ポペット形油圧弁におけるキャピテーション現象と弁特性
（第4報、スラスト特性に対するキャピテーションの影響）

大島 茂**、市川 常雄***

Cavitation Phenomena and Performance of Oil Hydraulic Poppet Valve

by Shigeru OSHIMA and Tsuneo ICHIKAWA

The influence of cavitation on the thrust characteristics of the oil hydraulic poppet valve was studied experimentally. The state of cavitation occurring was observed carefully and the pressure distributions along the surface of the poppet cone and the valve seat were measured in detail using the half cut model. The comparison of the three kinds of thrust coefficients, obtained by integrating of the pressure distribution on the poppet surface, applying the momentum theory and measuring directly the thrust force with the full shaped model, was made. As the result, the effects of cavitation on the thrust force characteristics and the mechanism of them were made clear. It was also found that especially in case of converging flow valve, the pressure distribution around the downstream jet was complicated and had large effects on the thrust force characteristics.

Key Words: Cavitation, Fluid Power Systems, Poppet Valve, Half Cut Model, Pressure Distribution, Thrust Force Characteristics, Experimental Study

1. 緒 言

ポペット形油圧弁は、流量あるいは圧力を制御する目的で油圧回路中に多く用いられ、その流量特性およびスラスト特性は、装置の制御性、あるいは弁の操作性等を支配する重要な弁特性である。近年、油圧装置の高圧、高速化が進む中であらわれた弁特性に及ぼすキャピテーションの影響が大きな問題となっている。筆者らは前報**までに、ポペット形油圧弁の流量特性に及ぼすキャピテーションの影響について、独創的な半割モデルを用いた実験よりその詳細を明らかにした。

一方、スラスト特性に関して、ポペットに作用するスラストを測定した例**は多くみられ、ポペット断面上あるいは弁座面に圧力分布を測定し検討したものの**も、弁座面取りをもつポペット弁に対して、弁座面上圧力分布を理論的に算出し運動量理論によるスラストの計算値と実験結果を比較した報告**も存在する。しかしこれらはキャピテーションの発生した状態を直接の対象としておらず、スラスト特性に対するキャピテーションの影響は明らかにされていない。キャピテーション状態におけるスラスト特性に関してはわずかに帯進らの研究**がみられるが、キャピテーションの発生に伴う特性の変化およびそのメカニズムが明確にされていないなどの問題点がある。

そこで本報では、ポペット形油圧弁の半割モデルを用いることにより、キャピテーションの発生状態の観察をあわせて、ポペット面および弁座面に沿った圧力分布を詳細に測定し、キャピテーションによるスラスト特性への影響を明らかにした。さらに運動量理論の適用法についても検討を加え、特に狭まり流れにおいては制御絞り部を出た後の噴流回りの圧力分布についてのスラスト特性の影響を明らかにした。

2. 実験方法

半割モデルの構造および圧力分布等の測定法については第1報**を、実験装置回路図については第2報**を参考にしていただきたい。

ここでは、実形モデルによるスラストの測定方法について説明する。半割モデルによる圧力分布の測定値から求めたスラスト特性の妥当性を確認するため、半割モデルとほぼ等しい寸法形状に製作した実形モデル
ポペット形油圧弁におけるキャピテーション現象と弁特性（第4報）

3. 結果の整理方法

3.1 井座に面取りのない場合 ポペットに作用するスラストは、半貫モデルで測定したポペット円すい面の圧力分布を、ポペット中心軸に垂直な平面上への投影面積について積分して求めた F_p と、図2の一点鎖線で囲んだ断面に、圧力ボリュームを設定し、運動量理論の適用と下流側圧力によるスラストとの和より求めた F_m および実験モデルでロードセルにより直接測定した F_r の3種を求めて比較した。ただし、半貫モデルの場合、スラストの算出において投影面積は2倍して扱っている。

F_p は、広がり、狭まり流れともに式(1)により算出した。ただし A_1 と A_2 は図2に示す投影面積であり、 P_p はポペット円すい面の任意の位置における圧力である。

$$ F_p = \int_{A_1-A_2} P_p dA \quad \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots (1) $$

F_m は、広がり流れの場合には式(2)、狭まり流れの場合には式(3)により算出した。ただし、コンプレックスボリュームを出た下流の圧力は P_1 に等しく、一部にポペット円すい面に作用しているものとした。

(広がり流れ)

$$ F_m = P_1A_1 + P_2A_2 - \rho QV \cos \phi \quad \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots (2) $$

