気液二相系の圧力伝ば特性*（第1報，ステップ応答）

松井剛一**, 杉原正則***, 有本卓****

1. 緒 論

気液二相系は、気体または液体だけの単相系とは著しく異なる力学的性質を示す。それゆえ気液二相プラントの設計や運転においては、各単一流体に関する知識だけでなく、二相の共存によって生まられる特有な性質についても知っておくべきではない。このようなもの一つに圧力波の伝ば特性がある。

気液二相系中の圧力伝ば特性は、その流体の流動様式や気相の分布状態によって著しい特徴を有することが従来の研究によって報告されている(1)～(4)。気液二相系で実現する二相混合流れの様相は複雑であり、流動状態を統一的に取扱うことは少なく、いくつかに分類された簡単な理想流動様式(1)について調べられることが多い。

理想流動様式の一つに、管内に気体と液体が共存しに連続的に並んだ二相系がある（図1参照）。便用上、この系の気体を気液二相系と呼び、液体を液せんと呼び、二相の変化を気液せん列系と呼ぶことにする。このせん列系は、スラグ流の理想モデルと考えられている(1)。

Henryら(1)は、実験、解析の両面から、一組の気液せん列系についての数値を基に圧力の伝ば速度を測定している。その結果、圧力波は気体と液体の両相をそれぞれの音速（有限振幅圧力の場合には気体中では衝撃波速度）で伝ばすとして、一つのせん列に対する結果をスラグ流理に適用し、スラグ流中の音速（伝ば速度）は、ボイド率0で液体中の音速、ボイド率1で気体中の音速、中位のボイド率ではこの2点間の値になるとしている（図4参照）。しかし、液体から気体への変換に圧力波はきわめて遅い伝ばを受ける。一方、液体（波せん）の慣性により気体（波せん）が圧縮され気体の線和された圧力上昇がみられる。これが初期圧力波の振幅まで上昇する時間は、初期波せん率と初期圧力振幅により依存し、等長の系中の気体中での伝わる波速の時間30～60倍になることを報告している。また、Matsui-Morioka(2)は、これらの数値を用いた圧力伝ばの計算を行うことにより、二相の共存によって生まられる圧力波の伝は速度を計算することができる。 Transmission of pressure waves in a two-phase system of a liquid and a gas is shown to be dependent on the initial conditions of the system, with the speed of propagation being approximately 30 to 60 times the speed of sound in the liquid. Moreover, the computation of pressure wave transmission in two-phase systems is shown to be feasible through numerical analysis.

2. 記 号

\(a_s \)：気体中の音速 m/s
\(a_n \)：気体中での有限振幅圧力波の伝ば速度
=\(Ma_t \) m/s

\(a_t \)：遅い波の伝ば速度 m/s

i：虚数単位

j：せんの番号（または \(j \) 番めの波せんの位置を表す座標）

k：角波数 rad/m

L: 気体せん列系の全長 m

\(I_1 \): 一基のせんの長さ \(=l_i+l_1 \) m

\(l_i \): 気体せんの長さ m

\(l \): 気体せんの長さ m

\(M \): マッハ数 \(=\left(\frac{\gamma+1}{\gamma} \right) \frac{dP}{dP_0} \)

\(n \): せんの個数 \(=\frac{n}{l} \)

\(P \): 無次元圧力
=\(\frac{p_n-P_0}{dP} \) または \(\frac{p-P_0}{dP} \)

\(P_0 \): 高圧室の初期圧力 Pa

\(p \): 压力 Pa

\(p_n \): 一基の気体せん内圧力 Pa

\(P_r \): 一基の気体せん内圧力の圧力

\(dP \): ステップ状圧力波の初期振幅
=\(p_n-P_0 \) Pa

\(t \): 時間 s

\(T_1 \): 無次元時間 \(=M_i t/L \)

\(T_2 \): 無次元時間 \(=a_n t/L \)

\(u(t) \): 単位間隔関数

\(V \): 速度

\(V_1 \): 速度の無次元伝ば速度
=\(\frac{V_1}{a_0} \) または \(v_i/a_0 \)

