フロス流膜ならびに環状流への遷移域における
流動機構に関する研究

（第1報、液体塊について）

世古口 聡彦**、森川 健悟**、高橋 健治
Kotohiko SEKOGUCHI、Kengo MORIKAWA、Kenji TAKAHASHI
武石 雅之*、深野 徹**
Masayuki TAKEISHI、Tohru FUJANO

Key Words: Multiphase Flow, Froth Flow, Annular Flow, Liquid Lump, Liquid Holdup, Computer-Aided-Processing, Moving Average Method

1. 緒 言

垂直上昇気液二相流の一つの流動様式として分類されているフロス流は、蒸気発生器をはじめ工業上の様々な熱エネルギー輸送システム中での気泡と熱水の二相流として出現しており、装置の設計ならびに運転に対して深く関係している。それにかかわらず、その流動機構については他の流動様式に比して不明確な点がきわめて多い。これは、液相の空間分布の複雑さに加えて、流速の大幅な変化があるためである。しかし、フロス流を特徴付けるものに焦点を絞ると、最も特徴的な点として、液体スラグもしくは液体スラグ相当の液体塊の存在である。

著者らはこの観点に基づいて、液相の空間分布測定およびデータ処理に新しい方法の導入を試み、これによって得た液体塊の挙動、フロス流から環状流への遷移に関する知見をここに報告する。

2. 記 号

\[\begin{align*}
D & : \text{管内径} \quad \text{m} \\
H_L & : \text{液体スラグの等価高さ} \quad \text{mm} \\
H_{Lm} & : \text{液体スラグの等価平均高さ} \quad \text{mm} \\
j_o, j_1 & : \text{みかけの空気および水の各速度} \quad \text{m/s} \\
L_o, L_i & : \text{気体スラグおよび液体塊の各長さ} \quad \text{m} \\
N & : \text{液体塊の通過ひん度} \quad \text{Hz} \\
N_L & : \text{液体スラグの通過ひん度} \quad \text{Hz} \\
N_{Ld} & : N_L \cdot \text{じょう乱波のひん度を加えた液体塊の通過ひん度} \quad \text{Hz} \\
\end{align*} \]

* 昭和55年11月13日関西支部第1回シンポジウムにおいて講演、原稿受付 昭和56年10月26日。
** 正員、九州大学工学部（☎812 福岡市東区築陽6-10-1）。
*** 正員、パブリック日立（☎733 八丈市芝町6-9）。
† 学生員、九州大学工学部。
‡ 准員、九州大学工学部。

3. 実験装置と実験方法

図1は実験装置の概要を示したものである。供試管は透明なアクリル製円管で垂直に設置されており、内径は26 mmである。供試流体は空気と蒸留水で、それぞれ所定の流量に設定され、気水混合部（multi-jet方式）で気淵測定部に導入する。断面平均ビード率の測定

![実験装置概要図](image-url)
値の測定は定電流法（\(I_0\)）によって行い、気水混合部から約4 m下流に測定位置を設定した。すなわち、軸間距離が5 mmの一対の円環（管内径と同一の内径を有している）で構成されたプローブを2組（プローブ間距離は100 mm）に用いて、断面平均ホールドアップに対応する電圧信号を測定し、増幅器を通じてデータレコーダに収録した。図2に定電流法の概要を示す。

実験範囲は気水のみかけの流速で、\(v_0=1〜30\) m/s、\(v_0=0.1〜1.5\) m/sであり、流動様式としてはフロス流および渦流流への遷移域である。

4. データ処理および解析方法

上述のような方法によって得られた電圧信号を利用して、液体塊に関する種々の特性値（液体塊の速度、通過ひん度、平均波高など）を求めた。その決定法を以下に述べる。

4.1 液体塊速度 \(v_0\) の決定

液体塊速度 \(v_0\) は二組のプローブから得られる電圧信号を相関計を用いて相互関を調べることによって決定した。ここで求めた液体塊速度 \(v_0\) は液体スラグおよび液体スラグ相当の液体塊、あるいはぶら波が有する速度の時間平均的なものである。