(狭まり流れ)

$$ F_m = \int_{A_1} P_2 dA - P_1(A_1-A_2) + P_2A_1 + \rho QV \cos \phi \quad \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots (3) $$

ここで P_1 は上流側圧力、 P_2 は下流側圧力で、 P_* は

![図1 ポペット形油圧弁の実験モデル構造図](image)

![図2 井座に面取りのない場合](image)
弁座面と面の位置における測定圧力である。式(4)において
式(10)において
式(11)に示す位置の面積で、弁の外径が等しい位置より外側の任意の位置の直径を選んだ。また、は油の密度、は容積流量で、式(10)については半径モデルで測定した流量の2倍を用いた。
式(11)において
式(12)において
式(13)において
式(14)において
式(15)と同様に定義した。
4. 実験結果
4.1 弁座面取りのない場合 図4は、弁座面取りのない場合で、弁頂角を45°、弁リフトを0.4mm、弁座形をP1=5MPa (abs.) で一定とし、変形を徐々に下げないで、より流れにおけるスラスト特性を、スラスト係数をP1、Pm、Crに表したもののである。CpとCrが比較的よく一致していることより、半径モデルによる圧力分布の測定値の妥当性が確認できる。また、P1が他の者とはほぼ一致することから、この場合運動量理論に比重大きなスラストが算出できることがわかる。
は、半径モデルにおけるキャピテーションの初生

図3 弁座面取りのある場合
点、は実形モデルにおける初生点であるが、いずれの場合もキャピテーションの生発によりスラスト特性に大きな変化は現れていない。これは第2報11)で述べたように、主にキャピテーションの発生は制御面のうちの下流側で起こり、ポケット面および弁座面上の圧力分布に大きな変化が生じていないためである。またこの場合、弁座上圧力が制御面の下流側のすぐ下よりはポ、下流側に等しい水になるため、運動量理論に基づく式(2)が比較的よく適用できるものと考える。

図5は、狭まり流れの場合のスラスト特性であり、実験条件は図4の場合と同様である。CSとCMは比較的よく一致し、ΔPの増大とともに1以上の値となり、キャピテーションの発生に伴い若干低下した後再び増大する。第2報11)で、制御面の下流側の下流側圧力がキャピテーションの発生に伴いP1に下流側に低くなることを示したが、スラスト係数の低下はこれに起因するものである。したがって、下流側圧力がP1に等しく均一であると仮定して運動量理論および算出したCMの値では、キャピテーションの発生に伴うこの変化はほとんど現れていない。また、キャピテーションの発生していない領域で、CMは他の二者に比べ多少低い値を示しているが、この理由は、制御面の下流側に延ばされた側面が製作中に形成されながら流れ方向を変えるため、ポケット面圧力の下流側2節に示す図9と同様にP1以上の圧力になるが、CMにはこの圧力上昇分は含まれてこないため、他の二者に比べ低い値となるものである。

4-2 狭座に面取りのある場合 S=1.3mmの面取りをもつ狭座を用いた場合の、広がり流れにおけるスラスト特性を図6に示し、その圧力分布を図7に示す。なお図7は、液相にポケット中心軸からの半径距離rをとり、ポケット円すい面上の圧力Psおよび狭座表面上の圧力Psの測定値を示した。

図6におけるPはキャピテーションの初生点、Pは制御面の下流側の下流側圧力およびキャピテーションが生発し始めた点を示す。狭座、実形モデルともにほぼ同じ圧力条件のもとでキャピテーションの発生がみられていた。この場合にもCSとCMは比較的よく一致しており、どちらもキャピテーションの初生段階ではスラスト特性に大きな変化は現れていないが、制御面の下流側の下流側圧力がキャピテーションの発生と急激にスラストが低下することがわかる。これは、図7からわかるように、絞り入口からのキャピテーションの発生に伴い、絞り内の圧力が急激に大きく低下することに起因するものであり、流量特性においてはこの状態になると流量の飽和現象11)が生じる。

CMは、キャピテーションの発生していない領域で他の二者にほど等しいが、絞り入口からキャピテーションが発生した状態においては他の二者に比べて若干高い値を示す。この理由については、5章で述べることにする。

図7で特記すべきこととして、制御面の下流側の、(A)示したポケット面およびP1が急速に低下することが見出された。前節の面取りのない場合にも同様のことは生じ、また、拡管が大きい場合ほどこの圧力低下は激しく生じることができる。流線のはく離および方向転換によるものと考えられる。

