潜熱蓄熱の伝熱に関する研究
(第3報、密なプレートフィンを有する蓄熱装置における自然対流の影響)

斎藤 彬夫**
長尾保伸一郎***

字宮義郎**
片山功蔵**

Akihisa SAITO
Shin-ichiro NAGAKUBO

Yoshio UTAKA
Kozo KATAYAMA

Key Words: Thermal Conduction, Latent Heat, Numerical Analysis, Convective Heat Transfer, Thermal Energy Storage

1. 緒言

著者らは、太陽熱を利用する空調や発電システムなどに有用な潜熱蓄熱装置の研究を行ってきた。
第1報では、ナフタリンを蓄熱材とした水平パルセル形蓄熱装置について蓄熱時の熱流束の測定、数値解析結果との比較検討を行い、蓄熱時（蓄熱材の融解）において自然対流が熱流束に大きな影響を及ぼすこと、また、放熱時（蓄熱材の凝固）においては、液相域の自然対流を無視した熱伝導が実験結果とよく一致することを確かめた。これらの研究により、蓄熱装置の性能向上のための問題点として、蓄熱時や放熱時の熱流束は平均値が低く、凝固相の増加にともなって熱流束の減少が著しいことが挙げられた。

第2報では、放熱時の熱流束を一定に近い値に保つための対策として、蓄熱材中に伝熱面をわずかな隔間をもった金属板列を配置する平板形潜熱蓄熱装置を考案し、実験によりその性能を確かめた。また、数値計算により、各種の無次元パラメータの伝熱特性に与える影響を考察した。

蓄熱装置の望ましい性能の一つとして、放熱時に一定割合の冷熱を生じ、蓄熱時には速やかに蓄熱が終了することが挙げられるが、本報では、蓄熱を速やかに行う（蓄熱時の熱流束を高める）ための蓄熱装置内部構造に焦点を合わせ、伝熱面の蓄熱材側に金属板フィンをとりつけの場合の特性を性能向上について検討した。例えば、フィンの数を増していくと、フィン効果による伝熱促進期が期待できる一方、自然対流による伝熱促進効果が次第に妨げられていく。本論文は、鉛直な板フィンが伝熱面に比較的密にとりつけられた蓄熱装置について、フィン効果と自然対流による伝熱促進効果が最も有効な相乗効果を発揮できるための各種無次元数の組合せを実験と数値計算により明らかにするものである。

なお、過去にこのような最適化問題を扱った研究は見当たらない。

記号

\(\alpha \): 液相部の見かけの伝導率 \(\text{m}^2/\text{s} \)
\(C \): 液相部の見かけの比熱 \(\text{J/(kg\cdotK)} \)
\(D \): 蓄熱材の厚さ \(\text{m} \)
\(g \): 重力の加速度 \(\text{m/s}^2 \)
\(L \): 融解潜熱 \(\text{J/kg} \)
\(n \): 固液相界面上を通り、界面に垂直な方向の座標 \(\text{m} \)
\(p \): 静圧 \(\text{Pa} \)
\(q \): 伝熱面平均熱流束 \(\text{W/m}^2 \)
\(q \): 時間平均 \(\text{W/m}^2 \)
\(H \): 伝熱面高さ \(\text{m} \)

\(s \): 軸上の固液相界面上の座標 \(\text{m} \)
\(T \): 温度 \(\text{℃} \)

\(\Delta T = T_a - T_w \text{℃} \)

\(t \): 時間 \(\text{s} \)

\(\Delta t \): 時間の差分 \(\text{s} \)

\(\mu \): x方向の速度 \(\text{m/s} \)

\(v \): y方向の速度 \(\text{m/s} \)

\(w \): フィン間距離 \(\text{m} \)

\(x, y, z \): 座標系 \(\text{m} \)

\(\beta \): 体膨張率 \(\text{K}^{-1} \)

\(\varepsilon \): フィンの蓄熱材に占める体積割合

\(\lambda \): 液相部の見かけの熱伝導率 \(\text{W/(m}\cdot\text{K}) \)

* 昭和59年3月22日 関西支部第59期年会講演会において論文講演として講演、原稿受付 昭和58年10月22日。
** 正員、東京工業大学（#152 東京都目黒区大岡山2-12-1）。
*** 副員、東京工業大学大学院。
2. 解析

