熱線流速計による密閉容器内の定常乱れ場の計測と解析*

1. まえがき

混合気の燃焼速度に及ぼす乱れの影響を明らかにするには、まず乱れ場を詳細に計測し解析することにより、一般的な定義による乱れの特性値を用いてその乱れを表現し、さらにはその乱れ場での乱流燃焼速度の測定を行うことが必要である。Semenovらは密閉容器内で羽根車を回して乱れを発生させ、熱線流速計などにより乱れ場の計測を行っている。Andrewsら及びAbdel-Gayedらは、円筒状の密閉容器内で羽根車を回して乱れを発生させ、熱線流速計を用いて乱れの計測を行い、さらにその乱れ場での燃焼実験を行うことにより乱流燃焼速度と乱れの特性値との関係を議論している。またBallalらは定常流燃焼実験装置で、燃焼室の上流側に乱れ発生用の格子を置き、その格子を取り換えることにより燃焼室に任意の乱れの大きさの組合せの乱れ場を作り、燃焼実験を行うことにより乱流燃焼速度の影響を計測している。このときも、乱れの特性値の計測には熱線流速計を用いている。これらの実験結果のように、一方は平均流が存在せず、ほとんど変動成分だけで構成されている乱れ場で、もう他方は、ひとつのように強い主流が存在する乱れ場であるように、性質が異なる乱れ場における燃焼実験結果を定量的に比較、検討する場合、同じ基準で、ならびに一般的な定義による乱れの特性値を用いてそれらの乱れ場の計測が重要である。しかししながら、熱線流速計は本来3方向の速度成分を同時に測定するものであり、特に平均流がほとんど存在しない乱れ場における計測で、その出力を用いて定義される乱れの特性値には、大きな任意性が含まれている。

本論文よりの観点から、熱線流速計の出力として用いる冷却効果速度の二乗値の平均値及び二乗値の変動成分の二乗平均値、自己相関関数及び相関関数

* 昭和54年10月13日 第5期全国大会講演会において論文授賞として講演 昭和54年4月15日。
** 正員、九州大学工学部（平812 福岡市東区箱崎 6-10-1）。
*** 協力、九州大学工学部。
添字

\(a\)：場所 \(a\) における値
\(b\)：場所 \(b\) における値
\(c\)：冷却有効速度に基づく値
\(I\)：I 形プローブ（図 5（a）参照）の値
\(L\)：L 形プローブ（図 5（b）参照）の値
\(N\)：熱線に直角方向（図 5 参照）の値
\(T\)：熱線に沿う方向（図 5 参照）の値
\(w, x, y, z\)：いずれかの方向の値
\(x\)：方向の値
\(y\)：方向の値
\(z\)：方向の値

3. 実験装置及び実験方法

本実験に用いた密閉容器は、向かい合う 2 面に直径 80 mm の観測窓があり、他の 4 面は直径 100 mm の多孔板で被まれた直径 100 mm の円筒の直交面体となる。この容器には混合気の吸収、排出口、圧力ビックアップの取付口が備わっており、また点火プラグも取付ることが可能であり、燃焼実験も行えるようになっている。容器の概要を図 1 に示す。4 個の多孔板 1 の後において、それぞれ独立に駆動される遠心ファン②を設け、多孔板中心付近の穴から噴出する空気で容器中心部にほぼ一致した流れを作るように、専用の多孔板を図 2 に示す。乱れのために、直径 15 mm の円筒表面を、熱線は直径 7 μm、長さ 3 mm のスタングステン線である。プローブに対する流れの方向を表示するために、熱線に直角な \(N\) 方向、\(B\) 方向および熱線に沿う \(T\) 方向を図 5 のように定める。定温度形熱線流速計に取付けたこれらのプローブの流速に対する出力

