円管内脈動流れの乱流遷移に関する研究
（第1報，遷移域近傍における速度波形と速度分布）

近江宗一**，井戸学**，浦原育生***
Munekazu OHMI, Manabu IGUCHI, Ikuko URAHATA

1. 論文
円管内脈動流れの乱流遷移は工業上非常に重要な問題の一つであるとともに，さらに複雑な非定常流れ，例えば血管内流れなどの機構を理解するための基盤として医学・生理学的見地からもその解明が切望されている。

Gilbreth-Combs(1), Yellin(2)は可視化的手法，Sarpkaya(3)は人工的に与えたよう乱が下流へ伝わる様相を圧力変換器の出力波形を観察することによって調べ，臨界レイノルズ数 \(Re_{cr} \)を無次元角周波数 \(\omega' \)と速度振幅比 \(A_1 \)に対して図示している。Hershey-Im(4), 角田ら(5)は管摩損係数の測定結果に基づいて \(Re_{cr} \)を決定した。これらの結果から脈動流れの臨界レイノルズ数は定常流れの値，約 2,000 とは顕著に異なっていることが分かりながら同時に，ある限られた範囲の \(\omega' \)と \(A_1 \)の値に対して，\(Re_{cr} \)が評価できる。しかしながら，遷移の判定基準が各研究者によって異なっていることもあり，\(Re_{cr} \)の値はつまり一つめ正確ではない。判定基準の相違による \(Re_{cr} \)の異なりを解明するためにはもちろんのこと，脈動流れの遷移機構を包括的に知るために，定常流れと通常行われているように，管内の流れの様相を詳しく調べてみるとことが大切である。すなわち，脈動流れの場合，少なくとも速度波形および速度分布を検討してみることが必要である。

いま非定常流れの遷移域に着目するとき，速度波形に関しては，犬の大動脈内血液流の速度をフィルムプローブで測定し，その波形を観察したBremnerら(6)，Kiser(7)らの研究がみられるが，速度分布については詳細な報告はなく(8)，円管内脈動流れに対しては，速度波形，速度分布ともにまだ調べられていない。円管内定常流れを規定するパラメータはレイノルズ数だけであるが，脈動流れを規定するパラメータには，\(Re_{cr}, \omega', A_1 \)の3個がある(9). したがって，これらパラメータの変化範囲をすべてカバーするためには膨大な実験を要する。そこで本研究では，医学・生理学の分野にも何らかの寄与が期待されることを期待して，\(\sqrt{\omega'} \)を人間の大動脈で知られている値，約 17 \((10) \)近傍に設定した脈動流れを発生させ \(Re_{cr} \)を，その結果として \(A_1 \)の値を広範囲に変化させることにした。一方著者らは，すでに円管内脈動流れの速度波形と速度分布を観察し，その結果を分析して乱流遷移の様相を明らかにした(11). したがって，そこで得られた知見を参考にしつつ，今回も同様の手法を踏襲して，熱線風速計による速度計測から速度波形と速度分布を観察した。そして，それが \(Re_{cr} \)の増加とともにどのように変化するかを分析し，乱流遷移の問題を解明する方法りをつかんだ。

2. 記号
\[
A_1: \text{速度振幅比 } = \frac{|u_{rms}|}{u_0} \\
D: \text{管直径} \\
\beta: \text{脈動波数} \\
M_0(\sqrt{\omega'}), \theta(\sqrt{\omega'}): \text{ベッセル関数 } J_0(\beta \sqrt{\omega'}) \\
\rho: \text{圧力} \\
\Delta p/\rho: \text{圧力こう配} \\
\dot{R}: \text{脈動半径} \\
R_{12}: \text{瞬間レイノルズ数 } = u_0 D/\nu \\
R_{max}: \text{速度振幅に基づくレイノルズ数 } = |u_{rms}| D/\nu \\
R_{ave}: \text{時間平均レイノルズ数 } = u_{rms} D/\nu \\
\rho: \text{密度} \\
\dot{r}: \text{半径方向速度} \\
r: \text{時間} \\
\mu: \text{粘性係数} \\
\kappa: \text{動粘性係数}
\]