2.1 基礎式と無次元パラメータ

蓄熱材厚さを D, 伝熱面高さを H, フィン間距離を w とするとき, そのまわりにフィンの間隔を、蓄熱材は図 1(a)のように融解していく。蓄熱材伝熱面全体では、図 1(a)が z 方向に縦ねられ三次元温度場となるが、第 2 章と同様にフィン間距離が小さく流れがゆるやかな場合、フィンと蓄熱材温度の方向の温度差は小さいと考えられるので、xy 平面内の二次元問題に近似して解析を行う。すなわち、温度および速度は z 方向に一定とし、蓄熱材とフィン材料を組合せた見かけの熱物性値を有する物質が図 1(b)のような融解をすると考える。蓄熱材とフィンは z に垂直な方向に並列に配置されているので、図 1(b)の物質の見かけの熱伝導率および比熱は、フィンの占める体積割合を ε とすると,

$$\lambda = \lambda_{f} + \varepsilon \rho c_{p} \frac{V}{D}$$

$$C = \frac{C_{m} \rho c_{p} \varepsilon + C_{p} \rho c_{p} \varepsilon (1 - \varepsilon)}{\rho c_{p} \varepsilon + C_{p} (1 - \varepsilon)}$$

と表せる。また、図 1(a)の系では蓄熱材の波相部はフィン面からせん断力を受けており、その力を合理的に近似するため図 1(b)の系では運動方程式中に、速度に比例するせん断力の項を付加した。このようにし

図 1 蓄熱材の融解状態と解析モデル
式(3)の右辺最終項がフィン面からのせん断力に相当する項であり、図1(a)の液相部の速度分布が十分に発達した形になっていると考えると式(3)は(補遺1)のように導かれる。また、無次元化された境界条件は、次のようになる。

(a) 伝熱面(X = 0)において：
$$\theta = \theta_w(\xi), \quad \Psi = 0, \quad U = V = 0$$
(b) 上面(Y = 0)において：
$$\frac{\partial \theta}{\partial Y} = 0, \quad \Psi = 0, \quad \varphi = 0, \quad V = 0$$
(c) 下面(Y = H/D)において：
$$\frac{\partial \theta}{\partial Y} = 0, \quad \Psi = 0, \quad U = V = 0$$
(d) 背面(X = 1)において：
$$\frac{\partial \theta}{\partial X} = 0, \quad \Psi = 0, \quad U = V = 0$$
(e) 固液界面において：
$$\theta = \theta_w(\xi), \quad S_a \left(\frac{\partial S}{\partial N} \right) = \frac{dS}{dt}$$
$$\Psi = 0, \quad U = V = 0$$
上記の諸式より明らかに、このモデルを解析するにあたり，$$G_1 = g_0 T / \nu$$，$$P_r = \nu / \alpha$$，$$D / \nu$$，$$H / D$$，$$S_a$$，$$C_0 T / L$$ の五つの無次元パラメタを考えればよいことがわかる。ここで，$$P_r = \nu / \alpha$$ において，$$\nu$$ は粘着剤の液相に対する値を，$$a$$ は式(1)，(2)で定義される見かけの値を表す点に注意を要する。また，オーストラフ数の代表長さは通常高さ $$H$$ を使うが，4.2.1項に示すことと，代表長さに $$D$$ を用いることにより本実験装置の特性を表しづらくできる。なお，このように決められた $$G_1$$ に $$(H / D)^3$$ を乗ずれば，通常のオーストラフ数数になることは明らかである。

3. 実験装置および実験方法

2章におけるモデル化の妥当性や，数値計算の信頼性を確認するため実験を行った。本実験も第1，2章と同様に，蓄熱材としてナフタリンを用いて蓄熱時の熱流束を測定した。なお，装置の構造は，第2章のものとはほぼ同じであるため，説明は伝熱面とフィン部分の新しく作り変えた部分に限られていただく。

3.1 実験装置

図2，3に蓄熱部および流動ポッサクの構造を示した。

蓄熱部内には，蓄熱材のナフタリンと厚さ0.3mm，高さ200mm，幅40mmの黒板製フィンがピッチ1.5mm($$w = 1.2$$mm)で、108枚配置されている。フィンは，厚さ10mm，高さ220mm，幅180mmの伝熱面A(黒板)に40組づけされている。図3のように，伝熱面Aの中央部上下5箇所に鋼・コンスタンタン熱電対 ($$\phi_0.3$$)が埋め込まれている。伝熱面Aは伝熱面Bとシリコンオイルを介して圧着されている。