\(\nu_1 \): 速度の均等気体二相系中での音速（非分散形波の音速） m/s

\(\nu_1 \): 速度の群速度 m/s

\(\nu_2 \): 速度の位相速度 m/s

\(x \): 伝ば方向にわたった座標

\(x_i \): 番めの波せんの平衡位置から伝ば方向への変位 m

\(\alpha \): ボイド率 \(=l_i/(l_i+l_1) \)

\(\gamma \): 気体の比熱比

\(\lambda \): 波長 m

\(\rho_l \): 液体の密度 kg/m³

\(\omega \): 角振動数 rad/s

\(\omega_0 \): 固有角振動数 rad/s

3. 遅い波の解析

気体せん列系中の遅い波は、液体の大きい慣性と気体の大きい圧縮性に特徴づけられて、ある波せんの運動がそれに続く気せんを圧縮または膨張させ、次に液せんの両端に圧力差を生じさせ、その波せんの運動を誘起させるという機構で伝ばする。したがって、遅い波の伝ばは、液せんを質量、気体せんを気体ばねとし、質量・ばねモデルで考える理解しやすい。

いま、図1に示すように、一定断面の水平管路中に静止した等長の気せんと等長の波せんが交互に並んだ気体せん列系を考える。初期（平衡状態）の気圧、液せんの長さをそれぞれ \(l_i \), \(l_1 \) とす る。このとき、波数 \(\alpha \) を次式で定義する。

\[\alpha = \frac{l_i}{l_i+l_1} \] \hspace{2cm} (1)

現在気体せん列系では、表面張力のために複雑な気圧波面となり、粘性のために流動時の境界面の形の変化と圧力の減衰が生じ、重力の影響によって境界面がずれるが、そのような場合でも液せんの慣性と気体せんの圧縮性による圧力波の一次元的な伝ば機構は失われないので考えられるので、ここでは重力、粘性および表面張力は無視することにする。なお、気体波面における表面張力の影響については次報で議論する。

図1に示すように、各せんに番号を付け、 \(j \) 番めの液せんに注目して波せんの波の運動を考える。液せんは剛体と考え、初期平衡状態の各気体せん内の圧力を \(P_0 \) とし、それからのかく乱を \(p' \) とすると、 \(j \) 番めの気体せん内の圧力波は \(p_j = P_0 + p' \) となる。 \(j-1 \) 番めと \(j \) 番めの気体せん内の圧力差 \((p_j-p_j') \) によって、 \(j \) 番めの波せんは平衡位置から \(x_i \) の変位を生ずる。このときの波せんの運動方程式は

\[\rho_l \frac{d^2x_i}{dt^2} = p_{j-1} - p_j' \] \hspace{2cm} (2)

である。

一方、気体せんは断熱変化を行うとすれば、 \(j \) 番めの気体せん内の圧力変化 \(p_j' \) は

\[p_j' = P_0 \left(1 + \frac{x_j-x_j'}{l_j}
ight) - 1 \] \hspace{2cm} (3)

で表される。ただし、式 (3) は \((x_j-x_j')/l_j \leq 1 \) のとき成立し、 \((x_j-x_j')/l_j > 1 \) のときはモデルはここ外われる。

\[\frac{p_j}{l_j} \]

図1 気体せん列系モデル
いま、無限列系を考え、波動方程式に対応する次の差分微分方程式（連続波動方程式）を求める。

\[\frac{d^2 p_c}{dt^2} = \omega^2 (p_{i-1} - 2p_i + p_{i+1}) \] (4)

ここで、\(\omega \) は系の固有角振動数であって

\[\omega = \sqrt{\frac{\gamma p_0}{\rho_d l_i}} = \sqrt{\gamma \rho_d \alpha (1 - \alpha)} \] (5)

である。式（4）の系は、質量 \(\rho_d l_i \)、ばね定数 \(\gamma p_0 / l_i \)、固有角振動数 \(\omega \) の質量-ばねの連続振動系ともみられる。

\(\omega \) は、\(\alpha = 0.5 \) に関して対称性を示し、\(\alpha = 0.5 \) のとき極小値となる。また \(I \) が大きく \(P_0 \) が大となれば、\(\omega \) は高くなる。この性質は、気象列系の特性を示す。

式（4）から、進行波を表す解を

\[p_c = \alpha \exp(i (kl + \omega t)) \]