* 昭和 55 年 10 月 31 日 第 908 回講演会において論文講演として講演。原稿受付 昭和 55 年 6 月 9 日。
** 正員，大阪大学工学部（☎556 水田南部町正 3-1）。
*** 学生員，大阪大学大学院。
\(\omega \): 脈動流れの角周波数
\(\omega' \): 無次元角度波数 \(\equiv R^2 \omega / \nu \)

派生式は

- \(cl \): 管中心軸上における値を表す
- \(m \): 管横断面平均を表す
- \(os \): 振動成分を表す
- \(ta \): 時間平均成分を表す

1. 基礎的関係式

非圧縮性流体の円管内層流脈動流れの圧力こう配と

\[
\begin{align*}
\mu & = \mu_0 + \mu_{s,1} + \mu_{s,1} \cos(\omega t + \phi_{s,1}) \cos(\omega t + \phi_{s,1}) \\
\mu_{s,1} & = \frac{1}{\rho_0 \omega} \left[\frac{\Delta p_{s,1}}{l} \right] \\
\phi_{s,1} & = \tan^{-1} \left[\frac{\mu_{s,1}}{\phi_{s,1}} - \frac{\phi_{s,1}}{\phi_{s,1}} \sin \left(\phi_{s,1} - \phi_{s,1} \right) \right] \\
\mu_{s,1} & = \mu_0 + \mu_{s,1} \cos(\omega t + \phi_{s,1}) \\
& = \frac{R^2}{8} \frac{\Delta p_{s,1}}{l} + \frac{1}{\omega} \frac{R^2}{\mu} \frac{M_s}{M_0} \cos \left[\omega t + \phi_{s,1} - \phi_{s,1} - 3\pi/2 \right]
\end{align*}
\]

これらの式は破壊結果と比較に用いる。

乱流の場合の \(\mu \) は次式

\[
\mu = \mu + \mu' = \mu_0 + \mu_{s,1} + \mu'
\]

と表すべきである (12,13)。しかししながら遷移域近傍の流れでは後ほど示すように 1 周期にわたって乱流になるとはかぎらない。そこで特に異常のないかぎり短時間平均を表す "-" は省略して \(\mu \) を \(\mu \) で表す。

4. 実験の概要

4.1 実験装置および測定方法

実験装置の概要図 1 に示す。脈動速度の時間平均成分はプローブで、振動成分

<table>
<thead>
<tr>
<th>Run</th>
<th>(\sqrt{\omega})</th>
<th>(R_{c})</th>
<th>(Re_{c})</th>
<th>(A_1)</th>
<th>記号</th>
<th>講域</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.93</td>
<td>0</td>
<td>1920</td>
<td>1.28</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>2</td>
<td>8.93</td>
<td>2.20</td>
<td>1530</td>
<td>0.855</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>3</td>
<td>8.93</td>
<td>4.80</td>
<td>1980</td>
<td>0.409</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>4</td>
<td>8.93</td>
<td>6.60</td>
<td>1650</td>
<td>0.175</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>5</td>
<td>8.93</td>
<td>23.00</td>
<td>1500</td>
<td>0.063</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>6</td>
<td>16.38</td>
<td>0</td>
<td>1080</td>
<td>1.43</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>7</td>
<td>16.38</td>
<td>8.30</td>
<td>11900</td>
<td>0.821</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>8</td>
<td>16.38</td>
<td>12.30</td>
<td>10900</td>
<td>0.708</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>9</td>
<td>16.38</td>
<td>14.40</td>
<td>10200</td>
<td>0.594</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>10</td>
<td>16.38</td>
<td>24.00</td>
<td>9520</td>
<td>1.81</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>11</td>
<td>16.38</td>
<td>10.90</td>
<td>19700</td>
<td>1.28</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>12</td>
<td>16.38</td>
<td>17.60</td>
<td>18600</td>
<td>1.28</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>13</td>
<td>16.38</td>
<td>24.00</td>
<td>18000</td>
<td>0.750</td>
<td>(1)</td>
<td>(1)</td>
</tr>
</tbody>
</table>
円管内脈動流れの乱流遷移に関する研究（第1報）