図 1 密閉容器の概要
図 2 実験に用いた多孔板
図 3 座標軸と測定点

1017
の直線関係の一例を図6(a)、(b)に示す。I形プローブに対するN方向、T方向及びL形プローブに対するN方向、B方向の流速検定は、振動子を用いた検定装置で行い、他の方向の検定には風洞を用いた。また、本論文では流速の二次乗の解析が行うので、流速の二次乗と熱線流速計の出力とを直線化する回路を用いての流速検定も行った。その一例を図7に示す。各測定点での平均流速、乱れ強さ及び自己相関関数を解析するために、直交函数の回転速度が一定である。各点においてプローブの方向が三つの座標軸方向と同じになるように、プローブ及びその設定方向を変えて計測を行った。この場合、いずれの場合もプローブはx軸の正方向からそう入った。つまり、乱れの空間関係点(2,0),(2,2),(2,4),(1,0),(1,2),(1,4)をそれぞれ基準点として計測を行ったが、点(2,0)における計測での熱線プローブの設定位置関係を図8(a)～(c)に示す。図に示すように一つのプローブを点(2,0)に固定し、他の一つのプローブの設定位置を(a)の場合はx軸の正方向、(b)の場合はy軸の負方向、(c)の場合はz軸の負方向に変化させた。他の計測点においても、プローブの位置関係は点(2,0)の場と同様である。

4. 熱線流速計出力の解析

熱線プローブのN、B、Tのそれぞれの方向に、速度成分nu、nb、ntをもつある瞬間の流速uが熱線に作用した場合の、熱線流速計の直線化された出力電圧Vrは、次式で与えられる(7)

\[V_r = (u_n \tan \theta_N)^2 + (u_b \tan \theta_B)^2 + (u_t \tan \theta_T)^2 \]

ここで、\(\theta_N, \theta_B, \theta_T \) は図6に示す流速と直線化された出力電圧のつな角度であり、熱線の方向感度係数を \(G_N = 1.0, G_B = \tan \theta_B/\tan \theta_N, G_T = \tan \theta_T/\tan \theta_N \) で定義すれば、熱線の冷却有効速度 \(u_c = V_r/\tan \theta_N \) は次式で与えられる。

\[u_c = (u_n^2 + G_B^2 u_b^2 + G_T^2 u_t^2)^{1/2} \]

これから、冷却有効速度の二次乗 \(u_c^2 \) とその時間平均値 \(\bar{u}_c^2 \) は、それぞれ次式で与えられる。

\[u_c^2 = u_n^2 + G_B^2 u_b^2 + G_T^2 u_t^2 \]

図4 乱れ測定位置と多孔板の位置関係
図5 実験に使用したプローブの形状
図6 流速と熱線流速計出力の直線関係の一例及び方向感度特性
図7 流速の二次乗値と流速計出力との直線関係
4.1 平均流速及び乱れの強さの解析

L形プローブを図8 (b) に示すように、熱線（T方向）がx軸方向、N方向がx軸方向となるように設置した場合の冷却有効速度をu_{ex}で表示すれば、それは次式で与えられる。

$$u_{ex}^3 = G_{TL} u_x^3 + G_{BL} u_x u_x + u_x^3$$

ここで、u_x、u_y、u_zは、ある瞬間の速度uの3方向成分であり、また流速検定によれば、$G_{BL} = 0.91$、$G_{TL} = 0.22$であった。同じ点で、I形プローブを、図8 (c) に示すように、熱線がy軸方向、N方向がz軸方向となるように設置すれば、次式が得られる。

$$u_{ex}^3 = G_{TR} u_y^3 + G_{TR} u_y + u_y^3$$

流速検定によれば、$G_{TR} = 1.06$、$G_{TR} = 0.17$であった。また同じ点で、I形プローブを、図8 (a) に示すように、熱線がz軸方向、N方向がy軸方向となるように設置すれば、次式が得られる。

$$u_{ex}^3 = G_{TR} u_z^3 + u_x u_z + u_z^3$$

ある瞬間の流速uを平均流速Uと変動成分$ar{u}$を用いて$u = U + ar{u}$で表し、乱れの強さu''を変動成分の二乗平均値の平均値、すなわち$u'' = \bar{u}^2 : (\bar{u})^2$とするとき、$U^2 + (u_x)^2$、$U^2 + (u_y)^2$、$U^2 + (u_z)^2$、式 (5) 〜(7) の時間平均をとることにより次式で求められる。

$$\begin{array}{c|c|c|c|c}
\hline
G_{TR}^2 & G_{BR}^2 & 1 & U_x^2 + (u_x')^2 & \frac{u_{ex}^3}{u_x^3} \\
G_{TR}^2 & G_{TR} & 1 & U_y^2 + (u_y')^2 & \frac{u_{ex}^3}{u_y^3} \\
G_{TR} & G_{TR} & 1 & U_z^2 + (u_z')^2 & \frac{u_{ex}^3}{u_z^3} \\
\hline
\end{array}$$