とおいて、次の分散関係式を得る。

\[\omega^2 = 4 \alpha \sin^2 (kl/2) \] (6)

この系のメモリのうち、もっとも波長 \(\lambda \) の短いのは、\(\lambda = 2l \) であるから、\(0 \leq kl \leq \pi \) の範囲を考えればよい。したがって、効果的な分散関係として

\[\omega = 2 \alpha \sin (kl/2) \] (0 \leq kl \leq \pi) \quad (6)'

を得る。上式から

\[\omega \leq 2 \omega_0 \] (7)

の関係が成立立つので、\(2 \omega_0 \) は高周波砂断波数であること。

式（6）'から、波の位相速度 \(v_p \) と群速度 \(v_g \) は

\[v_p = \frac{\omega}{k} = \frac{\omega}{\sin (kl/2)} \] (k/2)

\[v_g = \frac{d \omega}{dk} = \frac{\omega}{\cos (kl/2)} \] (9)

で与えられる。ここで

\[\omega = \sqrt{\frac{\gamma p_0}{\rho_d \alpha (1 - \alpha)}} \] (10)

である。これは、均質気液二相流中の音速の表式とちょうど一致している（図8の曲線）(13)。波長が1

組の長さ \(l \) に比べて十分長い極限すなわち \(kl \to 0 \) では、波の位相速度と群速度は等しく、ともにその

最高値 \(v_0 \) の値をとり、系は分散性を示さない（図2参照）。

\[i/\lambda \leq 1 \] のときには、連続体近似がよく成り立つ。式（4）から

\[\frac{\partial^2 p}{\partial t^2} = v_0^2 \left(\frac{\partial^2 p}{\partial x^2} + \frac{l^2}{12} \frac{\partial^4 p}{\partial x^4} + O(l^4) \right) \] (11)

を得る。このとき、分散関係は

\[\omega = v_0 k \sqrt{\frac{1}{24} k^4} \] (6)''

のように近似できる。

以上のように、気象列系は、式（6）'の分散関係、連続体近似の成り立つ所では式（6）''の分散関係をもつ分散性特性である。本論文ではスティーブ状の

圧力波を扱い、その波頭部付近の挙動を問題にしてい

るので、群速度の波数に対する依存の程度を分散の目

安とする。いまの場合、波頭は最大の群速度で進行する

のである、\(i/\lambda \leq 1 \) すなわち連続体近似の成り立つ所での

分散関係式（6）''によって、分散の程度を比較することができる。式（6）''から分散の目安 \(D \) は

\[D = \frac{\partial^2 \omega}{\partial k^4} = -\frac{1}{4} \frac{v_0 l k}{i} \] (12)

で与えられる。いま、\(D = 0 \) ならば波は非分散、\(D = 0 \)

ならば分散を示し、\(|D| \) の程度が大なるほど波の分散

が顕著となる。式（12）は、\(l = 0 \) のとき非分散、\(l \)

が大きいほど波が分散が著しくなる傾向を示している。

つきに、長さ \(L \) の管内に \(n \) 組の気液系が含まれる気象列系を考え、気液列系の一端にスティー

ブ状圧力 \(p_s = dp_s(t) \) が与えられたときの他端（\(j = n + 1 \)

固定端）での圧力応答 \(p_0 \) を考える。この圧

力応答 \(p_0 \) は、式（2）、（3）を、境界条件

\[p_s = dp_s(t) \quad x_n = 0 \quad または \quad p_0 + p_s \]

\[(j = n + 1) \quad (p_0 \text{非静止}) \]

および初期条件（\(t = 0 \) で）

\[x_i = dx_i / dt = 0 \]

または

\[p_i = dp_i / dt = 0 \]

\[(j = 1, \ldots, n) \]

のもとで解くことによって得られる。非線形モデル

[式（2）、（3）]と線形モデル（式（4））の両について数値計算し、実験の結果と比較検討する（図5～7

参照）。
4. 実験装置と測定法

実験装置の概略図を図3に示す。圧力波管は高圧室
①長さ 1 000 mm、低圧室 ③長さ 2 040 mm（測定管
(a)）、1 050 mm（測定管 (b)）、内径 φ5 mm、外
径 φ10 mm のアルミ管で、水中に置かれている。