図8は、狭まり流れの場合のスラスト特性であり、拡管その他の測定条件は図6の場合と同様である。また、図9はその圧力分布を示す。

CSとCMは、キャピテーションの発生していない領域ではかなりよく一致するが、キャピテーションが発生している領域では若干差が生じている、制御面の入口面の光鏡像の違い、ポケット面すい面と狭座すい面の軸心のずれ等が微妙に影響するものと考えられる。

図8において、半形モデル、実形モデルともに、キャピテーションが発生してもスラスト特性に大きな変化は現れていない。この場合、第1報11)に述べたように、キャピテーションは制御面の下流側で発生するのみで、絞り入口からの発生は見られない、したがって、圧力分布も図9に示すように制御面内の圧力は単調に下降する形となり、キャピテーションの発生によ
ポペット形油圧弁におけるキャビテーション現象と弁特性（第4種）

り大きな変化は生じていない。

図9において、ポペットの先端に近い領域でP_Bは
P_2よりかなり高くなることがわかる。制御絞りを出た
噴流はポペット表面に沿って集合し、軸方向に方
向を変えながら流れるため、半径方向の動圧によりポペット面上の圧力は、ポペット先端にいくつに従い上昇
する。図8におけるC_{m}は、このことを考慮せず、下
流側圧力をP_3に等しく均一であるとして扱ったため、
全領域にわたりC_{m}およびC_{f}より低い値となっている。

図10は、$2\phi=60^\circ$, $S=1.2\text{mm}$の場合の狭まり流
れにおけるスラスト特性である。絞り部のすきま高さh
を統一するため、弁リフトxは0.566mmとし、その
他の条件は図8と同様とした。また、図11はこの場合
の圧力分布である。

図10において、キャビテーションの発生していない
領域では、C_{m}とC_{f}とはよく一致しており、いず
れもΔPの増大とともに1より若干小さい値となる。制
御絞りの入口角部より突撃的にキャビテーションが
発生すると、それに伴ってスラスト係数は不連続的に
大きく低下し、その後ΔPの増大とともに上昇し、P_2
$q=0\text{MPa}$に近づくと、キャビテーションの発生して
いない領域のC_{m}あるいはC_{f}の値から推定できる
長延線上の値に収束する。この理由は、図11の圧力分
布からわかるように、キャビテーションの発生に伴い
ポペット面上の圧力は制御絞り部でP_2以下まで大き
く低下し、絞り部を流出してもすぐににはP_3まで回復
せず、かなり広い範囲に渡ってP_2以下の領域が存在
する。そのためスラスト係数は大きく低下する。P_2
をさらに下げると、P_2以下となる領域は狭くなり、スラ
スト係数は上昇し回復する。$P_2=q=0\text{MPa}$としたラン
場合には、P_2以下の領域はほとんどなくなり、キャビ
テーションの発生していない場合の圧力分布に類似して
る。

C_{m}は、前述の圧力分布の変化を考慮せず、下流側

図6 スラスト特性（広がり流れ、$S=1.3\text{mm}$）

図7 圧力分布（広がり流れ、$S=1.32\text{mm}$）

図8 スラスト特性（狭まり流れ、$S=1.3\text{mm}$）

図9 圧力分布（狭まり流れ、$S=1.32\text{mm}$）
圧力をP_1に等しく均一であると仮定したため、他の
二着と大きな差が生じている。また、ほぼ全圧力範囲
にわたって、C_{Fp}およびC_{Fm}より低い値となっている
理由は、ボケット先端部にかさ向け噴流が集積するこ
とによりボケット壁上圧力がP_1以上に上昇すること
to考慮していないためである。

5. 運動量理論の適用法に対する検討

運動量理論に基づいて算出したスラスト係数C_{Fm}
は、弁座に面取りがない場合にはC_{Fp}およびC_{Fm}と比
較的よく一致するが、面取りのある場合には大きな差
が生じる場合があることがわかった。そこで、面取り
のある場合について若干の考察を試みた。