伝熱面B(黒板)は，厚さ5mmの黒板板の両面に厚さ1mmの黒板板をうすづけしたもので，18対の鋼・コンスタンタン・サーモパイル ($$\phi_0.2$$)により，伝
4. 結果および考察

4-1 実験結果と数値計算結果の比較
2章に示した数値計算モデルの妥当性を検討するため、実験結果と比較した。
実験による熱流束の経時変化を図4(a)，(b)の○印で、また、伝熱面Aの上下5点の平均温度を△印で示した。図4の実験は、噴流ボックスにTe＝90℃または100℃の熱媒体油を流し、伝熱部全体をナフタリンの融点79.5℃よりやや低い温度に保つ。
(3) 噴流ボックスに高温の熱媒体油(Te＝90℃または100℃)を流し、伝熱面温度を上げて、伝熱面温度、熱流束の測定を開始する。
図4実験と計算値の比較

図3 伝熱面および噴流ボックスの構造

図4 実験値と計算値の比較
となり流れが影響し始めると，図5(b)のように固相上部が速やかに溶け，上にたがった形をとり始める。この場合，界面に沿ってゆるやかな下降流が起き，図6(b)のように界面下部付近の等温線間隔があがり，融解が遅くなり，図7に見られるごく融解終了時間が，伝導のみの系に近いGr = 10^8の場合よりも，かえって長くなる。Grが10²となると，図5(c)のように固相は上部から速やかに溶け，図6(c)のように自然対流のため伝熱面上部の等温線間隔があがり，融解終了に近づくと熱流束の減少が図7のように大きくなる。

このような縦長のH/D = 4の場合には，Grを次第に大きくしていくと，固相の溶け方が横方向から下方向へと変化し，融解終了時間が流れのない場合より，逆にわずかながら長くなる現象の見られるGrが存在する。

図8-10にH/D = 1の場合のq*の経時変化，界面の進行，等温線を示した。Gr = 10^8のときに，H/D = 4の場合と同様，図9(a)，10(a)のように界面形状，等温線は伝熱面に平行に近い。H/D = 4では，Gr = 10^8の場合の融解終了時間はGr = 10^6の場合よりも長くなかったが，H/D = 1では変化がなかった。これは図10(b)からわかるように，固液界面の面積が小さく，下降流による界面下部付近の等温線間隔の関きが小さいためと考えられる。図7, 8においてGr = 10^8
のq^*を$H/D=1$と$H/D=4$について比較すると，$H/D=1$のほうが高いq^*を得ていることがわかる。
図6(c)，10(c)を比べてわかるように，$H/D=4$の場合，上部に温度の高い液相が滲流するため，伝熱面の上部約3/4は液相との熱交換が少なく，そのため伝熱面全体としての平均熱流束q^*が小さくなるからである。このことは蓄熱装置の形状を決めるうえで極めて重要である。すなわち，蓄熱材厚さD，伝熱面温度T_wなどを一定に保ち，高さHだけを増していくとき，条件によっては，平均熱流束が減少する場合があることを示している。

図11は，$H/D=4$と$H/D=1$について，融解終了時までのq^*をt^*で平均した平均熱流束q^*とG_rの関係を示したものである。なお，点線は熱伝導のみによるq^*を表している。$H/D=4$の場合には，$G_r=10^4$付近で，熱伝導によるq^*より1割程度小さい値となっている。また，$H/D=1$の場合は，G_rが大きくなるほど，q^*が大きくなることがわかる。

4-2-2 H/Dの最適値 図12は，$G_r=10^4, 10^5, 10^7$について，$H/D=0.25$〜2.0についてq^*とH/Dの関係を示したものである。$G_r=10^4$の場合，H/Dが0.3付近でq^*が最大値をとっている。この理由を明確にするため，$G_r=10^4$について，$H/D=2, 0.5, 0.25$に対する等温線をそれぞれ示した。図13(a)〜(c)は，いずれも85%の蓄熱材が融解した時の等温線である。図13より，$H/D=2$の場合には，$H/D=0.5$の場合に比べ，上部が均一に近い温度となり，そのため上部伝熱面での熱流束が小さくなる。ところが，H/Dがさらに小さい0.25になると，重力方向の長さHが短く流れがゆるやかとなり，等温線は伝熱面と平行になりはじめ熱伝導のみの系に近づき，q^*が小さくなる。このように，q^*を最大とするH/Dが存在する。このq^*を最大にするH/Dの値を最適値と呼ぶことにする。図12に見られるように，G_rが$10^4, 10^5, 10^7$と大きくなるほど，H/Dの最適値は小さくなる。これは，G_rが大きいほど，H/Dが小さくても十分な流れ
が起きるためと考えられる。