低圧室内に測定媒質が入る。力圧信号は、軸方向に
A, B, C, D の 4 点 (測定管 (a)) あるいは E, F
の 2 点 (測定管 (b)) で、半導体圧力変換器 (周波
数特性 0 ～ 60 kHz) により直流増幅器 (周波数特性
0 ～ 10 kHz) を通して検出する。A 点および E 点は、
せん列系の直前 10 mm および 20 mm に位置し、そ
の信号によって初期圧力波形をチェックする。T 点の
圧力信号をトリガ信号とする。測定媒質として空気
-水二相流系を用い、気液せん列系は三方コックにより
空気と水を交互に注入して流れないように注意して作
る。高圧室には水圧を空気を入する。

実験は次のように行う。まず低圧室 ③に所定の空気
-水せん列系を設定する。系のボイド率 は、管に
取付けたスケールにより、気液の長さ と トルエン
を測り、式 (1) で計算する。まずに高圧室 ①と
低圧室 ③の間にガラスの隔膜を取付け、高圧室に圧縮
空気を入した所定の圧力 (46 ～ 121 kPa) に設定する。

低圧室 ③は拡大圧力 (101.3 kPa) とする。電源をアイ
ッチを入れてマイクロスコープ ⑦に取付けられた
基準 ⑤を静時に波を、せん列系にステップ
状圧力波を伝ばさせる。各測定点で検出した圧力信号
を直流増幅器 ⑤を通じて 4ch シンクロスコープ ⑦
(周波数特性 0 ～ 10 kHz) に描かせて写真に記録する。

遅い波の測定は、高圧室圧力 に 125.8 ± 3 kPa
に設定し、測定管 (a) の BD 間 (1 m 区間) で、
1 断面のせん断 B 侧が空気、D 侧が水となるように設
定して行い、伝ば速度は圧力信号の立ち上がり変化
から算出した (図 4)。

系の開端での圧力応答 (遅い波) は、測定管 (b) を
用いて、せん列系を 1 m 区間に作り、 に 147,
158, 173 kPa, α = 0.2 ～ 0.8, せんの数 n = 5, 10,
20 について調べた (図 5 ～ 7)。

遅い波の波形と伝ば速度に対する α と n の影響
を、測定管 (a) を用いて、 に 197 kPa に設定し
て、α = 0.2, 0.5, 0.8, n = 2, 4, 10, 20, 40 の場合
について調べた (図 8, 9)。

遅い波の伝ば速度の測定は、に 150, 199, 214
kPa, n = 20, 40 の場合について、α を 0.1 ～ 0.9
の間で変えて行った。検出点 (B, D 点) での圧力波形
の通過時間は、波長の圧力変化の端点までの時間を時
間軸 (圧力振幅の端) とあとの交点の時刻と決めた。測
定区間の距離との伝ば速度を算
出した (図 11)。

圧力波通過時の系の状態を、ストロボとストリクル
カメラを用いて測定管 (a) の C 点で撮影し、系 点
での圧力波形と観察されたせん列系の状態を対応させ
て観察した。これもに 197 kPa, n = 40, α = 0.2,
0.5, 0.8 について、ストロボを 100 Hz (発光時間
3 µs) で発光させて行った (図 10)。

5. 結 果 と 考 案

5-1 速い波の伝ば速度

一組のせん (気液, 液-
せんの順) についての α に対する速い波の伝ば速度
の実験結果を図4に示す。図中の実験線は Henry
らの理論線であり、実験の結果よく一致している。

空気系および水系での伝ば速度は、それぞれ 370
m/s, (Dp = 24.5 kPa), 910 m/s であった。

なお、せんの清流を逆にした場合には、液せんから気
せんへ伝ばした速い波の圧力は、強い波がするためには
検 出 できなかった。この場合、気液せんを間隔にしてお
くと次に示すように顕著に応答された信号変動が観測される。

5-2 速い波の立ち上がり特性 (ステップ応答)

n 組のせんを含んだ気液せん列系の一端にステップ
状圧力 (測定に十分な時間維持される) を与えたときの
他の端での圧力応答 p について、初期圧力振幅 Dp
の, せんの数 n の影響を調べた。結果を整理
するために, に P = ρp/Dp を用い、無次元変
数時間 T = Nαt/L (気体力学で用いられる衝撃波の
関係 M = (γ + 1)/2γPα + 1 を用いる。線形波の場
合 M = 1) を横軸に与えた図を作成した。初期圧力振

