (x, y) における時刻 $t' > t$ での熱弾性場は熱源の作用点に関して軸対称であり, 距離 $R = \sqrt{(x-\xi)^2 + (y-\eta)^2}$ を用いて以下のように表される。

$$T(R,t) = \frac{dq}{4\pi\beta(t-t')e^{-\eta t} - 2\eta t'}$$

$$\sigma_x(R,t) = -\frac{\alpha E}{R^2} \int_0^R T(r,t)dr$$

$$\sigma_y(R,t) = -\frac{\alpha E}{R^2} \int_0^R T(r,t)dr$$

ここで $T(R,t)$, $\sigma_x(R,t)$, $\sigma_y(R,t)$ はそれぞれ板厚方向の平均をとった温度上昇, 半径方向応力, 周方向応力であり, α は線膨張係数, E は弾性係数, K は板表面から大気への散熱を表す熱伝伝係数, λ は熱伝導率, κ は熱拡散係数である。$dq = qdt$ とし, これらを加熱時刻 t で積分すれば熱弾性解を求めることができる。

さて, 瞬間点熱源の熱弾性場を用いて自由縁から長さ a のき裂が生じた場合と Airlines の加熱エネルギー Q の点熱源が作用する場合（図 1）を考える。き裂と熱源の作用点はともに自由縁と直交する y 軸上にあり, 対称性からモード1の応力特性のみが生じる。$y = L$ の位置に固定熱源が作用する場合と, 原点熱源とし, $y = L$ まで等速度 $
u$ で移動する熱源が作用する場合について, 自由縁の温度境界条件が (a) 異熱境界 $(d\sigma_x/dy)_{y=0} = 0$, (b) 等温境界 $(T)_{y=0} = 0$, および (c) 素子境界を考慮しない場合について, き裂先端に生じる応力拡大係数を数値解析した。

条件 (a) では熱源作用点の x 軸に関する鏡像点に同様の発熱源が作用する無限板の熱弾性場を, 条件 (b) では熱源作用点の x 軸に関する鏡像点に同様の発熱源が作用する無限板の熱弾性場を, また, 条件 (c) では無限板の熱弾性場そのものを用いる。すなわち, それぞれの温度境界条件に応じて式 (1) および式 (2) および式 (3) から計算される熱応力場において, $y = 0$ の面とき裂面に生じる表面力を同時に打ち消して自由境界とする等温弾性解を求めてき裂先端の応力拡大係数を求めた。なお, 等温弾性問題の解析には体積力法を用いた。
2.2 固定点熱源 図2に、固定熱源の場合における熱応力拡大係数と無次元加熱時間 $\kappa t/D^2$ の関係を、3種類の無次元き裂長さ (a/D) に対して整理した結果を示す。固定熱源問題では自由縁に導入した微小き裂が進展を始めるまでの短い時間範囲を対象とするので、温められた板表面からの自然放熱は簡単なため無視（γ = 0）している。加熱開始直後の K_1 は温度境界条件の違いによらずほぼ同じ傾向で徐々に増加するが、K_1 の最大値や、K_1 が最大となる加熱時間は、き裂長さや温度境界条件に依存する。特に a/D < 1 の場合、加熱時間が小さい範囲でも 3 種類の温度境界条件に対する K_1 の相対差が大きく、温度境界条件を正確に指定しなければ得られる応力拡大係数の精度が低下する。なお、同一の加熱時間で比較すると、自由縁が断熱である場合が最大の、等温である場合が最小の K_1 を与えていることが分る。

標準的なソーダガラスの熱拡散係数は $\kappa \approx 6.5 \times 10^{-7} \text{m}^2/\text{s}$ の程度であり、炭酸ガスレーザーを熱源に用いる実験室の環境では $D = 5 \sim 30 \text{mm}$ 程の距離で割断が行われる。この場合、加熱時間は長くても数十秒のオーダーであり、これらの条件は図2の横軸で、$\kappa t/D^2 \approx 0.05$ 程度の値に対応する。図2で3種類の温度境界条件による差が明確に表れるのは $\kappa t/D^2 > 0.1$ 以降の範囲であることを考慮すれば、直線的に垂直に発生するき裂の熱応力拡大係数を評価する際には、温度境界は存在しないとみなして近似計算しても誤差は小さいことが理解される。