つまり、冷却有効速度の二乗値の変動成分の解析を行う、式(5)〜(7)を一般的に次式で表す。

$$u_{ex}^3 = G_{BR}^2 u_x^3 + G_{TR}^2 u_y^3 + G_{TR}^2 u_z^3$$

ここで、G_{BR}、G_{TR}、G_{TR} はそれぞれx、y、z方向の

$$u_{ex}^3 - u_{ex}^3 = G_{BR}^2 (2U_x \bar{u}_x + \bar{u}_x + \bar{u}_x^2) + G_{TR}^2 (2U_y \bar{u}_y + \bar{u}_y + \bar{u}_y^2) + G_{TR}^2 (2U_z \bar{u}_z + \bar{u}_z + \bar{u}_z^2)$$

$$- \left(G_{BR}^2 (u_x')^2 + G_{TR}^2 (u_y')^2 + G_{TR}^2 (u_z')^2 \right)$$

これから、冷却有効速度の二乗値の変動成分（$u_{ex}'^3$）=$((u_{ex}^3 - u_{ex}^3))_{\bar{u}^2}$も次式で与えられる。

$$((u_{ex}^3)_{\bar{u}^2})^2 = G_{BR}^2 (4U_x \bar{u}_x + \bar{u}_x + \bar{u}_x^2) + G_{TR}^2 (4U_y \bar{u}_y + \bar{u}_y + \bar{u}_y^2) + G_{TR}^2 (4U_z \bar{u}_z + \bar{u}_z + \bar{u}_z^2)$$

$$+ 4G_{BR}^2 (U_x \bar{u}_x + \bar{u}_x) + 4G_{TR}^2 (U_y \bar{u}_y + \bar{u}_y) + 4G_{TR}^2 (U_z \bar{u}_z + \bar{u}_z)$$

$$+ 2G_{BR}^2 (U_x \bar{u}_x + \bar{u}_x) + 2G_{TR}^2 (U_y \bar{u}_y + \bar{u}_y) + 2G_{TR}^2 (U_z \bar{u}_z + \bar{u}_z)$$

$$+ 2G_{BR}^2 (2U_x \bar{u}_x + \bar{u}_x) + 2G_{TR}^2 (2U_y \bar{u}_y + \bar{u}_y) + 2G_{TR}^2 (2U_z \bar{u}_z + \bar{u}_z)$$

$$+ G_{BR}^2 (2U_x \bar{u}_x + \bar{u}_x) + G_{TR}^2 (2U_y \bar{u}_y + \bar{u}_y)$$

$$+ G_{TR}^2 (2U_z \bar{u}_z + \bar{u}_z)$$

ここで、$\bar{u}_x = \bar{u}_y = \bar{u}_z = 0$、$(\bar{u}_x') = u_x'$、$(\bar{u}_y') = u_y'$、$(\bar{u}_z') = u_z'$である。また、乱れはほぼ等方的であり、準正規分布の仮定が成り立つとすると、等方性の仮定から三次の相関及び直角方向の速度成分に関する二次の相関は0となる。つまり、準正規分布の仮定から、$(\bar{u}_x') = 3(u_x')^2$、$(\bar{u}_y') = 3(u_y')^2$、$(\bar{u}_z') = 3(u_z')^2$、$(\bar{u}_x)'' = (u_x')^3(u_y')^3$、$(\bar{u}_y)'' = (u_y')^3(u_x')^3$、$(\bar{u}_z)'' = (u_z')^3(u_x')^3$である。次式が得られる。ただし、$u''$の虚線は残しておき。

$$((u_{ex}^3)_{\bar{u}^2})^2 = 2G_{BR}^2 (u_x')^3 + G_{TR}^2 (u_y')^3 + G_{TR}^2 (u_z')^3$$