4.2 電算機処理および解析波形の解析法

下流側の電極から得られた電圧信号をA-D変換し、電算機を用いて処理を行った。A-D変換時のサンプリング周波数はサンプリングしたデータが原信号の波形の特徴を失うことなく再現し得る周波数として1000 Hzとした。また、サンプリング時間は液体塊の通過個数がサンプリング時間内に最低100個以上含まれることと、100秒間のスライスカウンタによる液体の存在時間率の分析結果と電算機処理の結果との一致がみられるよう、三分の条件から60秒とした。

A-D変換後の信号は電算機を用いて統計処理した。しかし、A-D変換後の信号には液体塊の通過に伴う波形変動だけでなく、気体スラグ部の波あるいは、液体スラグ部の気泡を含んだ信号が同時に含まれている。従って、液体塊の特性値（液体塊の通過ひん度、平均波高など）を的確に抽出するために、電算機による分析に先立って移動平均法を用いて原波形を平滑化した。

原波形を平滑化したボイド変化波形（整形波形）と原波形の代表例を図3に、特性値の算出方法を図4に示す。これらの図における整形波形の整形は、5点平均をなす値として4 m/s間の平均を8回繰返したものである。図から推察できるように、この移動平均によって液体塊はもちろん、じょう乱波が消失するおそれはない。整形波形から電算機によって求められた液体塊の通過ひん度の値は、オシログラフ上の原波形内の液体域を視波によって逐一判定し、その通過ひん度を数えた結果と比較して一致していることを18個の実験例について確認した。

5点移動平均の回数は、後出の図6に示すように、4回と8回とで顕著な差はなく、特に液体塊に対応するN曲線の平たん部（リップルのような多様な波高を

1 Terminal
2 Conductance detector
3 Amplifier
4 DC Constant current power supply
5 Data recorder
6 Synchroscope
7 Photocorder
8 Spectrum correlation analyzer

図2 定電流法概要

A〜C：原波形、A〜C：整形波形
図3 ボイド率の時間変動例
（原波形と整形波形の比較）
フロス流流ならびに環状流への遷移現象における流動機構に関する研究（第1報）

図4 (a), (b)の上図と下図はそれぞれNと液体の存在時間率γを壁からの距離yで示したものである。

ここで、γはポイド率を二次の関係が成り立つものと

\[a \approx (1 - y/R)^2 \]

上式でrとRは管中心からの任意の半径（すなわち、r = R - y）と管半径であり、液相中には気泡は存在しないものとしている。実際には、波がある場合か無波状態において、図4において求められるあるyに対するN値、あるいはγ値は、壁からの距離がyよりもいく分大きな位置に対する値を与えていることになる。これは、本研究で求められたパラメータの決定に用いる方法を適用する際の基準である。環状流の波膜厚さについて考えると、後述のようにこれによる相違よりもむしろ測定誤差が問題になる。液体スラグ

の場合には、管中心に気泡を含んだ液相が存在していても、液相がなくないという結果を示すことが不適当であるが、フロス流での液体スラグ内のポイド率は20%程度であることを勘案し、それが一様に分布していると仮定すれば、次式で修正した壁からの距離yを求めることができる。

\[y' = 1 - \frac{1}{2}(1 - y/R)^2 - 0.25 \]

以下のデータでは、yについて行い、必要が生じた時には上式で換算する。という方針をとる。

本研究で得られたN曲線、次の特徴を有する二つの形、図4 (a) (b) とに分類することができる。すなわち、図4 (a)の場合は、形が形の平ら部の波高を液体スラグのひん度N_L、(b)の場合はこれではあるが、形が形の平ら部にみられる二つの平たん部の左側をL_Lに定義する波のひん度が加わっていると考え、これをN_Lと定義する。図にはその他の液体の特异性の算出基準も示している。すなわち、液体スラグの等価波高H_LはN_Lを示す点のy、η_LはN_Lを示す点のη、液体スラグの等価波高H_Lは0.5η_Lのy、基底波膜厚さt_mは原波形のη曲線におけるピーク（二つあるときは左側に対する値）、最小波膜厚さt_mはη=0.99の点のyをとる。これらの波膜厚さL_Lおよび気体スラグ長さL_Lはそれぞれ、

\[L_L = u_L t_m / N_L \]