2.3 移動点熱源 熱源の無次元移動速度 vD/κ をパラメータとし、前節と同様に種々のき裂長さに対する K_1 を解析して図3を得た。なお、移動熱源問題では板表面からの放射も重要なパラメータとなる。例えば $D = 20 \text{mm}$ で厚板 $b = 1 \text{mm}$ のソーダガラスの割断では、$\gamma D^2/b = 20$ は静止大気への自然対流 ($\gamma = 90 \text{W/m}^2\text{K}$) に、$vD/\kappa = 10$ は移動速度 0.33mm/s に相当する。同一の a/D に対する応力拡大係数と温度境界条件との対応関係は固定熱源の場合は逆になっており、等温境界で最大の K_1 を、断熱境界で最小の K_1 を示した。しかし、き裂がある程度長く、($a/D > 2.0$) になると、K_1 は実験室温度境界条件の影響はぼぼ微視できるようである。また、板表面からの放熱が小さいと K_1 の最大値は増加する一方で、割断速度を大きくすることに伴う応力拡大係数の減少率が大きく、高い割断速度を実現することが困難になる。図3にはき裂長さが無限大の場合の応力拡大係数もプロットした。a/D が大きくなるに従い、無理なく半無限長き裂の解に漸近している。

き裂先端が温度境界から十分に遠ざかれば、自由縁における温度境界条件の違いがき裂先端の応力拡大係数に及ぼす影響は当然小さくなる。またこのような場合には、き裂先端近傍の温度分布のみを用いて直接応力拡大係数を評価できる可能性があると考えた。ここで、き裂先端からの距離に相当した範囲までの温度分布を考慮すれば、十分な精度で熱応力拡大係数を近似計算できるかについて調査することとした。

3. 無限小の面積に生じた温度上昇による熱応力場

初期温度と初期応力がともにゼロの無限板を考え、ある領域 A のみに一様温度上昇 θ_0 が生じた瞬間を考える (図4)。無限板から熱膨張する以前の領域 A を切り取り、領域 A の外周の変位を拘束した状態で温度を一定値 θ_0 だけ上げる。領域 A の外周の変位を拘束する場合には、その外周に一定圧力 $p = \beta \theta_0$ を与える必要
熱応力断面問題における熱的境界の影響

Fig. 4 Analysis of thermal stress by the method of shrink fitting

があり，その結果 A の内部に静水圧 σ_A = σ_y = −β T_0
が生じる。ここに β は線膨張係数 α, 線膨張係数 E お
よびポアソン比 ν からなる定数 β = αE/(1−ν) であ
る。次に領域 A を無限面に戻し，A の境界 Γ に生じて
いる圧力 p を除去するために Γ に沿って一定な大きさ
p の体積力作用させば熱膨張ひずみに対応する
熱応力場が得られる。すなわち，参考点 P(x,y) に生
じる熱応力はテンソルの記号を用いて次のように表さ
れる。

\[
\sigma_i(P) = \beta T_0 \int_\Gamma \left(\sigma_i(P,S_\xi) + \sigma_j(P,S_\eta) \right) d\Gamma(S)
\]

(4)

式(4)の右辺第2項は拘束を受けながら温度上昇 T_0 を
経験する領域 A 内の点 P に生じる静水圧場を表すか
ら，点 P が領域 A に属さない場合にはこの項が消減
して次のように表される。

\[
\sigma_i(P) = \beta T_0 \int_\Gamma \left(\sigma_i(P,S_\xi) + \sigma_j(P,S_\eta) \right) d\Gamma(S)
\]

(5)

δ_j はクロネッカのデルタ記号であり，i,j は x または
y を表す。点 S(ξ, η) は境界 Γ 上の点であり，S の添
字は力の作用方向を示す。また (ξ, η) は S における境
界 Γ の外向き単位法線ベクトルの x,y 成分である。例
えば σ_x(P,S_ξ) は無限板中的一点 S に ξ 方向の単位集
中力が作用するときに参考点 P に生じる σ_i を，た
ま σ_x(P,S_η) は無限板中的一点 S に η 方向の単位集中
力が作用するときに参考点 P に生じる σ_i を意味する。

領域 A に生じている温度上昇が一定値 T_0 ではなく，
座標の関数 T(x,y) である場合には，A をその内部で温
度が一定となりすぎない低い領域 δA に分割し，そ
れらの影響を重ね合わせれば良い。このとき，微小領
域 δA の外周に作用する体積力は互いに近接して力対
を形成する。そこで温度分布が存在するときの熱応力
の計算式 (P ∈ A) は以下のようになる。

\[
\sigma_i(P) = \beta \int_\Gamma \left(\sigma_i(P,S_\xi) + \sigma_j(P,S_\eta) \right) T(S)dA(S)
\]

(6)