式 (5)〜(7) の場合と同じ熱線プローブの設置に対して、式 (12) から次式が得られる。
以上の結果から、冷却有効速度の二乗値の平均値を変動強さを計測すれば、式 (8)、(13) を用いて各方向の平均流速及び乱れ強さを求めることになる。
実際の計測結果の計算においては、データ量に制限があることなどのため、つきのようにして \(U, \ u' \) を求めた。式 (8) と (13) の計算結果で \(B = U^2 + (u')^2 \), \(C = 2(u')^2[2U^2 + (u')^2] \) とおき、\(D = B^2 - C/2 \) を作り、\(D \leq 0 \) の場合には \(U = 0, u' = \sqrt{B}, D > 0 \) のときは \(U = (D)^{1/4}, u' = \sqrt{B - D^2} \) とした。このようにして解析した結果の例（ファン回転速度 15000 rpm）を図 9 に示す。この結果から、乱れ強さ \(u' \) の各点及び 3 軸方向のばらつきは、あまり大きくなことがわかる。原点を含む面 2 では \(z \) 軸上に平均流速が検出され、多孔板 2(a) を \(z \) 軸の正方向に設置した影響がでている。また面 1、面 3 では、それぞれ \(x \) 軸方向の平均流速がすべての点で検出され、平均流速の方向に判別できないが、面 1 では \(z \) 軸の正方向、面 3 では \(x \) 軸の負方向への流れが予測される。ファン回転速度を変化させても、これらの傾向には変化がなかった。図 10 に、乱れの強さ \(u' \) の各点及び 3 軸方向の平均値をファ ァン回転速度に対して示す。この図から、\(u' \) はファン回転速度と比例関係にあることがわかる。また同じ図に、冷却有効速度の平均値 \(U_c \) とその変動強さ \(u'_c \) の、各点及びプローブの 3 種類の設定方法に対する平均値を示す。（\(G_{TB} + G_{TB} \)）が 1 に近い数値であるので、\(U_c \) は \(u' \) より大きな数値を示す。

4・2 乱れの時間尺度の解析 各測定点における乱れの時間尺度を解析するために、式 (10) で表される冷却有効速度の二乗値の変動成分の、時刻 4における値と時刻 \((t + \tau)\)における値の積を作り、その時間平均値をとる。等方性と準正規分布の仮定をおこと、次式が得られる。

\[
[u_{ew}^2(t) - u_{ew}^2] [u_{ew}^2(t + \tau) - u_{ew}^2] = 2[G_{TB}(u')^2(2U^2 + (u')^2R_2^2(\tau)) + G_{TB}(u')^2(2U^2 + (u')^2R_2^2(\tau)) + G_{TB}(u')^2(2U^2 + (u')^2R_2^2(\tau))]
\]
ここで、
\[R_c(t) = \bar{u}_c(t) / (u_c') = \bar{u}_c(t) / (u_c')^2 \]
と定義しており、これは一般的な定義による乱れの自己相関関数になっている。冷却有効度の二乗値と熱線流速計出力との関係を直線化し、相関計に入力することにより、次式で表される \(F_c(r) \) が得られる。

\[F_c(r) = \frac{\langle u_c^2 \rangle - \langle u_c' \rangle^2}{\langle (u_c')^2 \rangle} \]

(15)

\(\langle (u_c')^2 \rangle \) は式 (12) で与えられることで、各測定点において、

\[P_1 = \langle G_s^2 \langle u_c' \rangle^4 + G_s^4 \langle u_c' \rangle^4 + G_s^4 \langle u_c' \rangle^4 \rangle \ldots (16) \]

\[P_3 = \langle G_s^2 U_s^2 \langle u_c' \rangle^4 + G_s^4 U_s^2 \langle u_c' \rangle^4 + G_s^4 U_s^2 \langle u_c' \rangle^4 \rangle \ldots \]

(17)

とおけば、実測される自己相関関数 \(F_c(r) \) から \(R_c(t) \) は次式により求められる。

\[P_1 R_c(t) + P_3 R_c(t) - (P_1 + P_3) F_c(t) = 0 \ldots (18) \]

上式から、平均流が存在しない乱れ場（\(P_s = 0 \)）での計測では、\(F_c(t) = R_c(t) \) という結果が得られ、一方的に強い乱れが存在する乱れ場での計測では、\(F_c(t) = R_c(t) \) という結果が近似的に得られることがわかる。

上記の方法を用いて得られた \(u'_L \) の値を自然対数の底として \(R_c(L_x) = 1/e \) で \(u'_L \) の平均的な時間尺度 \(L_x \) を定義すると、式 (18) から次式を得る。

\[F_c(L_x) = \frac{1}{P_1 + P_3} \left(\frac{P_1}{e^2} + \frac{P_3}{e} \right) \ldots (19) \]