図4 主要パラメータの決定法
5. 実験結果と考察

5.1 液体塊の速度 う
図5はみかけの気泡の合計流速（う+以习近平）に対して、相互相関係数の遅れ時間に基づいて決定した液体塊の速度 うの挙動を示したもので、流動様式を考慮上で多くの示唆を与えており、その特徴を以下に要約する。

うが0.7m/s以下とそれ以上では（う+以习近平）の増加に対するうの変化の傾向が異なっている。前者では、
（a）Nicklinの式によりほぼ一致した領域、
（b）Nicklinの式によるう値を下まわり、増加の傾向が緩やかになっている領域。

図6 液体塊の通過ひん度Nと液体の存在時間率γの代表例（その1）
(c) \(u_L \) の極大値から減少傾向を示す領域。
(d) \(u_L \) の極小値から再び増加に転ずる領域。

の四つに分類される。しかし、後者の \(j_f \) が 0.8 m/s 以上の場合は、(c) の領域の存在が不明確である。

(a) の領域は、視察によってもスラッグ流体の様相を示す流れであることが確認されている。(b)および
(c) の領域の出現する原因については次のように推察
される。\(j_f \) が大きくなるにつれて液体塊を気体スラッグが貫通するひん度が増え、気体スラッグが貫通して空
となった液体塊はその速度が著しく減少する。つまり、
中実の液体スラッグが貫通する大きな速度と中空の液体塊
が貫する小さな速度とが検出されることになり、多数
の液体塊の相互関係から決定した \(u_L \) はこれらの平均
的な値となっているために、中空の液体塊の出現ひん
度の増加に伴い、\(u_L \) は減少傾向を示すようになるも
のと考えられる。(d) の領域は環状流領域と考えられ
既報のデータと \(u_L \) は近い値を示している。

ただし、\(j_f \) が 0.8 m/s より大きい場合、(d) の領域
の様相はもう乱波領域の環状流というよりはむし
ろ、wispy annular flow の範囲に属すると考えるもの
べきであろう。これまで、wispy annular flow につい
ては視察による相分布の特徴を定性的に論じているだ
けであるが、\(u_L \) 対 \(j_f \) 曲線上の特徴から定量判
別することの可能性を指摘できる。

5.2 液体塊の通過ひん度 \(N \) および液体の存在時間率 \(\eta \) 壁からの距離 \(y \) に対する \(N \) と \(\eta \) の曲線が

--- 原波形 --- 5 点移動平均 4 回採用し --- 5 点移動平均 8 回採用し

図 6 液体塊の通過ひん度 \(N \) と液体の存在時間率 \(\eta \) の代表例（その 2）
気水流量の組合せに対してどのように相関するかを系統的に示すと図6のようになる。図には原波形と整形波形（5点移動平均8回繰返し）に対するものがそれぞれ示されているが、ここでは特にN曲線に対し原波形の5点移動平均を4回繰返しした結果を示されている。これらのN値を比較して明らかに原波形のN値よりも4回平均のN値が大幅に減少し、8回平均の結果を4回のそれとは大差がない。しかし、局所的にはほとんど変わっていない部分がみられる。このことは、数回の移動平均によって消失する部分は小さな液体塊もしくは波の通過ひん度を意味している。他方、変化を受けにくい部分は、そのyの位置には軸方向に比較的大きな液体塊が存在していて、数回の平均化では通過ひん度はほとんど影響を受けないことを示唆している。すなわち、図6は本研究で試みた液体スラグもしくは液体塊と、小さな波との選別方法が、スラグ流領域に近い流れほど、複雑な相分布を有するフロス流および環状流への選別域の流れに対しても広く有効であることを示している。よって、N曲線を詳細に吟味することによって、液体スラグもしくはこれに相当する液体塊と、環状流領域のよう乱波に相当した液体塊（j_gの増加に伴って最終的にはよう乱波になる）に対するN値を見いだすことも可能になる（図4の説明参照）。