分はピストンで与えている。脈動周波数はギヤモータと歯車式減速機の組合せにより、脈動振幅はピストン行程を変えて変化させた。試験管路は長さ5m、内径50.4mm、厚さ5mmのかたわらの黄銅管である。速度は図1において管半径を17分割した各位置で熱線を用いて測定した。熱線出力は、回転円板と投光器を用いて発生させたタイムマークとともに、電磁オシログラフに同時記録した。各々は速度uをシンプソン法およびニュートン・ラッシュ法によって管断面平均して求めた。uとuはそれぞれ1周期あたり12倍の測定値を用いてフーリエ展開近似し、振幅と位相角を求めた。ところで助走区間であるが、本実験装置においては入口から測定位置までの距離xは2.73mであり、Re=2000に対してx/(R,D)=0.027、x/D=54となる。脈動流れの助走距離については十分明らかにされていないが、層流、乱流いずれの場合にも助走距離は定常の場合とそう大きく異ならないという説を尊重することにすれば、層流定常流れの助走距離の関係式x/(R,D)=0.02〜0.07を考慮して、本実験の測定位置は助走区間をすぎているとみてよいであろう。

なお本実験の周波数（f=0.300、1.026Hz）では、圧縮性の影響はみられなかった。

4-2 実験条件の設定 本実験条件の詳細を表1に示す。

これらの実験条件を設定するにあたり、大筋としては、諸説で述べたように大気の大気圧で実験される流

図2 脈動流れの速度波形
れ（\(\sqrt{\omega'}/17\)、瞬間レイノルズ数の最大値 \(R_{\text{max}}=7\,000\)、\(R_{\text{cr}}=1250\))を参照したが、細かい点については以下の事柄に留意した。

著者らは、先に時間平均レイノルズ数 \(R_{\text{cr}}\)が零となったときの脈動流れ（これを振動流れと呼称した）について乱流遷移に関する一連の実験を行い、速度波形を観察した(11)。その結果とHinoら(20)の結果をとりあわせ考え、脈動流れを \(\omega'\)と \(R_{\text{cr}}\)に関してつぎの五つの領域に分類し、その存在範囲を図示した(11)。

領域（I）：＜全位相で滑流＞、領域（II）：＜加速の初期に断面中央付近で顕著な速度変動が現れる＞、領域（III）：＜速度の大きい位相で速度変動が現れる＞、領域（IV）：＜変速域に高周波の重ね合わせ＞、領域（V）：＜変速域はもとより加速域にも高周波の重ね合わせ＞。

Neremら(19)の実験においては血液流れが、領域（I）：＜undisturbed flow＞、領域（II）：＜disturbed flow＞、領域（III）：＜highly disturbed flow＞の三つの形に分類できることを示しているが、同じことをKiserら(20)の実験においても観察される。Yellin(20)も円管内脈動流れを、Photo cellを用いた可視化の方法で調査し、つぎの三つの形に分類した。

領域（I）：＜laminar flow＞、領域（II）：＜turbulent flow＞、領域（III）：＜disturbed flow＞。

Neremら(19)の領域（I）、(II)、(III)はそれぞれYellin(20)の領域（I）、(II)、(III)に対応しているとみてよく、それらはそれぞれ著者らの提案した領域（I）、領域（II）、(III)、領域（IV）、(V)にも対応している。そこで以後三つに大別したこれらの領域をそれぞれ領域[I]、領域[II]、領域[III]で表すこととする。このことに着目して、上に示した三つの特性を基にした \(R_{\text{cr}}=0\)の振動流れを発生させておき、これに \(R_{\text{cr}}\)が一定の値を持つ流れを重ね合わせたとき、\(R_{\text{cr}}\)の増加とともに速度波形および速度分布がどのように変化していくかについて考察する。

これらを実行するには \(\omega'\)を一定に保ち、上記三つの形の流れ様式を実現させればよいが、本実験装置上の制約から \(\sqrt{\omega'}=16.48\)とする領域[1]の流れを実現させることはできなかった。そこで領域[1]については \(\sqrt{\omega'}=8.93\)としてこれを実現させるようにした。