測定された \(F_c(t) \) の曲線から、式 (19) の関係を利用して乱れの平均的な時間尺度 \(L_x \) が決定される。基準点の前後において乱れの平均値を、乱れの強さに対して示すと図 11 が得られる。これは、\(L_x \) は \(u' \) の増加とともに比例的に減少する傾向を示す。同じ方法に、冷却有効度の変動成分の自己相関関数 \(R_c(t) = \bar{u}_c(t) / (u_c')^2 \) である時間スケール \(L_x \) が示される。冷却有効度の変動成分は、3 方向の速度成分の変動成分が組合せられたものであるから、\(L_x \) は \(L_x \) より小さな値を示す。つまり、本格の平均的な空間尺度を表すと考えられる \(u'_L \) を \(u' \) に対して描くと図 12 が得られる。これから、\(u'_L \) は \(u' \) の増加とともに増加する傾向を示し、\(u' = 1 \) で約 2 m/s、\(u' = 4 \) m/s で約 3 m/s 程度の値となることがわかる。同じ図に、冷却有効度の変動成分の \(u'_L \) が示される。この結果によれば、\(u'_L \) と \(u'_L \) はほとんど同じ値を示す。

4.3 乱れの空間尺度の解析

前述の測定点における乱れの空間尺度を解析するために、冷却有効度の二乗値の変動成分の 2 点 \(a, b \) における時間成分の積を考え、その時間平均値を取る。等方向性と車正規分布の仮定をおき、簡単のために、\(a, b \) が \(x \) 軸上の点とすれば、次式が得られる。

\[\frac{\langle u_a^2 \rangle}{\langle u_a' \rangle^2} \]

ここに、\(f(r) = \bar{u}_a \bar{u}_b / (\langle u_a' \rangle^2) \) は車方向相関関数。

\[g(r) = \bar{u}_a \bar{u}_b / (\langle u_a' \rangle^2) \]

(20)

\(g(r) = \bar{u}_a \bar{u}_b / (\langle u_a' \rangle^2) \) は車方向相関関数である。2 点における冷却有効度の二乗値と熱線流速計出力との関係を直接化し、相関計に入力することにより、次式で表される \(F_c(r) \) が得られる。

\[F_c(r) = \frac{\langle u_a^2 \rangle}{\langle u_a' \rangle^2} \]

(21)
等方性乱れでは \(g(r) = f(r) + r/2 \frac{\partial f}{\partial r} \) という関係が存在するので、測定される \(F_x(r) \) から次式を用いて絶対方向相関関数 \(f(r) \) が求めることになる。

\[
G_x^4(\eta_x^\epsilon) + 2U_x^2 G_x^4(\eta_x^\epsilon) + G_y^4(\eta_y^\epsilon) + G_z^4(\eta_z^\epsilon) + 2U_x G_x^2 G_y^2(\eta_x^\epsilon \eta_y^\epsilon) + 2U_x G_x^2 G_z^2(\eta_x^\epsilon \eta_z^\epsilon) + 2U_y G_y^2 G_z^2(\eta_y^\epsilon \eta_z^\epsilon) + G_y^2 G_z^2(\eta_y^\epsilon \eta_z^\epsilon) + G_z^2 G_x^2(\eta_z^\epsilon \eta_x^\epsilon) + G_x^2 G_y^2(\eta_x^\epsilon \eta_y^\epsilon) + 2U_x G_x^2 G_y^2(\eta_x^\epsilon \eta_y^\epsilon) + 2U_y G_y^2 G_z^2(\eta_y^\epsilon \eta_z^\epsilon) + 2U_z G_z^2 G_x^2(\eta_z^\epsilon \eta_x^\epsilon) + 2U_z G_z^2 G_y^2(\eta_z^\epsilon \eta_y^\epsilon)
\]

(22)