広がり流れの場合、図6で、経り入口よりキャビテ
ーションが発生している状態ではC_{Fm}がC_{Fp}および
C_{Fn}より高い値になることを示したが、この理由とし
て、制御終わり部すきま内において境界層が生成すれば
コントロールポリュームからの流出速度は実際には平
均流速v_1よりも大きいはずであり、特に経り入口より
キャピテーションの発生した状態では流れは経り入口
で弁座面よりはく離し、再付着することなく流出して
いると考えられる。流線の収縮による流入の増大も考え
られる。したがって式(9)において、コントロールポリ
ユームからの流出速度として式(12)によるm_0の代
わりに式(4)の流速vを用いてスラストを計算し、そ
れを式(13)のF_Sで無次元化してスラスト係数C_{Fm}
を求める、C_{Fp}、C_{Fm}とともに図12に示した。

この結果より、C_{Fm}はC_{Fp}よりよく一致し、弁座に
面取りのある場合にもコントロールポリュームからの
流出速度は式(4)の理論速度としたほうが、運動量理
論によるスラストの計算結果はより正確なものとなる
ことがわかった。同様の結果は、弁リフトや弁座面取
り長さを変えた場合にも確かめられている。

次に、狭まり流れに関して検討した結果を図13、14
に示す。図は、図10と同じ実験結果に対して、次我々
で圧力あるいはコントロールポリュームのとり方を変え
て考察してみたものであり、コントロールポリューム
のとり方としては従来からよく使われている2とおり
の方法(図15)について検討した。各スラスト係数
C_{Fm2}～4は、スラストF_mを式(15)により求め、式(14)
のF_Sで無次元化したものである。ただし式(15)のf_a
は、制御終わり部より流れる条件の違いにより影響を
うけるスラスト成分をまとめた項である。

$$F_m = \int_{A_1} A_2 P_x dA - P_1 (A_1 - A_2) + f_a \quad \cdots (15)$$

まず図13は、コントロールポリュームを図15(a)の
一点鎖線のように選んだ場合で、C_{Fm2}は、コントロ
ールポリュームより流下側の圧力が制御終わり出口部に
おける弁座面圧力P_{sa}に等しいとして、f_aを式
(16)により算出したものである。

$$F_m = \int_{A_1} A_2 P_x dA - P_1 (A_1 - A_2) + f_a \quad \cdots (15)$$
ただし、\(v \) は式 (17) で \(C_0 = 1 \) として計算し、\(Q \) は半間モデルの測定値の 2 倍を用いた。また図 15 の \(A_0 \sim A_4 \) は図 3 と同様の考え方により投影面積である。

\[
v = C_0 \sqrt{2(P_1 - P_0)} \rho \tag{17}
\]

一方、\(C_{rm} \) は、制御絞りより下流側でポペット先端に近づくにつれてポペット上表面圧力が上昇することを考慮して、\(A_0 \) の範囲についてはポペット面上の圧力分布を積分し、\(f_a \) を式 (18) で求めた場合である。

\[
f_a = P_{so}(A_1 - A_0) + \int_{A_0}^{A_1} P_{td} dA + \rho Qv \cos \phi \tag{18}
\]

ここで \(v \) と \(Q \) は式 (16) の場合と同様である。

図 13 の結果より、\(C_{rm} \) は \(C_{rp} \) と非常によく一致することがわかる。

次に図 14 は、図 15 (b) のようにコントロールポリュームを含んだ場合であり、\(C_{rm} \) は、制御絞りより下流側では流体表面に圧力は \(P_{il} \) に等しく、一様であると仮定し、他方向 \(C_{rm} \) は、\(P_{il} \) に等しく、一様であると仮定した場合であり、それぞれ \(f_a \) を式 (19), (20) により算出したものである。

\[
f_a = P_{so} A_1 + \rho Qv \tag{19}
\]

\[
f_a = P_{il} A_1 + \rho Qv \tag{20}
\]

ただし、式 (19) における \(v \) は式 (17) であり、式 (20) における \(v \) は式 (4) によった。\(C_0 \) と \(Q \) は前述の場合と同様である。

キャピテーションが発生していない領域では、\(P_{il} \) は \(P_1 \) であるため、\(C_{rm} \) と \(C_{rp} \) はほぼ等しい値となるが、キャピテーションの発生とともに \(P_0 \) は著しく低下するため、\(C_{rm} \) は \(C_{rp} \) に比べ非常に低価値となり、\(C_{rp} \) は、\(C_{rm} \) と \(C_{rp} \) の間の値となることがわかる。つまり、制御絞り下流では圧力は一定ではなく、図 16 に示すように \(P_0 \) から徐々に \(P_1 \) まで回復しているため、上記の結果となるものである。