5. 実験結果と考察

5.1 \(R_{\text{cr}}=0\)のとき、速度波形の全域に変動、乱れが現れない（層流の）場合 Run1～6の速度波形を図2(a)～(f)に、速度の振動成分の分布を図3(a),(b)、時間平均成分の分布を図4に示した。図5には、Run2～6の \(R_{\text{cr}}\)にほぼ等しいレイノルズ数を持つ定常流れの速度分布を示した。これらの速度波形を図2(b)～(f)にSteadyと付記して掲載してある。図2(a)の半径方向各位置の波形（これは同時測定したものではないが）を描くに際しては、重なりを防ぐため縦幅を少しずつずらせてある。なおオシログラフィーベースの付近速度は脈動流れと定常流れの場合どちらであっても、時間の尺度はすべて等しくしてある。また図2(b)の \(\omega'/(\pi/6)=4〜5\)付近で波形が上に凸の形をしているのは逆流である。一般に逆流が起こっていることは、表1と逆流の発生条件 \(A_1\geq1\)とを参照することによって判定できる。

Run1の最高速度は1m/s以下であり、速度の低いところでは十分線形化されているといえないと、実際の速度は図2(a)に示したように変動しているとみなしてよい。図3(a)において速度の振動成分は振幅、位相差ともともと(2)の層流理論解によく一致している。

Run2はRun1に \(R_{\text{cr}}=1200\)に相当する時間平均成分が加わった場合である。このとき最大レイノルズ数は約2730となるにもかかわらず、1周期にわ
円管内脈動流れの乱流遷移に関する研究（第1報）

たって層流である。脈動成分は振幅、位相差とも層流理論解によく合っているが、時間平均成分 \(u_{\text{rms}} \) は図 4 において放物線分布からいくぶんずれている。図 5 に示したように、これとほぼ等しいレイノルズ数の定常速度分布も同じような分布を示している。これは速度の小さいところでは自然対流や管壁の影響などが顕著に現れるためと考えられる。実際の \(u_{\text{rms}} \) は放物線分布をとるとみなしてよいであろう（21）。

Run 3 の場合、\(Re_{\text{st}}=2240 \) に等しいレイノルズ数を持つ定常流れの場合はパースティング現象が起こって速度波形に高周波の乱れが現れている。

ところが脈動流れの場合は、管中心部の速度の低い位相でわずかに速度変動がみられる程度で高周波の乱れは現れず、図 3 から明らかに振動成分は層流理論解にほぼ一致し、時間平均成分は、ここには示していないが、Patel-Head（22）が図示した分布および図 5 の定常流れの分布によく似た変化を示している。

パースティング現象に基づく高周波の流れは Run 4 ではじめて減速後期に現れる。このとき、\(Re_{\text{st}} \) は約 4300 である。また時間平均成分 \(u_{\text{rms}} \) は定常流れの分布にほぼ合っているが、振動成分の振幅は層流理論解も 1/7 乗分布と顕著に異なっている。Run 5, 6 のように \(Re_{\text{st}} \) がほぼ 10^4 以上になれば、速度の振動成分、時間平均成分とも定常流れの 1/7 乗分布に一致するようになっていわゆる乱流脈動解の形態が成立つようになる。著者がさきに乱流脈動解が成立する範囲を \(\omega/Re_{\text{st}}^{1/4} \leq 0.145 \) と定めた（23）。Run 5, 6 では、この値がそれぞれ 0.286, 0.206 となり、前の実験結果（24）にもほぼ一致している。

Run 6 の場合、\(A_t=0.064 \) と振動成分の割合が非常に小さいために、図 3 (b) の振動成分の測定値が多少ばらついている。

このような、\(Re_{\text{st}}=0 \) のときの流れが層流で、しかも \(Re_{\text{st}} \) が約 1500 （表 1 参照）と比較的小さい脈動流れの場合は、速度の脈動成分、時間平均成分の分布とも層流理論解に一致していたものが、\(Re_{\text{st}} \) の増加とともにずれはじめ、両成分とも、やがて 1/7 乗分布に漸近してゆく。