図 3 実験装置の概略図
圧力の立ち上がり方（波頭部）は非線形モデルの傾向によく一致し、最初の圧力ビークの位置は線形モデルのそれに近い。したがって、圧力の立ち上がりは急な傾きをもつようになり、\(\Delta P \)の増加によって波頭部は\(T_1=1.0 \)に近づき、\(n \)の増加によって波頭部は均質の場合（線形モデルでは\(T_1=1.0 \)、実験では\(T_1=1.11 \))に近づく傾向を示している。図は示さないが、\(\alpha \)の違いによる波頭の立ち上がり傾斜は、計算モデルからも若干の変動が見られる。実験の結果は、非線形モデルに比べてビーグの位置が低い。これは波の減衰を受けているものとみられる。各パラメータの影響において、計算モデルと実験の結果は定性的に一致している。

つきに、気液盤列系中での圧力応答について、Henryらと同様な整理方法で気液盤列系と等長の気液系中での圧力伝達時間に電気的に得られた実験および非線形モデルの結果を図7に示す。この例では、気液盤列系中での圧力伝達時間が、\(P=1 \)になる位置でみる限り、等長の系を気体（ここでは空気）中の衝撃波速度で伝ばずするに要する時間のおよそ12～21倍であり、\(n \)が増加するにつれてある値（\(T_1=12 \)）に漸近する傾向を示している。

5-3 遠い波の圧力波形と波の通過時の系の状態

測定位置A、B、C、D（A点では初期圧力波形を除）での圧力波形の変化に及ぼす\(n \)の影響を図8に示す。\(\alpha \)の影響を図9に示す。系にステップ状圧力（点Aの波形）を与えたにもかかわらず、いずれも浸透とともに圧力波の波頭およびその後方の圧力波形がステップ状からくずれしだし振動形となる。この事実から、圧力波は分散性の影響を受けているものと判断される。実験の結果は、\(n \)が小さいときには、圧力波頭の立ち上がりはゆるやかで波頭後方の波形は低周波の振動を示すが、\(n \)が増加するに従い波頭の立ち上がりは急しく、それに続く波形の振動は高周波である。振動形の衝撃波の様相を示す（図8）。また\(\alpha =0.5 \)のとき波頭の立ち上がりがもっとも遅く、しかもゆるやかとなっていることが観測される（図9）。これらは、5-2節の場合と同じ傾向である。

ところで連続体近似が成り立つ場合には、ステップ
状圧力波のある程度発展した所での波形（波頭（z=vu>0）では指数関数形、それ以降z=vu<0）
では振動形）は、Airy関数A_i(z)の積分によって第1近似に表示される。17)

\[P = \frac{1}{2} \int_0^\infty A_i(z)dz \] (15)

ここで、(6') から、z = (x-vu)/v_H で、上
述の実験結果は、式（15）で説明される波頭部の傾向を示している。

図10は、圧力波通過時の測定位置Cでの圧力波
形と系の状態写真を併せて示す。ストロボのせん光時刻（撮影時刻）により対応づけたものである。\(\alpha \)が小さい場合
(図10 (a)参照。白線は同一気体の移動の様子を示す)。気体は気体スラグとなって、スラグ流を維
持して流れ、圧力波形の振動がゆるやかに持続している。
しかし、\(\alpha \)の増加に従い、圧力波波頭の通過後、
気体は断続スラグ流から環状流へと移動する。高部
イド率ほど移動が早い。[図10参照]。

5-4 遅い波の伝ば速度
図11は、\(\alpha \)と遅い波の無次元伝ば速度\(\nu \)の関係を示している。\(\nu \)は、測
定区間（BD間）の平均圧力振幅をもつ気体中の衝撃
波速度（線形波の場合音速）に遅い波の伝ば速度
を除したものである。図中の曲線は、\(\nu \)式（10）を
気体中の音速で除したものである。図中に平均圧力振
幅の値を示している。\(\alpha = 20, 40 \)の場合の結果から
は、\(\alpha \)による変化はとくにみられず、実験の結果の傾
向は、定性的、定量的に\(\nu \)の傾向と一致しているといえる。