コンパに続く座標変数はその変数による偏差を表し，例えば，σ_i(P,S_ξ) = \partial \sigma_j(P,S_ξ)/\partial \xi である。ここで
σ_j(P,S_ξ) の関係 (k = ξ, η) を用い，式(6)の第1項に発散定理
を適用すると，次式が得られる。

\[
\sigma_i(P) = \beta \int_\Gamma \left(\sigma_i(P,S_\xi) + \sigma_j(P,S_\eta) \right) T(S)d\Gamma(S)
\]

(7)

Duhamel の相似定理によれば，温度上昇 T(x,y) を
うけた二次元平版内の熱応力は，境界に仮想表面力
T_x = \beta T, T_y = \beta BT が，また，領域内に仮想物体力
F_x = −T/\partial \xi, F_y = −\beta T/\partial \eta が作用する等熱膨
化問題を解き，その結果に静水圧 σ_A = σ_y = −β T を
加えたものとして計算でき(7)，式(7)は Duhamel の相
似定理そのものを表していることが理解される。ただ
し，式(7)を用いると温度とその勾配の分布が熱応力
計算に必要となるのに対し，式(6)では温度分布のみ
で熱応力が計算できることがある。

なお，二次元問題における力対の応力場は注目点
と観測点の距離 R に対して 1/R^2 の特異性を持つので
P ∈ A の場合には式(6)を次のように変形する。

\[
\sigma_i(P) = \beta \int_\Gamma \left(\sigma_i(P,S_\xi) + \sigma_j(P,S_\eta) \right) \left(T(S) - T(P) \right)dA(S)
\]

(8)

\[
- \beta T(P) \delta_j (P ∈ A)
\]
熱応力割断問題における熱的境界の影響

そして式 (8) の右辺第 2 項に再び発散定理を適用して

\[
\sigma_{ij}(P) = \beta \left\{ \sigma_{ij,\xi}(P, S_\xi) + \sigma_{ij,\eta}(P, S_\eta) \right\} \times (T(S) - T(P)) dA(S) \\
+ \beta T(P) \left\{ \sigma_{ij}(P, S_\xi)\xi + \sigma_{ij}(P, S_\eta)\eta \right\} d\Gamma(S) \\
- \beta T(P) \delta_{ij} \quad \cdots (P \in \mathcal{A}) \quad (9)
\]

式 (9) の右辺第 1 項では \(P \) と \(S \) が一致する場合の特異性が除かれており、観測点が温度上昇領域にあっても通常の数値積分により熱応力場が計算できる。なお、陳ら(6) は弾性解析に拡張された体積力法において、力の領域積分における特異性の処理方法に関して詳細な議論を展開している。

式 (6) の右辺第 1 項は、点 \(S \) に生じる単位応力の影響を考慮し、\(T(S) \) を重みとして面積積分することを表している。従って、点 \(S \) を含む微小面積 \(\Delta A \) に生じた一様温度上昇 \(T_0 \) が、\(\Delta A \) に含まれない点 \(P \) に及ぼす熱応力の寄与分は、大きさ \(B \) の膨張中心による弾性場と同一で次のように表される。

\[
\delta \sigma_{ij}(P) = B \left\{ \sigma_{ij,\xi}(P, S_\xi) + \sigma_{ij,\eta}(P, S_\eta) \right\} \Delta A \
\quad \cdots \quad \delta \omega(z) = - \frac{\alpha E T_0 \Delta A}{2\pi(z - z_0)} \quad (10)
\]

二次元弾性問題の解は複素応力関数で表すと便利なことが多い。たとえば、\(\omega \) を変数とし、観測点 \(P \) を表す複素変数 \(z = x + iy \) と、温度上昇点 \(S \) を表す複素変数 \(z_0 = x_0 + iy_0 \) を導入すると、無限平板に対して式 (10) を与える Goursat 型の複素応力関数は式 (11) で与えられる。

\[
\delta \Omega(z) = 0, \quad \delta \omega(z) = - \frac{\alpha E T_0 \Delta A}{2\pi(z - z_0)} \
\quad \cdots \quad \delta \Omega(z) = 0, \quad \delta \omega(z) = - \frac{\alpha E T_0 \Delta A}{2\pi(z - z_0)} \quad (11)
\]

但し、複素応力関数が与えられれば応力成分は次の方程式から求められる(9)。

\[
\delta (\sigma_{xx} + \sigma_{yy}) = 2 \delta \Omega^2(z) + \delta \omega(z) \\
\delta (\sigma_{xx} - 2i\sigma_{xy}) = 2 \delta \omega^2(z) + \delta \omega(z) \
\quad \cdots \quad \delta (\sigma_{xx} + \sigma_{yy}) = 2 \delta \Omega^2(z) + \delta \omega(z) \\
\delta (\sigma_{xx} - 2i\sigma_{xy}) = 2 \delta \omega^2(z) + \delta \omega(z) \quad (12)
\]