4.2.3 D/w 値の影響 図14は薄材厚さ D とフィン間距離 w の比：D/w を10, 20, 40とした場合のq*とH/Dの関係を表したものである。D/wが小さいほど、すきまは広く、流れが速くなり、H/Dの最適値は小さくなる。つまり、D/wが小さくなることとGrが大きくなることは、自然対流を活発にするため、最適値H/Dに同様の影響を及ぼす。

4.2.4 プラントル数の影響 図15はプラントル数Pr=0.1, 1, 5に対するq*とH/Dの関係を表したものである。ここではGrを一定としているため、Prを大きくするということは、温度伝導率αを小さくすることに相当する。そのため、Prが大きくなると、自然対流による影響が大きくなり、H/Dの最適値は小さくなる。

4.2.5 ステファン数の影響 表1にステファン数S*を0.03, 0.1, 0.2, 0.3とした場合のq*を示した。表1のように、S*<0.3の範囲では、ステファン数の影響は小さい。したがって、最適のH/Dを決定するパラメータはPr, D/w, Grの三つとなる。

4.3 最適なH/DとGr, P, D/wの関係 表2

は平均熱流束q*を最大にするH/D値と、そのときのq*の最大値をGr, P, D/wの種々の組合せについてまとめたものである。例えば、表2の(a)のPr=0.1において、D/w=10, Gr=10^5の場合、H/Dの最適値は0.63となり、このとき平均熱流束q*=3.1が得られる。なお、表2中の斜線の部分は流れが弱く、q*がほとんどH/Dに依存しない場合である。

実際の熱伝導装置の設計を行う場合、フィンの材質、厚さ、間隔、薄材の物性値、熱点と伝熱面の温度差がわければ、Gr, P, D/wが決まるため、表2より、最適なH/Dを決定すれば、大きな平均熱流束q*が得られる。

5. 結言

鉛直なプレートフィンを有する熱伝導装置の伝熱特性を考察し、実験および数値解析を行った。

この結果、グラスホフ数Gr, プラントル数Pr, フィン間隔D/wの三つの値に対し、最大の平均熱流束

| 表1 S* と q* の関係 (Gr=10^5, H/D=1, P=1, D/w=20) |
|---|---|---|---|---|
| Ste | 0.3 | 0.2 | 0.1 | 0.03 |
| q* | 4.4 | 4.3 | 4.2 | 4.1 |

| 表2 最適なH/DとGr, P, D/wの関係 |
|---|---|---|---|---|
| Gr=10^5 | H/D=0.75 | H/D=0.20 | H/D=0.40 |
| q* | 8.4 | 2.1 | 4.0 |
| P=1.0 | H/D=0.80 | H/D=0.20 | H/D=0.40 |
| q* | 8.4 | 2.1 | 4.0 |
| P=1.0 | H/D=0.80 | H/D=0.20 | H/D=0.40 |
| q* | 8.4 | 2.1 | 4.0 |
q^*を与える H/D の最適値があることを示した。また、$G_s, P_r, D/w$ の組合せに対し、H/D の最適値、これにより得られる平均変流束 q^* をまとめて示した。

補 論

図 1 (a) の液中熱の速度分布が十分発達して、放物分布になっているとし、x 方向の速度分布を

$$u = -6 \left(\frac{\partial u}{\partial x} \right)_{a=0} = \frac{-6 \mu \partial u}{\partial x}$$

とおく。u, v は平均速度を表し、このとき、フィン面に働く x 方向のせん断応力 τ は

$$\tau = \frac{-6 \mu}{\partial y}$$

となる。したがって、u, v は方向平均の速度とすると、x 方向の運動方程式は次のように変わる。

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \nu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) - \frac{\partial P}{\partial x} - \frac{12 \nu u}{w^2}$$