6. 結 論

液体の慣性と気体の圧縮性のみを考慮した気液せん
列系モデルの解析と、水平管内の空気-水気液せん
列系についての実験とから、波の伝ばに関する系固有の
特性とステップ状圧力波の伝ば特性について研究し、
おもに次の結果を得た。

(1) 気液せん列系中を伝ばす圧力波は、「遅い

\[\alpha = 0.5, \Delta p = 96 \text{ kPa}, \text{膜1目満} 10 \text{ ms}, \text{上から順に、}
\]
測定点A, B, C, Dにおける圧力波形

図8圧力波形に及ぼすせんの数の影響

\[\alpha = 0.5, \Delta p = 96 \text{ kPa}, \text{膜1目満} 10 \text{ ms}, \text{上から順に、測定点A, B, C, Dにおける圧力波形}
\]

図8圧力波形に及ぼすせんの数の影響

\[\alpha = 0.8, \Delta p = 96 \text{ kPa}, \text{膜1目満} 10 \text{ ms}, \text{上から順に、測定点A, B, C, Dにおける圧力波形}
\]

図8圧力波形に及ぼすせんの数の影響
（3）有限せん列系についての実験結果 （1）ステップ状圧力波が衝撃波に発展することから、系は分散性媒質である。（ii）圧力波の伝ばす速度および波頭の立ち上がり傾向は、α=0.5 に関して対称性を示し、α=0.5 のとき伝ばす速度は極小値を示す。したがって、v_s, v_p, v_f は極小値を示す。また、ステップ状圧力波の波頭部付近の比較から、α=0.5 のとき分散性が弱い。（iii）l を小さくするにつれて、ω_m は増加する。したがって、v_p と v_f は、最高値である非分散線形波の速度に近づき、分散性は弱くなる傾向を示す。kl→0 の極限では、分散性は消える。（iv）P_0 を高くすれば、ω_m, v_s, v_p, v_f の値も大きくなり、分散性も強くなる。（v）系は、2ω_m の高周波数帯域波数を有する。

図 10 压力波形と気波せん列系の状態

(a) α=0.2 (L_1=0.04 m, L_2=0.01 m)

(b) α=0.8 (L_1=0.01 m, L_2=0.04 m)

n=40 (J=0.05 m)，積 1 日 10 てん，シンクロスコープ上の信号は，上から順に測定点 B, C での圧力波形およびストロボの出力点時刻である
討

【質問】森 康夫・土方邦夫（東京工業大学）
（1）十分発達した衝撃波に対しては本論文でいう
遅い波しか存在せず遅い波は過波状態として存在
しない。従って図2の結果は意味がないように思われ
るかどうか。
（2）逆流二相流系を駆動する第二相モードをとる点では類似
であるが対象（二相流の形態）およびモード系
の考察において相違がある。すなわち、宮崎・嶋家
ら(付1)の(2.2)の対象は気ほう流と液体流であり、本
報告のそれは気液流列系である。また、宮崎らは波の
位相速度でないと伝ば速度を考察していること、高
周波な断を考慮していないことなどの点で両報告と
異なる。なお、宮崎らは、駆動条件系モデルによって
スラグ流系の伝ば速度の傾向を説明しないことを
指摘している。

【質問】西 山 哲男（東北大学工学部）
（1）334ページ左欄15行めには「せんが崩れた
ように注意して作る」と書かれてあるが、液せんの保

持法およびその長さの測り方どのようにか。
（2）圧力波の伝ば過程における気液境界面の変形
は、液せん部の慣性の有効値に影響を与えると考え
る。特にnの大きい程、ボイド率の大きい程、波形
が著しくならない。実験結果と非線形モデルの相違は
一因として、波の発生のごとく、上記の点が考えられ
ないか。なお、図1には分散の測定Dxを併せてプロ
ットした方が便利と思う。

【回答】（1）界面張力によって自然にせん列を
形成するような条件を選んだ、波せんの崩れを観察
するための装置を製作した。波せんの崩れを観察する。

【付箋】（1）中野ほか4名、日本原子力学会昭和45年度學術講演会
科学部概要、D30、(昭50-12)、344。
8-11 (1971-11), 606.