5-2 \(Re_{\text{st}}=0 \) のとき、脈動波形の波高断面速度変動が現れる場合

実験結果を 5-1 節の場合と同じ順序で図 6 に示す。図 6 (a) の波形は速度の大きい位相で速度変動がみられる。このとき最大瞬間レイノルズ数は 10 800 に達している。ところがこのような場合でも、脈動成分は図 7 に示したように振幅、位相差とも層流理論解によく合っている。

Run 8 では \(Re_{\text{st}}=8330 \)、最大瞬間レイノルズ数は約 20 200 にも達するが、速度変動は Run 7 の場合よりむしろ小さくなり、顕著な変動は逆流時の加速域でみられる程度となる。このときの速度の脈動成分は、当然層流理論解にほぼ一致することが予想されるが、実験結果からそのことがわかる。\(Re_{\text{st}}=8330 \) にはほぼ等しい定常流れの速度分布は、図 9 から明らかのように 1/7 乗分布をとる。ここで非常に興味ある現象が図 8 に示した時間平均成分の分布において観察される。

\(u_{\text{rms}}/u_{\text{rms},1} \) は放物線分布および 1/7 乗分布とともに異なり、全体にわたって平たんな分布形となっている。脈動成分は層流理論解によく一致しているのでから時間平均成分も層流理論解（放物線分布）に一致するべきであると考えるのが常識的と思われるが、明らかに相違しているという事実である。この原因については今のことところ定かでない。\(Re_{\text{st}}=8330 \) の脈動流れは大動脈内の血液流れのモデルに適しており、特に興味があると思われる。そこで \(Re_{\text{st}} \) を零に近い値から 8330 までい

図 4 時間平均成分

図 5 定常流れの速度分布
いくつか設定して速度波形を観察したところ高周波の乱れは観察されなかった。

Run 9 のように、減速域にパースティング現象に基づく高周波の乱れが観察されるようになっても、速度分布は Run 8 の場合とさほど異ならない。ところが Run 10 に示したように、減速域のほぼ全域にわたって高周波の乱れが現れると、振動成分の振幅は層流理論解と 1/7 乗分布の中間的な様相を示し、時間平均

図 6 脈動流れの速度波形

図 7 振動成分の振幅と位相

図 8 時間平均成分
成分の分布もいくぶん1/7乗分布に近くなる傾向がある。Run 11 では1周期にわたってくまなく高周波の乱れが現れるが、このとき振動成分の振幅、時間平均成分はともに1/7乗分布にはほぼ一致する。

5-3 \(R_{Re}=0\) のとき。速度波形の減速域に高周波の乱れが現われる場合 実験結果を前とまったく同様の順序で図10-13に示す。振動流れの減速域に高周波の乱れが現れると、振動成分の分布は層流理論のと著に異なる、層流理論と1/7乗分布の中間的な様相を示す。Run 13 はこの振動流れに \(R_{Re}=10,900\) の時間平均成分を重ね合わせた場合であるが、振動成分は \(R_{Re}\) の影響をほとんど受けず、時間平均成分の分布形は Run 8-10 の場合と同様1/7乗分布より幾分平たくなっている。Run 14 になってもこの傾向は同様である。このときの速度波形には非常に注目すべき顕著な傾向が現れる。すなわち加速域で流れに再層流化が起こっていることである。Run 8 の波形も参照すれば、1周期のうち逆流がわずかに存在すれば、それが流れを安定化させるのではないかと考えられる。

図9 定常流れの速度分布

(a) Run 12
(b) Run 13
(c) Run 14
(d) Run 15

（各Runの波形は上から順に \(r/R=0, 0.3, 0.6, 0.8, 0.95, 0.975\) において測定したものである）

図10 脈動流れの速度波形
Run 15になると速度分布は振動成分、時間平均成分とも1/7乗分布に適合するようになる。しかしながら、速度波形から明らかのように、加速の初期にバースティング現象に基づく高周波の乱れはみられない。このRun 15の瞬間レイノルズ数の最小値は約6000である。

定常流れでは場所的加速によって流れが再層流化されることが報告されている(1)。これと本実験結果を考慮合わせてみれば、40年前にSchultz-Grunow(26)が指摘した「時間的加速と場所的加速のアノラロジの成立」という問題が改めて想起される。