なお、図6から原波形に対するN曲線はスラグ流に近付くほど双峰形分布を呈するようになっていることがわかる。これは、スラグ流ではその静圧変動のスペクトル密度が周波数に対して双峰形となり、これがフロス流から環状流へ移行するに従って単一峰に変化すること17と類似した性質であることは非常に興味深い。また、Jonesらもボイド率の大きさとそのひん度の分布曲線について類似の性質のあることを指摘している18。以上の経過から、当然、N曲線における双峰性の程度をスラグ的な流れから環状流への選別の判定の目安となることは考えられるが、実際にでも、これ以外のパラメータにみられる特徴とも合わせて、幅広く吟味することが最も重要であろう。

さらに、平均化によってN曲線が著しく変化する場合でも、N曲線はほとんど影響を受けない。このこととはN曲線上で消失した波は体積的には無視できる程度に小さいものであることを裏付けるものである。

5-3 液体塊に関する種々のパラメータ 図7は液体塊の性質を把握するために、j_gに対してH_l, H_s, H_m, t_m, L_s, L_lおよびη_lの諸数値を本実験データの中から、五つのj_gについて抜粋して示したものである。特徴的な諸点について以下に要約する。

5-3-1 液体塊のひん度N_lおよびじょう乱波のひ

图 7 液体塊の種々のパラメータの代表値（その1）
段N_{ed}

（1）各j_eにおいて、N_eがほぼ一定の領域でj_eが1〜10 m/sの間で存在している。一つのj_eに対してN_e値はj_eとともに増加している。

（2）j_eが比較の小さな範囲（j_e<0.7 m/s）では、j_eの増加に伴うN_eの減少がきわめて急である。

（3）N_eとN_{ed}の分歧点はu_eがピークをもつ点よりもj_eが小さい所にある。

（4）N_{ed}の増加の傾向はj_eによらず、ほぼ同様である。

特に、液体域の大きさを知る指標と考えられるH_lまたはH_{lm}がj_eの増加に対してほとんど変化しないのに対して、N_eがあるj_eを境として急激に減少することは注目すべきである。N_eが急減するということは、フロス流を特徴付ける液体域が消減することであり、環状流への移行開始点を意味するといえよう。しかし、後出の図8にみられるように、従来の観察によるフロス流から環状流への境界線と比べると、j_eの小さい値で移流が起こっていることになる。これは、出現ひん度が低下したのはいえども完全に消失していない大きな液体域がと早き通過するために、観察による境界線はj_eが大きい側に定められる傾向にあるものと考えられる。

5-3-2 基底液膜相当厚さt_{f0} j_eが10 m/s以下
図8 視察による流動様式と液体塊に関するパラメータより決定した流動機構の遷移線図

ではじめの大小に関係なく、じゅうれんに対しては動かず変化するが、その変化の幅は小さい。しかし、じゅーれんの大小によってほとんど変化していないのは興味深い。

しかし、じゅうれんが10 m/s以上になると、じゅいの小さい領域（0.2 m/s以下）ではじゅいに逆比例して減少し、典型的な環状流での性質を呈する。

このじゅうれんが減少し始める点は、先に述べたじゅいが極小点をもった点とはほぼ一致しており、逆にじゅいの極点

が環状流（特にじゅい乱波領域）への遷移の一つの指標となり得ることを示唆している。他方、じゅいの大きい

領域では、じゅうれんの減少傾向がじゅいの増加に伴い緩やかになるという特徴がみられる。

5.3.3 液体塊の長さLzおよび気体スラグの長さもしくは液体塊の間隔Lc Lzはじゅうれんが小さい領域で

じゅうれんが変化しても一定であり、この傾向はじゅいの傾向と一致している。また、じゅうれんの増加に伴い、じゅいの小さい方からより早く減少する傾向がある。

Lcはじゅうれんの増加に伴い単調増加の傾向を呈する。じゅいの増加に対してはじゅい=0.5 m/s程度まではじゅいとともに減少するが、その変化はじゅうれんの範囲によって異なる。