無限小の面積の温度上昇による応力の寄与分を複素応力関数で表すことにより、例えば単純形状のき裂を有する無限板内の微小面積に温度変化が生じたことによる応力場の解析解を、解析接続の手法(10)により閉じた形で求めることができる。

例えば、\(\gamma \) 軸上の範囲 \(|x| < a \) に表面応力自由なき裂を持つ無限板において、点 \(z_0 \) を含む微小面積 \(\Delta A \) に生じた温度上昇 \(T_0 \) がき裂端 \((a,0)\) に生じる応力拡大係数への寄与分は式 (14) のように、また、\(T \) ストレスへの寄与分は式 (15) のように求められる。

\[
\delta (K_1 + iK_II) = \frac{\alpha E T_0 \Delta A}{2\sqrt{\pi} (z_0 - a)} \sqrt{\frac{a^2}{a^2} - \frac{a^2}{a^2}} \\
\delta \sigma_T = - \frac{\alpha E T_0 \Delta A}{2\pi} \left(\frac{1}{(z_0 - a)^2} + \frac{1}{(z_0 - a)^2} \right) \quad (15)
\]

これらの式でき裂端 \((a,0)\) を原点とする極座標を用い、温度上昇位置を \(z_0 = a + re^{i\theta} \) で表すと、

\[
\delta (K_1 + iK_II) = \frac{\alpha E T_0 \Delta A}{2\pi} \left(\frac{1}{2a + re^{i\theta}} \right) \quad (16)
\]

半無限き裂の場合は式 (16) で \(a \to \infty \) として、

\[
\delta (K_1 + iK_II) = \frac{\alpha E T_0 \Delta A}{2\pi} \left(\frac{\cos \theta}{2} - \frac{\sin \theta}{2} \right) \quad (17)
\]

\[
\delta (K_1 + iK_II) = \int_A \delta (K_1 + iK_II) = \frac{\alpha E}{2\sqrt{2}\pi} \times \lim_{r \to \infty} \int_{\theta = 0}^{\pi} T(r, \theta) e^{-i\theta} \sqrt{\frac{2a}{2a + re^{i\theta}}} dr d\theta \\
\quad \cdots \quad \lim_{r \to \infty} \int_{\theta = 0}^{\pi} T(r, \theta) e^{-i\theta} \sqrt{\frac{2a}{2a + re^{i\theta}}} dr d\theta \quad (19)
\]

図 5 に式 (17), (18) で表す応力拡大係数と \(T \) ストレスへの寄与分の等強度線図を示す。横軸は温度上昇点の \(x \) 座標に、縦軸は \(y \) 座標に対応し、同レベルの応力拡大係数と \(T \) ストレスが得られる温度上昇領域が図で結ばれている。\(K_1 \) が正となる領域とはき裂端前方に存在し、\(x \) 軸を挟んで \(\pm 60 \degree \) の間にあり、逆はその他の領域では温度を低下させれば正の \(K_1 \) が得られる。また、\(K_1 \) はき裂面を境としてその符号が逆転している。\(K_1 \) の場合と併せて考えれば、き裂端前方の比較的狭い領域に高温域があり、き裂面を含む広い領域に低温域が存在するよう温度分布を制御すれば大きな \(K_1 \) が得られ、効果的な応力割断が行える。

図 5 から分かるように熱応力拡大係数に強く影響する温度上昇範囲はき裂端の近傍に限られると、また、熱源による温度変化の場合など温度上昇が狭い範囲に限まる問題では式 (19) で半径方向の積分上限を有限値に留めても誤差は少ないと考えられる。そこで式 (19) で \(r \) を有限に留めた近似解の精度について検討した。

3.1 無限板の熱応力割断問題における応力拡大係数の近似計算

\(x \) 軸に沿って長さ \(2a \) のき裂を持つ無限板が、き裂端から \(D \) だけ離れた位置に形成された熱源によって \(t \) 秒間加熱される場合を考える。板
熱応力割断問題における熱的境界の影響

Fig. 5 Contour plots of stress intensity factors and

\[T \text{--stress for semi-infinite crack (} x < 0, y = 0) \]

due to a temperature rise \(T_0 \) at an infinitesimal

area \(\delta A \)