いま、基準点 a における乱れの特性値を点 b において近似的に用いると \(U_{xa} = U_{xb} \), \(\eta_{xa} = \eta_{xb} \), \(U_{ya} = U_{yb} \), \(\eta_{ya} = \eta_{yb} \) となり、また図 8 に示すように、同じ形状のプローブを対にして空間相関を計測すれば \(G_x = G_{xa}, \ G_y = G_{ya}, \ G_z = G_{za} \) とすることができる。これらの関係を用いると、式 (22) は次式で表される。

\[
G_x^4(\eta_x^\epsilon) + 2U_x^2 G_x^4(\eta_x^\epsilon) + G_y^4(\eta_y^\epsilon) + G_z^4(\eta_z^\epsilon) + 2U_x G_x^2 G_y^2(\eta_x^\epsilon \eta_y^\epsilon) + 2U_x G_x^2 G_z^2(\eta_x^\epsilon \eta_z^\epsilon) + G_y^2 G_z^2(\eta_y^\epsilon \eta_z^\epsilon) + G_z^2 G_x^2(\eta_z^\epsilon \eta_x^\epsilon) + G_x^2 G_y^2(\eta_x^\epsilon \eta_y^\epsilon) + 2U_x G_x^2 G_y^2(\eta_x^\epsilon \eta_y^\epsilon) + 2U_y G_y^2 G_z^2(\eta_y^\epsilon \eta_z^\epsilon) + 2U_z G_z^2 G_x^2(\eta_z^\epsilon \eta_x^\epsilon) + 2U_z G_z^2 G_y^2(\eta_z^\epsilon \eta_y^\epsilon)
\]

(23)

各基準点における乱れの特性値と、プローブの設定方向により定まる方向相関関数を用いれば、測定値 \(F_x(r) \) から \(f(r) \) を求めることができる。これまでの議論では点 a, b が x 軸上の点と仮定したので、その場合 [図 8 (a) 参照] について式 (23) の関係が得られたが、点 a, b が y 軸上の場合は図 8 (b) には、次式となる。

\[
G_x^4(\eta_x^\epsilon) + 2U_x^2 G_x^4(\eta_x^\epsilon) + G_y^4(\eta_y^\epsilon) + G_z^4(\eta_z^\epsilon) + 2U_x G_x^2 G_z^2(\eta_x^\epsilon \eta_z^\epsilon) + G_y^2 G_z^2(\eta_y^\epsilon \eta_z^\epsilon) + G_z^2 G_x^2(\eta_z^\epsilon \eta_x^\epsilon) + G_x^2 G_y^2(\eta_x^\epsilon \eta_y^\epsilon) + 2U_x G_x^2 G_z^2(\eta_x^\epsilon \eta_z^\epsilon) + G_y^2 G_z^2(\eta_y^\epsilon \eta_z^\epsilon) + G_z^2 G_x^2(\eta_z^\epsilon \eta_x^\epsilon) + G_x^2 G_y^2(\eta_x^\epsilon \eta_y^\epsilon) + 2U_x G_x^2 G_z^2(\eta_x^\epsilon \eta_z^\epsilon) + G_y^2 G_z^2(\eta_y^\epsilon \eta_z^\epsilon) + G_z^2 G_x^2(\eta_z^\epsilon \eta_x^\epsilon) + G_x^2 G_y^2(\eta_x^\epsilon \eta_y^\epsilon)
\]

(24)

同様に、点 a, b が z 軸にある場合 [図 8 (c) には、次式が成立する。

\[
G_x^4(\eta_x^\epsilon) + 2U_x^2 G_x^4(\eta_x^\epsilon) + G_y^4(\eta_y^\epsilon) + G_z^4(\eta_z^\epsilon) + 2U_x G_x^2 G_y^2(\eta_x^\epsilon \eta_y^\epsilon) + G_y^2 G_z^2(\eta_y^\epsilon \eta_z^\epsilon) + G_z^2 G_x^2(\eta_z^\epsilon \eta_x^\epsilon) + G_x^2 G_y^2(\eta_x^\epsilon \eta_y^\epsilon) + 2U_x G_x^2 G_y^2(\eta_x^\epsilon \eta_y^\epsilon) + G_y^2 G_z^2(\eta_y^\epsilon \eta_z^\epsilon) + G_z^2 G_x^2(\eta_z^\epsilon \eta_x^\epsilon) + G_x^2 G_y^2(\eta_x^\epsilon \eta_y^\epsilon)
\]

(25)