そこで、圧流出口の位置に対する圧力の変化を考慮するため、図 15 (b) の図中に示すように、ポペット下側面の任意の位置において、円すい面から垂直方向にとった流路断面積 \(A_t \) が、常に絞り部出口の流路断面積 \(A_1 \) に一致するように噴流表面の流線を求め、その流線に沿って圧力分布を積分し、\(f_a \) を式 (21) により求めた場合を \(C_{rm} \) で示した。

\[
f_a = \int_{A_t} P_1 dA + \rho Qv \tag{21}
\]

ただし、\(v \) は式 (4) による。\(C_0 \) と \(Q \) は前述の場合と同様である。噴流表面上の圧力 \(P_1 \) は、図 15 (b) に示すように、制御絞り出口から軸方向に等距離の位置における下流ダクト壁面上の圧力 \(P_{sa} \) に等しいとし、(a) 面では \(P_r \) に等しく、一様であるとして扱った。\(P_{sa} \) の測定結果および喷流表面の流線の計算結果を、ポペット面上の圧力分布とともに図 16 に示した。キャピテーションの発生した状態では、\(P_1 \) および \(P_{sa} \) は制御絞り下流側で \(P_r \) よりかなり低くなることがわかる。また \(P_r \) と \(P_{sa} \) にはかなり大きな差のあることも知ることができる。

図 14 の結果によれば、\(C_{rm} \) は \(C_{rp} \) に比較的よく一致することがわかる。

図 13, 14 による結果は、\(x \) や \(2 \theta \) を変えて行った実験で同様の傾向となることが認められている。ただし、図 8 の場合のように、制御絞り内での流流が完全に再付着していると思われるような場合には、式 (18) あるいは式 (21) における流速 \(v \) として、絞り出口部の平均流速 \(v \) を用いるほうが、より \(C_{rp} \) に近いスラスト係数が得られた。
6. 結 言

ポケット形油圧弁の半モデルを用い、キャピテーションの発生状態の観察をあわせて、詳細な圧力分布の測定を行った結果、キャピテーションによるスラスト特性への影響およびその機構が明らかとなった。特に、弁座に面取りのある場合、制御線直入口部からキャピテーションが発生するのに伴い、スラストが急に低下する現象が見出され、狭まり流れにおいてはこの現象が不連続的に生ずることもわかった。これらは、キャピテーションの発生および、広がり流れおよび主に制御線直部、狭まり流れでは制御線直部も含め下流側の圧力分布が大きく変化することによるものであることが明らかとなった。

また、運動量理論の適用法について検討を加えた結果、特に狭まり流れにおいては、制御線直部下流側の圧力状態が複雑でスラスト特性への影響が大きいことが明らかになった。また、弁座面上の圧力分布および下流側の圧力状態を正確に把握すれば、キャピテーションの発生した状態も含め、運動量理論により正確なスラストを算出できることが確認された。

終わりに臨み、終始適切な助言を受けた豊橋技術科学大学の日比昭氏に深く感謝の意を表する。

文 献

(1) 大島・市川、第62期全日本大会講演会講演、(昭59-10)。
(2) Stone, J.A., Trans. ASME, Ser. D, 82-1(1960), 144。
(3) 竹中と田沼、機械論、No. 159 (昭41-10), 49。
(4) Lu, Y.-H., Oilhydraulic, Pneum. 26-1(1982), 33。
(5) 松井と石坂、機械論、No. 196 (昭43-8), 85。
(6) Backé, W. and Runnburger, M., Ind. Amt., 86-98(1964), 2107。
(7) 清田、機械、35-270(昭44), 358。
(8) 市川・今井、油圧と空気圧、3-11(昭47), 11。
(9) 青山ほか3名、油圧と空気圧、9-7(昭53), 76。
(10) 青山と村浦、機械論、No. 839-12(昭58-10), 88。
(11) 大島・市川、機械論、No. 843-21(昭59-3), 63。
(12) 大島・市川、流体工学・流体機械講座演講、(昭59-8)。

討 論

[質問] 高橋 浩 隆 [上智大学理工学科]

ポケット弁のスラスト特性を、キャピテーションの影響を含め、総合的に研究されたことに敬意を表す。

(1) 図2、3と図15の2種の検査面のとり方にについて論じておられるが、結果としてどのような検査面を推奨されるのかご教示願いたい。

(2) 「下流側圧力分布はスラスト特性に大きい影響を与える」と述べており、この圧力分布は、下流側弁座形状にも影響されることと思われるが、その簡単な評価方法があればご教示願いたい。