5.4 速度波形観察による流れの分類 円管内振動流れの場合と同様に、脈動流れに対しても流れを三つの領域に分類して、図14に示した。領域[1]は○印で、領域[II]は●印で、領域[III]は□印で示してある。破線はGilbrech-Combs(31)の求めたRe_{te}を示す。

6. 結 論

本研究で得られたおもな結論はつぎのとおりである。

(1) 時間平均レイノルズ数Re_{te}=0のとき、速度波形の全域に変動、乱れが現れない（層流）の場合。
(1) 速度波形：Re_{te}=1,200のとき、速度変動も高周波の乱れも現れず、流れは層流である。Re_{te}=2,240になると管中心部で減速後期から加速域にかけて中川ら(30)が平板上の振動境界層流れに関して報告した変動に類似した速度変動が観察される。バースティング現象に基づく高周波の乱れは、Re_{te}=4,890になって初めて減速域に現れ、Re_{te}=9,690になると1周期にわたって現れるようになる。

(ii) 速度分布：Re_{te}=0〜1,200で振動成分は層流理論解に一致しているが、Re_{te}=2,240を越えると層流理論解からずれはじめ、振幅は1/7乗分布へ漸近し、位相差は全広域全体におわたってほぼ零となる。すなわち乱流構定常流れが成るようになる。時間平均成分はRe_{te}と等しいレイノルズ数を持つ定常流れの速度分布にほぼ一致する。

(2) Re_{te}=0のとき、速度波形の高速域に速度変
運動が現れる場合。

（1）速度波形: \(R_{sa} \leq 8 \times 330 \) の時間平均成分が重ね合わされたとき, \(R_{st}=0 \) のとき現れていた速度変動が増幅されていない。むしろ減少する。高周波の乱れは, \(R_{sa} \approx 12 \times 300 \) で減速度現れ \(R_{sa} \approx 24 \times 200 \) で全位相にわたって現れる。

（ii）速度分布: \(R_{sa}=0 \sim 8 \times 330 \) で振動成分は流層理論解よく適合するが, 時間平均成分は反射線分布, 1/7 車分布のいずれもも合わず, 管断面にわたって平たんな分布を示す。高周波の乱れが発生すると振動成分は流層理論解から離れ, \(R_{sa} \) の増加とともに振幅は1/7車分布へ, 位相差は零へ漸近する。時間平均成分も \(R_{sa} \) の増加に従って1/7車分布へ近づく。

（3）\(R_{sa}=0 \) のとき, 速度波形の減速度現れた高周波の乱れが現れる場合。

（1）速度波形: 高周波の乱れはすべての Run によつて現れるが, 減速度現れた高周波の乱れは加速現れて消減し, 流れは再層流化される倾向が著明になる。これについてはの Schultz-Grunow(2) が示唆した「流体の加速と場所的加速のアナロジーの成立」を示唆している。

（ii）速度分布: \(R_{sa}=0 \) の振動成分は流層波流解に適合しない。この流れに \(R_{sa} \approx 10 \times 300 \) の時間平均成分に重ね合わされても振動成分は \(R_{sa}=0 \) の場合ほとんど変わらず, 時間平均成分は1/7車分布よりも平たんな分布を示す。\(R_{sa} \) の増加とともに振動成分, 時間平均成分とも1/7車分布へ近づく。

（4）速度波形観察から流れは三つの領域に分類でき, これを図示で示した。

【質問】 植柄 隆彦（慶應義塾大学工学部）

（1）ピストンのしごりが管内の速度分布に与える影響はどのように除去されたか。すなわち, その装置によって正しい正弦波が得られているか。

（2）圧力こう配式（1）のように変動させた場合の変化と図1のようにピストンで速度変動させた場合とでは解の形が異なると思う。実験結果の比較に式（2）, (3) を用いてもやいか。

（3）音響の観測に対する速度振幅比 \(A_i \) はどんな効果があるか。

【回答】（1）ピストンのしごりの形状は, 図面ではわからないが, インパウス状に製作している。ねたピストン駆動部などによって生じる機械的振動が, 試験管路部へ伝わるのを防ぐため, ビストン部分のしごり部と試験管路部は, 防振用ゴムを用いて接続している。