式 (23) ～(25) から、測定点を結ぶ方向だけに強い主流があり、さらにその方向に対するプローブの方向相関関数が 1 に近ければ、近似的に \(F_x(r) = f(r) \) という結果が得られ、また測定点を結ぶ方向と直角方向だけに強い主流があれば、方向相関関数の同様な条件のもとで \(f(r) = g(r) \) という結果が得られることがわかる。平均流速がまったく存在せず、さらに \(u_x = u_y = u_x \) という条件が成り立つような乱れの場であれば、式 (23) に対応して次式が得られる。

\[
F_x(r) = \frac{1}{G_x^4 + G_y^4 + G_z^4} \left[G_x^2 f(r) + G_y^2 f(r) + G_z^2 f(r) \right]
\]

(26)

式 (24), (25) についても式 (26) と同様な式が得られる。つまり、流れの平均的な空間尺度を求めるために、時間尺度の場合と同様に \(f(r) = \exp (-r/L) \) なる関数を範囲方向相関関数が近似できるとすれば、その場合の積分尺度は \(L_f \) となり、\(f(L_f) = 1/e \) となる。これから \(g(L_f) = 1/(2e) \) となる。これらの関係を、図 8 (a) ～(c) のそれぞれの場合のプローブの設定方法を適宜定める式 (23) ～(25) に代入すると \(F_x(L_f) \) が求まり、\(F_x(r) \) の実測値から各測定点において各方向の乱れの範囲方向空間尺度 \(L_f \) が求めることになる。座標軸方向によりやや異なる値が得られたが、3 軸方向の平均をとると、図 13 に示すように \(L_f \) は 3.4 ～5.3 mm の値となり、\(u^\prime \) の増加とともにわずかに大きくなる傾向を示す。以上に得られた結果から、流れの平均的な空間尺度として、一般的な定義によるものとして \(L_f \) と \(u'L_f \) が求まり、また冷却有効空間に対する \(U_L(x) \) が求めまったが、さらに冷却有効空間の変動成分の相互相関関数 \(R_{xu}(r) = \tilde{u}_x(r) \tilde{u}_x(r + \tau)/\langle \tilde{u}_x \tilde{u}_x \rangle \) についての検討も必要である。
図14 種々の定義による空間尺度の比較

で $Re(L_r) = L/e$ とある尺度 L_r を求め、$u' L_r$, $u' L_r$, 及び L_r の L_r に対する比を乱れの強さ u' に対して描くと図14が得られる。この結果から、$u' L_r$, $u' L_r$, L_r はほとんど同じ値を示し、またそれらの L_r に対する比は、u' によりほとんど変化せず約 0.5 の値を示すことがわかる。

5. 結 論

熱線流速計を用いて密閉容器内の常圧乱流場の計測を行い、以下の結論を得た。

（1）熱線プローブに対する冷却有効流速の二乗値の平均値、及び二乗値の変動成分の二乗平均値、自己相関関数、相互相関関数を計測することにより、一般的な定義による乱れの特性値を求める方法を示した。それにより、種々異った性格を有する乱れの場を、同じように定義した乱れの特性値を用いて表示することが可能となり、そのでの乱流燃焼実験結果などを相互に定量的に比較することができる。また、この手法は平均流の有無にかかわらず有効である。

（2）乱れはほぼ等方的であり、また準正規分布の仮定が成り立つとして常圧乱流場の解析を行い、平均流速、乱れの強さの空間分布及び一様な定義による乱れの時間尺度、空間尺度の乱れ強さに対する変化を明らかにした。また、熱線の冷却有効流速の平均値ならびに変動成分から解析される平均流速、乱れ強さ、時間尺度及び空間尺度を、ここで求められた一様な定義による乱れの特性値との相違を定量的に明らかにした。

（3）本実験の結果によれば、乱れの強さが 0.5～3.8 m/s の範囲で、乱れの平均的な時間尺度は 0.7～0.8 ms の値を示し、乱れの強さの増加とともに減少する傾向を示す。また、乱れの長時間尺度は 3.4～5.3 mm の値を示し、乱れの強さの増加とともにわずかに増加する傾向を示す。

（4）1点での乱れの強さと、その点での乱れの平均的な時間尺度の値として定義される値と平均的な空間尺度は、観察方向空間尺度の約 1/2 となる。

文 献

（5）Acrivellas, M., DISA Information, 23 (1978-3), 11.
（6）柳戸, ほか3名, 機論, 46-404, B (昭 55-4), 771.

