Ignition Analysis of a Two-Component Condensed Fuel in a Stagnation-Point Flow

by Takashi NIIOKA, Tohru MITANI and Jun'ichi SATO

Ignition problem is presented for a mixed condensed fuel of n-hexane and solid paraffin in a hot-air stagnation-point flow. The former experiment showed that the variation of ignitable limit velocity with the mass fraction of volatile hexane had a local minimum. This paper demonstrates the theoretical proof for the characteristic change of ignitable limit by use of the asymptotic analysis in a large activation energy. To know the melting behavior of gel-type mixture, the temperature histories of the condensed-phase are measured first. Using a unified model based on the temperature measurements, an equation for ignitable limit is derived in a simple form. It is found that the characteristic phenomenon in ignitability is caused by the competitive change of gasified fuel concentration, fuel surface temperature and the heat of fusion of the mixed fuel.

Key Words: Ignition, Activation Energy Asymptotics, Binary Fuel Mixture, Ignitability, Melting

1. 論言

実用に供される燃料の多くは多成分で構成されているので、燃焼性能を的確に把握するためには多成分系燃料の基盤的燃焼性を詳しく知る必要がある。例えば、水を含む油類の爆発は、燃焼途中で微小爆発（micro-explosion）が生じて微粒化が促進される。多成分系燃料の最も特徴的な現象として知られており、この現象を中心課題として多くの報告がある。燃料を構成している各成分の物性値、特に沸点の差が多成分燃料の燃焼現象を複雑にしている。発火現象に関する報告はほとんど知見しない。著者は、高温空気流れにみた燃料の発火現象を調査、きわめて特徴的な現象を捉えた。本報では、モデル化に必要な凝縮相温度測定と理論解析を行った。

高温空気流の流速を大きくしていくと、次第に発火時間が増幅して発火限界に至る。対向流散火炎が大きなり対向流速で消火（extinction）に至ることに基本的には同じ現象であり、流れの特性時間が短くなって反応時間と匹敵するほどの大きさになるためと説明される。このような流れ場では、高温流により燃料のガス化が短時間で完了しても、未燃焼物質燃焼反応に相当の時間を必要とする。しかし、このとき発達した燃料ガス流の燃焼特性、温度および流速などは気相反応に著しく影響するので、物性値の異なる2成分系燃料の場合には現象がきわめて複雑になることが予想される。

このようなことを念頭において発火限界を測定したところ、揮発性の高い燃料成分を増していくと発火限界は広がっていくが（すなわち限界流速は次第に大きくなるが）、ある成分割合のところで限界流速が極小値となる。本報は、活性化エネルギー漸近解析を用いて発火限界流速を求め、この複雑な現象を説明する。

2. 凝縮相の温度測定

2.1 実験方法　直径17.5 mm、高さ14 mmの燃料カップに、型密パラフィン（融点324 K）とノルマルヘキサンの混合ガス燃料を入れ、高温空気流（最大1200 K）を図1のようにつけてきた。燃料カップを高温空気流の真下に移動し、発火に至るまでの時間を測定した。詳細については前報44に述べた。

前報で得られた実験結果は大略以下のように説明され
とど点流れ場における2成分系燃料の発火解析

2成分系燃料の発火前後における溶融融解の影響を考察するため、発火前に燃料が完全に溶融融解状態に達していない場合、発火が進行する前後に燃料の融解状態に差が生じる。特に、溶融融解過程が発火に大きく影響する燃料の溶融融解が発火を遅らせることを示唆する結果が得られた。
3. 理論解析

3-1 モデル

温度の測定結果を考慮して図5に示すようなモデルを作った。高温空気が燃料表面につき当たると、表面から溶け始めそして溶融面は時々で固相内へ後退していく。このとき溶融層内はかくはんされた状態あるため温度一定である。実際には溶融温度T_mから間接温度（表面温度にも等しい）T_eまで点線で示すように徐々に昇華するが、この温度境界層は薄いので、図5の実線のように溶融面でT_mからT_eへ瞬時に昇華すると考える。

燃料ガスと酸素の気相発熱反応活性化エネルギーが十分に大きいときで、しかもこのような伸長流れ場が形成されているときの発火は、図5の点線流線で示す燃料ガス流が十分に発電して定常な温度場および流量場ができてから起こると考えてよい。そこで、図5に示すように、よくみを基点として、燃料表面がx_oに保たれると表面がy_oで右方へ進行する定常状態を最初に求める。その後、これに応じて揚熱ガスが発火を伴うので、x_oは時間とともに変わるが、溶融層内温度を一定と考えているので全体のエネルギーバランスは定常的に保たれる。これから、高気相反応を含む非定常問題を考えればよい。このような解析の手順は、放熱による燃料の発火の問題で報告したのと同様である。