【討論】 『正弦波によって』とは流量, すなわち管断面平均速度 \(u_m \) が正弦波によってどの程度近似されているのかという意味で解析してお答えする。

ピストンを用いた装置では, \(u_m \) には原理的に二次以上の高調波成分が現れる。ただしこ実験の場合, ピストン振幅は最大 \(60 \times 300 \) を用いたので, これと重複する音が \(50 \times 70 \) の音波々に同調した下流に設けてある。以上のことがから総合し
NII-Electronic Library Service

1024 近江 宗一, 井口 学, 阪部 育生

で、高調波成分は無視できるものと考えられる。実
実，ωωωω 2の測定値は，ここには示さがないが，正弦波に
して十分満足できる程度に近似された。これについ
ての詳細は，つぎの機会にご報告したいと考えてい
る。

（2）圧力負荷変動させた場合。管縫断面平均
速度を変化させた場合では、もちろん解の形は異
なる（付1）。しかしながら，本報で示したように管内
心軸上の速度を基準にとって，理論速度を整理す
と。いずれの場合の解を用いても同鶏曲線が得られ
る。

（3）ここでは管中速度を基準にとっておるの
で，ご質問の位相遅れとは，これに対して半径位置
の速度ωωωω 2が，どのような位相遅れを伴って変動している
かという意味に解釈しております。

本報で示した三つの基本的な振動流れに，定常流
れが重ね合わせてできる振動流れに対して，その時
間平均成分の割合を大きくしてゆくと，このことは
Aωωωω を小さくすることに対応するが，乱流波値速度
が成立するにゆえに，管縫断面全体にわかった速
度が同位相で変動するようになる。図3，7，11 に
おいて，振動流れのいずれの場合にも，管壁側の速度
の相は管壁内の相よりも後が進んでいる。したがっ
て，Aωωωω 2の減少は，本実験の場合，位相遅れを小さく
させる効果があるといえるが，Aωωωω 2と位相遅れとの定義
的関係は，今ところ明確に示すことができない。

【質問】山根隆一郎（東京工業大学工学部）

平均流が0の場合の流動状態で流れを大別し，それ
ぞれに対して平均流の流速を変化させて流動状態の
変化を識別する方法をとっておられるが，これには振動
流れを基本的には平均成分と振動成分の重ね合わせと
して考えていることになると思われる。本実験ではωωωω の
値が限られているため，このような方法でも一応整
理できるかと思われるが，現実には単純な重ね合わせで
なく，非線形効果が現れてくることが考えられ，例
えば Run 4，10，14 はそれぞれ別の分類に属して
いるにもかかわらず，類似の波形，速度分布を示して
いる。全体を統一的に整理できるパラメータなどにつ
きお考えがあればお聞かせを願いたい。

【回答】本論文では，振動流れに定常流れを重ね
合わせるという表現をとったが，これは，脈動流を発
生させる装置と方法について説明するために用いたも
のであるが，ご理解願いたい。したがって，脈動流れの
各位相における速度などの物理量は，つねに両者の単
純な重ね合わせとなるとは限りない。このことは，図
2，6，10 の定常流れ，振動流れ，脈動流れの速度
波形を調べいただくと容易に分かる。

さて，ωωωω を16.48，8.93 に限定したのは論文で
述べた理由によるが，振動流れとして基本的な三つの
形の流れをとりあげ，これに重ね合わせる定常流れの
割合を大きくして，その結果 Rωωωω を増加させたのは
つぎの理由による。

ここで示した三つの基本的な振動流れは，けっして
ωωωω =16.48，8.93 の場合に特有な流れではない。著
者の実験も含めて，従来の振動流れに関する実験結
果によると，ωωωω ≤70 では（これ以上のωωωω の
値に対しては実験結果がないのであらかじめ），振
動流れはここ三つの形に分類できる。したがっ
て，問題解明の方向として，ωωωω，Rωωωω 1を一定とし
て，Rωωωω を変化させて脈動流れの特性を解明しようとす
ることは，一般性を失うものではなく，Rωωωω の増加に
よって，速度波形あるいは速度分布の変化する様相
は，ここで示したもので定義的に大きく異なるもので
はないと考える。