同様に y 方向の運動方程式を導き、圧力項を消去して無次元化すると、平均速度に対する式 (3) が得られる。

（2）X, Y, θ^* の差分をそれぞれ $\Delta X, \Delta Y, \Delta t^*$ とし、$X = m \Delta X, Y = n \Delta Y, t = P \Delta t^*$ における速度 $U, V, 流れ関数 \Psi, うず度 \theta$ をそれぞれ $U_{m,n}, V_{m,n}, \Psi_{m,n}, \theta_{m,n}$ で表すと、式 (3) ～ (5) は、式 (3) ～ (5) のようになる。ただし、差分化に際し、風上差分を用い、式 (3) ～ (4) の中係数 b_1, b_2, b_3, b_4 は次のようになる。

$$U_{m,n} \geq 0: b_1 = 0, b_2 = 1$$
$$U_{m,n} < 0: b_1 = 1, b_2 = 0$$
$$V_{m,n} \geq 0: b_3 = 0, b_4 = 1$$
$$V_{m,n} < 0: b_3 = 1, b_4 = 0$$

$$\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} = \frac{2 \frac{\partial u}{\partial x}}{\Delta x^2}$$

$$- \frac{1}{\Delta t} \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} = \frac{2 \frac{\partial u}{\partial x}}{\Delta x^2}$$

$$\theta_{m+1,n} = \theta_{m,n} + \theta_{m+1,n} - \theta_{m,n} - \theta_{m+1,n} - \theta_{m,n}$$

$$\frac{\partial \Psi_{m+1,n}}{\partial t} = \frac{\partial \Psi_{m+1,n}}{\partial t} + \frac{\partial \Psi_{m+1,n}}{\partial x} + \frac{\partial \Psi_{m+1,n}}{\partial y}$$

なお、グラウンド数 G_r が大きく流れが活発な場合は、時間差分 dt^* が非常に小さくなり、計算の精度を著しく遅くなる。このため $G_r = 10^4, P_r = 5.0$ が本計算法による解析可能な限界である。

（3）代表的な Ψ の分布（流線）を図 16 に示す。ただし、$t^* = 0.46, G_r = 10^4, D/w = 10, P_r = 1.0, S_{in} = 0.3, H/D = 0.25$ である。

文 献

（1）朝倉・ほか 3 名、機論、49-440、B (昭58)、843。
（2）朝倉・ほか 3 名、機論、49-443、B (昭58)、1485。
（質問） 岡田昌志（青山学院大学理工学部）
フィン付薄熱断熱装置の熱伝特性を形状・物性と自然対流との関係で論じた点大変興味深く、
（1）基本方程式の誘導において
（i）補遺（1）のx方向運動方程式は非圧縮流れに対する二次元非定常・ストークスの式に単にフィン
壁面のせん断力を加えて得られたものであるが、Hele -Shawの流れと同様の取扱いをし、三次元非定常・ストークスの式においてx方向の速度を零とし、z方向
に零からwまで積分平均して導いたほうがより簡単
ではないか。このときu(∂u/∂x)の項は放物線速度分布
を用いて、
\[\frac{1}{w} \int_0^w \frac{\partial u}{\partial x} dz = 1.2 \mu_{\text{mean}} \frac{\partial u}{\partial x} \]
となる。
（ii）見かけの物性値の取扱い方法が不適切なよう
なので確認したい。本問題は多孔質物質内の融解と類似
しており、その場合、エネルギー式（4）は、フィンと
PCMは任意の点（x, y）において等しい温度をもつと
した仮定のめどとg流れによるエンタルピ輸送は
PCMのみにとったとする仮定のめどに相当し、今後も二
面のエネルギーバランス式は、融解潜熱はPCMの体積（質
量）分だけであるとして空げき器（1-c）を用いて太空
される。著者の取扱い方法を改めて願いたい。
（2）実験において
（i）熱流束の測定において、熱流束計の検定時と
融解実験時の条件の違いが測定誤差を生じないか、特
に図4（b）の実験は非定常であるので、伝熱板 A、
Bの熱容量が測定結果に影響しないか。
（ii）熱流束は高さの中間部に取付けているが、この
測定結果がH方向の平均熱流束としてよいか。
（回答）（1）（i）、（ii）本研究は、三次元の複
雑な伝熱要象をできるかがり簡単なモデルに置き換え
て数値計算を単純化することにより、パラメータの広
い範囲の変化に対する系全体の特性を把握し、それら
の最適化を行ったものであり、そのため単純化の過程
では2.1節に述べたようなさまざまな近似が行われて
いる。さてu(∂u/∂z)の項の近似については、ご指摘
の方向がより厳密と思われるため、そのような数値計
算を行ったところ、フィンの熱伝導の効果が大きいこ
ともあり、図4の元では1%以下のわずかな相違
であった。またご指摘後半の見かけの物性値の取扱い
については、ほぼご確認のとおりであるが、唯一の退