Fig. 6 Evaluation of approximated \(K_l \) formula for

fixed heat source (\(\gamma = 0 \))

表面からの放熱を無視すると、式 (3) でえられる応力分布を考慮して、き裂面が表面力自由となる条件から求めたき裂先端（熱源側）の \(K_l \) の厳密解は式 (20) で与えられる。

\[
K_l = \frac{aE}{8\pi b\lambda} \int_a^\infty \frac{a + \xi}{a - \xi} \left\{ \frac{1 - e^{-S}}{S} - E_1(S) \right\} \frac{d\xi}{\sqrt{\pi a}} \tag{20}
\]

ここで \(S = (D + a - \xi)^2/4\kappa \) であり、\(E_1(S) \) は積分指数関数で

\[
E_1(S) = \int_\infty^S \exp(-x) \frac{dx}{x} \tag{21}
\]

で定義される。また \(Q \) は単位時間あたりの加熱エネルギーである。次に式 (19) で \(R^* \) を有限とした近似解は次のように書ける。

\[
K_l^* = \frac{aE}{2\sqrt{2\pi}} \int_{\infty}^{R^*} \frac{\partial}{\partial r} \left\{ \frac{r}{\sqrt{r(1 + re^{\theta/2})}} \right\} d\theta \tag{22}
\]
熱源を示す。\[\frac{\partial}{\partial x} \left(\frac{Q}{4\pi b} \right) \] ここで \(x \) は実部を表し、\(T(r, \theta) \) は次式で与えられる。

\[T(r, \theta) = \frac{Q}{4\pi b} \left(\frac{r^2 + D^2 - 2rD\cos\theta}{4\kappa} \right) \] (23)

図6に式 (20) および式 (22) から得られる \(K_1 \) の比較を示す。図中実線は式 (20) の厳密解を表し、点線は式 (22) において \(R'/D = 0.5 \) で増加させながら近似解析 \(K_1 \) を求めたものである。極めて長い加熱時間では近似精度が悪くなるが、\(R'/D > 2.5 \) でき裂長さに依存せずほぼ正確な応力拡大係数が得られている。図6は板表面の熱伝達を不考慮した結果であるが、放熱を考慮すれば熱源から離れた位置での温度上昇が抑制されるため式 (22) の近似精度はさらに向上する。

以上の議論は移動熱源にも適用できる。図7に \(x \) 軸上を等速度 \(v \) で移動する熱源から距離 \(D \) 後方の位置で熱源を追従する半無限き裂先端の応力拡大係数の解析例を示す。半無限き裂の問題では式 (22) で \(a \to \infty \) の極限をとり、\(T(r, \theta) \) として式 (24) を用いれば良い。

\[T(r, \theta) = \frac{Q}{2\pi b} \exp \left\{ \frac{v(D - r\cos\theta)}{2\kappa} \right\} \times K_0 \left(\sqrt{\left(\frac{r^2}{D^2} + 1 - 2rD\cos\theta \right) + \frac{\gamma D^2}{4\kappa^2} + \frac{\psi D^2}{b^2\lambda} } \right) \] (24)

ここで \(K_0(x) \) はゼロ次の変形ベッセル関数であり、次式で定義される。

\[K_0(x) = \int_0^\infty \exp(-u - x^2/4u) du \] (25)

移動熱源問題では熱源が温度境界に極めて近い場合を除けば、応力拡大係数はほぼ温度境界条件と無関係となり、広い範囲の移動熱源問題で式 (24) の温度場が利用できる。しかも式 (22) に基づいて得られる応力拡大係数の近似値は、き裂先端を原点として \(R'/D < 2.0 \) の範囲の温度上昇を考慮すると実用上十分な精度で適用する。

4. 結 言

半無限板の自由端と直交するき裂に対し、き裂先端近傍に熱源が作用する場合の応力拡大係数を解析した。自由境界の温度境界条件として断熱、等温、および温度境界条件が無視できる場合には本研究の移動熱源問題では温度境界条件を無視しても応力拡大係数に及ぼす影響は小さいことを示した。

さらに、直線き裂を有する無限板内の一点が温度変化した場合の弾性応力場を数値解析に従って解析した結果、静止熱源問題に対してはき裂先端を中心とした熱源とき裂先端との距離の2.5倍の半径での温度上昇を、移動熱源問題ではき裂先端を中心とした熱源とき裂先端との距離の2.0倍の半径での温度上昇をそれぞれ考慮すると、実用的に十分な精度で応力拡大係数が求まることを示した。

文 献

(7) pp.41 of reference (4).
(10) pp.77–81 of reference (9).