いま、じゅい=1.5 m/s、じゅうれん=20 m/sを例にとると、Lcは約3 m、Lzは約0.15 m、じゅいが約3 Hz、じゅうれんは約8 Hzとなり、じゅい乱波領域の流れの性質（例えれば、じゅい=0.1 m/s、じゅうれん=20 m/sに対して、Lc=100 m、Lz=0 m、じゅい=0.02 Hz、じゅうれん=6 Hz）と比べて相当異質の流れと考えられる。

5.4 液体塊の特性値の挙動からみたフロス流から環状流域への流動形態の分類 図8は視察に

よって得た流動様式の境界（太い実線）の図に上に、液体塊に関する特性値の特徴から流動機構の遷移を想定

して引いた線を示す。また同時に、Jonesらが液体

スラグの消減を前提として求めたスラグ流-環状流の

遷移線をも示した。

さて、図中の①から⑥の曲線は、

①：Lzがほぼ一定の值から減少し始める点、

②：液体塊の通過ひん度が液体スラグのじゅうれん

乱波のじゅうれんを含む始まる点、

③：じゅいが急激に減少し始める点、

④：じゅいの極大点、

⑤：じゅいの極小点、

をそれぞれ示したものである。

以上を総合して、フロス流の変化の兆候が①ならび

に②で検知され、環状流への移行が③ならびに④で明

確に始まる、⑤に至って環状流（特にじゅい乱波の

出現）に到達したと判断することができる。これに対

して、ポイントで発現する曲線でもって決定した

Ronesらのものは、液体スラグもしくはそれに相当す

る液体塊の消減を正しく評価しているとはいえ難く、

これが何に起因しているかはわからない、本実験の供

試流路が円管であるのに対して、Ronesらのは5.0

mm×63.5 mmの長方形ダクトであったことによる

とすれば、今後、流路形状と流動形態の遷移については

いっそうの注意を必要とするかも知れない。

6. 結 論

垂直上昇空気-水二相流におけるフロス流流ならびに環状流への遷移域の流動機構に関与する重要因子の一

つとして液体スラグもしくはそれに相当する液体塊の

存在に着目し、その特性値（速度、通過ひん度、平均波

高など）の抽出方法について検討を加えた。さらに、液

体塊の特性値の挙動について評価するとともにこれら

とフロス流から環状流への遷移との関連について検討

を行った。結果の主要事項は以下のとおりである。

（1）フロス流を特徴付ける液体塊に関する特

性値の抽出を迅速かつ的確に行うために、定電流方式

によって検出されたホールドアップの出力信号の波形

をあらかじめ整調し、これに基づいて液相の断面内通

過ひん度分布を決定する方法を導入し、これらのデー

タ処理プロセスに電算機を有効に利用しようすることを

示した。

（2）フロス流から環状流への遷移域において、液

体塊速度じゅいがじゅうこととし0.7 m/sで極大

および極小値を有することが判明した。特にじゅいが極

大値を有する点を分歧点として、液体塊の通過ひん度
および長さが一定値から減少し始める。このことは、フロス流の流動機構の推移を考える上での重要な示唆を与えるものと思われる。すなわち、k_D の増加に伴い、液体塊の速度も大きくなる一方において、気体スラグによって貫通された比較的小さな速度を有する液体塊の出現がみられ、その発生ひん度が次第に増加していく、という遷移過程が予測される。

（3） 上記の第（２）項をはじめ液体塊の特性値が示す挙動がフロス流から環状流への遷移を判別するパラメータとなり得ることが明らかとなった。すなわち、各特性値の挙動を吟味することによってフロス流から環状流への遷移過程がより細かく分類できた。

終わりに、本研究は昭和 55 年度特定研究（505012）によるものであることを、さらに計算処理に際し九州大学中央計数施設を利用したことを明記し謝意を表する。

文 献

（1） 深野、九州大学学位論文、（昭 46）、45。
（3） 世古口・ほか 4 名, 機論, 39-317（昭 48）、313。
（4） 世古口, 伝熱工学の進歩, （昭 48）、賢賢堂。
（5） Jones, O. C. and Zuber, N., Int. J. Multiphase Flow, 2-3 (1975), 273。