（論）
は、本論文では熱容量にも見かけの値を用いてい
る。このことは式(4)の見かけのプラントル数の算定
に多少影響を与えるが、この点についても再度数値計
算した結果、図4の例で3%程度の影響に留まった。
以上のことより、本研究のモデルによってもかなりの
精度が得られていると思われる。
（2）図4（b）の計算においては、図3中の伝
熱面A、Bの熱容量を考慮している。
（ii）サーモパイルが取付けられている伝熱面中央
付近の熱流束（Analysis-A）と伝熱面全体にわたる平
均熱流束（Analysis-B）の計算結果をサーモパイル出
力（○印）に比較して付図1に示す。条件は図4（b）
と同じである。付図1に見られるごく中央付近の熱
流束と平均熱流束はほとんど一致している。さらに、
図3に示すように、サーモパイル取付け位置と蓄熱材
の間には厚さ10, 1 mmの2枚の黒鋼板があるため、
熱流束測定位置での上部の熱流束分布が平均化され、
サーモパイル出力は平均熱流束にかなり近いと思われ
る。

（質問）伊藤定祐（慶應義塾大学）
ブレートフィンを有する熱伝熱装置の伝熱問題
を、対流を考慮して解明されたことに敬意を表す。
（1）式（3）の見かけの熱伝導率を用いると、フィ
ンの熱伝導率が無視できる場合、右辺第1項が支配的
となり、見かけの熱伝導率やプラントル数は、蓄熱材
の真の熱伝導率に無関係に決まるので、蓄熱材の真
の熱伝導率やプラントル数は熱容量にほぼ無関係になる
と思われるが、このように考えてよいか。
（2）熱流束計で測定される熱流束は、その位置で
の熱流束と思われるが、伝熱面平均流束 \(q \) はどのよう
にして得られたのか。また、理論結果に、フィンの体
積割合 \(\varepsilon \) の条件は関係しないか、理論の伝熱面平均熱
流束 \(q \) の算出方法に関連させてご教示願いたい。

【回答】 (1) フィンの熱伝導率を高くしていく
と、見かけの熱伝導率はフィンの熱伝導率によって決
まるようになり、かつ、見かけのプラントール数も小さ
くなるため、フィンの熱伝導で伝えられる熱量が少
いに支配的となり、蓄熱材の熱伝導率が熱流束に及ぼ
す影響は少なくなっていく。ただし本文にも記したご
とく、見かけのプラントール数の \(\varepsilon \) には蓄熱材の液相
の値を用いていることもあり、フィンの熱伝導率を単
に高くしても見かけのプラントール数が蓄熱材の物性値
に依存しなくなるわけではない点を付記しておく。

(2) 岡田氏への回答 (2) を参照されたい。

【質問】 長島 昭（慶応義塾大学理工学部）
（1）実験と計算の比較例は \(H/D = 5 \) について示
されている。しかし、図 11, 12 などから判断すると
\(H/D = 5 \) 付近は、条件を変えるも結果があまり変わら
ない (伝導だけの場合に近い) 異れに属すると推測さ
れる。本研究としては最も重要のは \(H/D = 0.5 \) 付近
で、伝導だけの場合からの差が非常に大きいところで
ある。この点に問題はないか。

【回答】 (1) 本論文で扱っている系は蓄熱材中に
金属フィンを含むため、もとより伝導の影響の強
い系である。その中であって、実験と計算の比較を行
った \(H/D = 5 \) の場合は、ご指摘の \(H/D = 0.5 \) の場合
などよりも液相の流れがはるかに速く、自然対流の
活発な条件に対応している。なお図 14 において \(H/D
= 0.5 \) 付近の \(q^* \) が \(H/D = 2 \) 付近の値より大きくなっ
ているのは、液相内の流れのパターンの相違によるも
のと考えられる。すなわち、\(H/D = 2 \) の場合には図
13(a) に見られるごとく、壁温に近い温度の液が上方
に滞留し、デッドスペースとなるため上部の熱流束が
極めて低く、熱流束の平均値が低下するためと思われ
る。