討

【質問】浜本嘉輔（京都大学工学部）

（1）熱線の方向感度を表す係数 G_a, G_b, G_c, G_d の値は、1 m/s 以下の低流速域においては、流速によって異なってくる（付1）。このことはファン回転速度の低い場合、問題ではないか。

（2）図9(b) (面2) のデータをみて、この部分で確定特性の流れ（主流）が存在するか否か明確に判断できないが、(2.0), (2.1) の各点にあらわれる平均流速はどのような意味をもつか。

【回答】（1）本実験では Gr_l に関しても 0.7
マス / までの検定を行っている（図6(a)）。流速が7 m/s から 0.7 m/s の範囲では GFF には変化は見られなかったが、これよりさらに低流速範囲では、ご指摘の点を考慮する必要があるものと考える。ファン回転速度が2 000 rpm の場合、u' は約 0.5 m/s となっているので、このような低流速域では若干の誤差が含まれているものと思われる。

（2）点 (2,0), (2.8) で検出した平均流速は、多孔板（図2(a)）の中心の穴からの噴流によるものと考えている。これらの点では u_{ex} [図8(b)], u_{ex} [図8(c)] の値が u_{ex} [図8(a)] よりかなり大きな値を示し、面 2 の他の点での u_{ex}, u_{ex}, u_{ex} は上記 2 点の u_{ex} と同程度の値となっている。

燃焼との関連で考えると、この平均流速も火炎面をひずませる効果をもつものと考えるが、波数としては乱れの波数よりかなり小さなものであり、どの程度考慮すべきかは未検討である。

（3）計算の上での $D<0$ となった原因としては、u_{ex}, u_{ex}, u_{ex} の値が全く同じ流れ場で得られた値ではないこと、またそれらを解釈するためのデータ量の制限があったこと（1実験につき 500 個のデータ）、それぞれが無方的であり準正規分布の仮定が成り立つとしたことが考えられる。これらの原因のうち、特に等方性と準正規分布の仮定のため、D が無限大に負になることが、かなり生じたものと考えている。すなわち、本来 $C = C(\gamma)/(2U^2 + (\gamma)^2) + \Delta C$ と書き留くべきもので、ΔC は平均流速、流速の変動成分の二次、三次、四次の相関項の関数であり、小さな値をとるものと考えられる。従って、$D = B^2/C/2 = U^4 - \Delta C/2$ で D が負になるとき、上記の仮定からのずれが最も小さくなるのは $U=0$, $D=-\Delta C/2$ の場合であり、本論文ではそのような場合の u' を計算している。また、$D>0$ の場合には U^4 に対して $\Delta C/2$ を省略するという近似を行っている。u' に関しては、仮定が含まれていない B の値から計算している。図9（ファン回転速度 15 000 rpm）の場合、u' の平均値は3.77 m/s ($D \leq 0$, $D > 0$ のいずれの場合も u' の平均値は3.77 m/s となっている）であり、$D \leq 0$ のとき、$U=1$ m/s と大きな値を仮定しても $u'=3.64$ m/s と u' の変化はわずかなものとなる。このように、本論文の仮定が u' に及ぼす影響は小さなものだと考えるが、さらに詳細に、現実の流れ場がこの仮定からどの程度のずれを生じるかを明らかにするために、本論文で省略した速度相関項の検討を、レーザー・ドップラ流速計を用いる計測にて行う計画である。

46巻403号，B編（昭55-3）正誤表

<table>
<thead>
<tr>
<th>執筆者名</th>
<th>ページ</th>
<th>識別</th>
<th>行</th>
<th>誤</th>
<th>正</th>
</tr>
</thead>
<tbody>
<tr>
<td>谷内聖</td>
<td>415</td>
<td>図1</td>
<td>図中左</td>
<td>Honeycomb</td>
<td>Honeycomb</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mess cylinder</td>
<td>Graduated measuring glass</td>
</tr>
<tr>
<td>清水昭比古ほか</td>
<td>419</td>
<td>右</td>
<td>4</td>
<td>収束距離</td>
<td>収束条件</td>
</tr>
<tr>
<td></td>
<td>465</td>
<td>右</td>
<td>6</td>
<td>両相関</td>
<td>両相関</td>
</tr>
</tbody>
</table>