つぎに，本研究の最終目標は，脈動流れの臨界レイ
ノルズ数がωωωω，Aωωωω 2とどのような関係にあるか，また
乱れは1周期のうちどの相位での流れに関与，消減するか，
さらに層流，乱流の位相別の流れはどのように関係的
によって記述されるかを解明することにある。しかし
現在のところ，その人工を指摘する程度であっ
て，例えば，ご指摘の Run 4，10，14 には，再層
流化の現象がみられる程度で，それ以上のことから
に関しては，明確な判断はとくではない。したがって，
全体を統一的に整理できるパラメータについて，無
序への近道ではないかと考えている。逆流現れると脈
動流れの特性は脈動流れのそれぞれと類似なものとな
うである。これについては，つぎの機会にご報告した
いと考えている。逆流が現れない場合の流れの特性
は，もっと複雑なものになるようである。

【質問】立花 賢一（福井大学工学部）

貴論文では，速度の“変動”と“乱れ”を使いわけて
るようであるが【例えば，1018ページ脈動流れの領域
分類（II）（Ⅲ）…変動領域，領域（IV），（V）…
高周波の乱れ：1018ページから1021ページの3節…
変動・乱れ，5-2節…変動，5-3節…高周波の乱れ】
どのような相違があるのか。記述で“変動”ないしは
“乱れ”に統一し，定義的な評価はできないものか。

【回答】非定常流れの乱流遷移を実験的に取扱っ
円管内脈動流れの乱流遷移に関する研究（第1報）

た研究の中で、速度波形に注目して流れを分類した先駆的なものとして、円管内脈動流れに着目したHinoらの報告（付2）があげられる。脈動流れの特性は、accelerationとω'によって規定されるわけであるが、彼らの実験においては、これらの範囲が非常に限られていた。著者らは、広範囲のaccelerationとω'について乱流遷移、摩擦損失などをさらに詳しく調べ、その成果を報告した。その際、Hinoらが用いた「速度変動」、「高週波の乱れ」という二つの用語をそのまま踏襲して、振動流れを、速度波形に関して五つの形に分類した。ここで著者らは、パースティング現象に基づいて現れたじょう乱と考えられるものを、これの周波数範囲は明確にできないが、「高周波の乱れ」とし、これ以外のなんらかの原因により、上記乱れの前段階で現れと考えられるじょう乱を「速度変動」とする見解に基づいて、これらの用語を用いてきた。本論文でも同様である。

ところが、このような分類はあくまで定性的なものであるから、ご指摘のように、これらの用語を統一し、「速度変動」と「高周波の乱れ」を定量的に評価できれば、なおよいと思う。この方面の実験的研究に関しては、医学・生理学の分野で、大動脈の内腔さく部あるいはそのモデルを通して脈動流れの乱流遷移に着目して、流れの特性を統計的にはあくしようとする試みがいくつかなされているが（付3）～（付9）。まだ初步的な段階であるが、統計的見解を得るにはほど遠い現状である。また非定常流れの「速度変動」とか「高周波の乱れ」を取扱う場合の基礎となる統計理論についても、十分整備されているとはいきり難く、議論の余地が残されているようである（付10）。したがって、この問題は、これらの大きな課題であるといえる。

（付2）日野・ほか2名、土木学会論文報告集、237（昭50）、75。
（付3）Nerem, R.M. and Seed, W.A., Circulation Res., 6 (1972), 122。
（付4）Giddens, D.P., ほか2名、Circulation Res., 29-1 (1976), 112。
（付5）Clark, C., J. Biomechanics, 9 (1976), 677。
（付6）Khalifa, A.M.A. and Giddens, D.P., J. Biomechanics, 11 (1978), 129。
（付7）Casanova, R.A. and Giddens, D.P., J. Biomechanics, 11 (1978), 441。
（付8）Yongchesecon, W. and Young, D.F., J. Biomechanics, 12 (1979), 185。
（付9）Cox, J.T., ほか2名、Trans. ASME, J. Biomech. Eng., 101-2 (1979), 141。
（付10）日野・竹内、東京工業大学土木工学科研究報告、No.18 (1975), 57。