(3) 狭まり流れの実験中、下流側でキャピテーションか kondaiが認められた。

[回答] 特に狭まり流れの場合についてのご質問とおとくまるが、図2(b)、3(b)、15(a)で示した検査面の選択の場面、制御線直部より下流側のポット面に作用する力を求めるためにポット面上の圧力分布を測定する必要があり、一般にその測定は非常に困難である。それに対して、図15(b)の方法によれば、弁座表面の圧力分布のみを知ればよく、本来の運動量理論の使用目的に合致する。したがって図15(b)の検査面のとり方が合理的であると考える。ただし、この場合図15(b)中に示した(a)面の位置を制御線直部分から遠く選んだ場合、粘性の効果により流量vが式(4)では表されなくなり、逆に、不適当に近く選んだ場合にはPsが不均一となるなどの問題が生じる。本実験においては、(a)面の位置は制御線直部より約18mm弁座径の1.5倍のところにとったが、最適な位置については弁の形状などによって異なると思われ、今後詳細な研究が必要かと思われる。

(2) ご指摘のとおり下流側弁座形状により圧力分布は影響をうけると思われるが、現在までのところ本報で示した形状以外のものは実験をされておらず、弁座形状の違いによる圧力分布の変化については明確な評価法は持たない。ただ、キャピテーションの発生に伴う制御線直部近傍の圧力の急激な低下は、発生した気泡
による下流側流路の閉そくに深く関連するものと考えられるため、制御絞り部出口直後から弁室の径が急に拡大するような形状の場合、絞り直後の圧力の低下量は、例えば図16に示す結果より少なくなるものと考えられ、したがって図10に示すようなスラストの不連続的な変化も小さくなるものと思われ、推測される。

（3）認めるなかった。

【質問】松岡祥浩（近畿大学理工学部）

（1）図10のスラスト特性のキャビテーション発生域において、ΔPが4MPa近傍ではCpとCnとの差が大きく、ΔPが4.5MPa以上においては両者はほとんど一致している。その理由としては、図8について述べておりられる「制御絞りの入口角度の先端度の違い、ポペット円すい面と弁座円すい面の軸心のずれなどによる影響」によるものと考えるだけでは不十分であると思うか、いかがか。

（2）運動量理論の適用法に対する検討において、Cnとの比較はされずすべてCpと比較しておられるのではないか、例えば図14のキャビテーション発生域におけるCmの値は図10のCnと比較的よく一致しているように思われるが、Cnの実測値に誤差があると考えられたからか。

【回答】（1）制御絞り入口部の先端度の違いは、キャビテーションの発生状態に敏感に影響するため細心の注意を払って製作しているが、半割モデルと実験模型とで対応的には差があると思われる。また、実験模型においてポペット先端における中心軸の偏心量、スリープとクリアランス量から計算して約±0.04mmの範囲で生じる可能性がある。ポペットが偏心している場合、流路面積が大きく開いた側からキャビテーションが発生するが、初期の段階ではキャビテーションの発生域に片寄りが生じる。キャビテーションの発生状態の側では圧力は急激に低下するが他の側ではそれほど急激に低下せず、圧力分布にも片寄りが生じる。このような状況下では、全周から同時にキャビテーションが発生した場合よりスラストの低下量は少なく、したがって図10のCpとCnに大きな差が生じるものと考えられる。一方、ΔPを増加し全周からキャビテーションが発生した状態になると、制御絞り部全周にわたりほぼ同一な圧力分布状態となり、CpとCnとは一致する。

半割模型の実験において、ポペットの偏心量が大きい場合、上述のようにキャビテーションの発生域に片寄り、圧力分布にも片寄りが生じる可能性が考えられる。

（2）回答（1）で述べた事項および、表1に示すように半割模型と実験模型とで加工誤差による寸法の差異が存在する点などから、厳密な定量的比較は困難であると考えた。したがって、同一の半割模型で測定したスラスト係数より定量的比較検討を行った。なお、図14のCmの値がΔP=4MPa近傍では図10のCnと比較的よく一致しているようにみられるが、キャビテーション発生に伴う不連続的な変化量は、Cnが0.047、Cmは0.065であるのに対してCmは0.021と、かなり小さい。これらの点も含め、ΔPの変化に対するスラスト係数の変化を定性的に比較した場合、CmがCnとよく一致するとは考えられない。