3-2 仮定および基礎式

簡単のため以下の仮定をする。

(1) 一段非可逆の総括気相反応、すなわちF+PO→P（燃焼生成物）だけを考える。
(2) プラントール数とルイス数を1とする。
(3) 凝縮相の物性値は一定とする。
(4) 気相については、c_v=一定、ρ=一定とすると。
(5) 流線関数fはHowarth変換した無次元距離ξ_eに等しい。

すなわち、温度によって圧縮係数はすなわち粘性は無視した気相を考える。このような流れ場の発火現象について、物理を考慮してもほとんど差がでないことが知られている。

これらの仮定のもとに基礎式は次のとおりになる。

\[\frac{\partial \theta}{\partial t} = \frac{\partial^2 \theta}{\partial x^2} + \Gamma_m \frac{\partial \theta}{\partial t} \]

\[\frac{\partial \theta_e}{\partial t} = \frac{\partial^2 \theta_e}{\partial x^2} + \xi_e \frac{\partial \theta_e}{\partial t} - Q' W_f \]

\[\frac{\partial Y_f}{\partial t} = \frac{\partial^2 Y_f}{\partial x^2} + \xi_e \frac{\partial Y_f}{\partial t} + W_f(j=0, F) \]

定常な温度と濃度場が形成された後、続いて強い気相発熱反応が生じるまでの時間を求める。この時間が無限大になるような場合は発火限界とする。したがって、必要な条件は、定常状態を求めるための境界条件と非定常気相のための初期および境界条件である。凝縮相について、
やどり点流れ場における2成分系燃料の発火解析

\[\Gamma \frac{\partial \xi}{\partial t} = \frac{\partial}{\partial z} \left(\frac{\partial \xi}{\partial z} \right) + \frac{L^*}{\frac{\partial \xi}{\partial t}} \]

式 (4) および式 (5) は次のようになる。

\[0 < \xi < \infty \quad \text{において} \quad \theta_s = \theta_e, \quad Y_s = Y_e, \quad Y_0 = 0 \]

\[Y_0 = -\left(\frac{m(t_0 - \theta_0)}{Q^*} \right) \eta + Y_0 \]

が得られる。ここで,

\[\eta = \frac{1}{\sqrt{2 \pi e^{2t}}} \text{erfc} \left(\frac{t_0}{\sqrt{2\left(1 - e^{-2t}\right)}} \right) \]

反応を考慮しない式 (2) の未活性過程の解の形は,

\[\theta_s = -\left(\phi(t_0 - \theta_0) + \theta_0 \right) \]

と実際の温度との差 \(\phi \) を \(t_0 - \theta_0 \) に新しい変数として導入する。活性化エネルギーが大きいときに、発火時の温度が高い状態で反応性は小さいと考えてよいので、\(\phi \) の値は非常に小さく扱い、活性化エネルギーパラメータ \(\beta = E^*/\theta^* \) を用いて、温度および距離の変数を

\[\eta = \beta \theta \]

\[= \beta(t_0 - \theta_0) \eta \]

のように拡張する。このとき、式 (13), (14) は,

\[Y_e = \frac{Y_s}{\beta(t_0 - \theta_0) (r - \gamma \eta)} = 0 \left(\frac{1}{\beta} \right) \]

\[Y_0 = Y_0 \left(\frac{1}{\beta} \right) \]

また、反応項の指数部は、2 項級数展開を用いて,

\[\exp \left(-E^*/\theta_0 \right) = \exp \left[\left(-E^*/\theta_0 \right) \left(1 - \frac{\phi + \theta_0 - \theta_0}{\theta_0} \right) \right] \]

\[\exp \left(-E^*/\theta_0 \right) = \exp \left(\frac{\theta_0}{\theta_0} \right) \eta \left(1 + \frac{1}{\beta} \right) \]

式 (19)（21）を式 (2) の反応項に代入すれば、\(\eta \) に関する方程式が得られるが、微分項の独立変数 \(\xi \) を \(r \) に変える必要がある。式 (2) を変形して,

\[\frac{\partial^2 \xi}{\partial t^2} = \left(\frac{\partial \xi}{\partial t} \right) \frac{\partial^2 \theta_0}{\partial z^2} - Q^* \eta \]

ここで、

\[\left(\frac{\partial \xi}{\partial t} \right)^2 = 2 \exp \left[-2 \left(\text{erfc}^{-1} \right) \right] \]

\[\left(\frac{\partial \xi}{\partial t} \right)^2 \left(\frac{\xi_s}{\sqrt{2 \left(1 - e^{-2t}\right)}} \right)^2 \]

\[\left(\frac{\xi_s}{\sqrt{2 \left(1 - e^{-2t}\right)}} \right)^2 \]

とここで、\(\eta = \theta_0 \) のとき、\(\beta(t_0 - \theta_0) \) は非常に大きくなるので、式 (18) の \(\eta \) は小さくなければならな
い。式(21)からわかるように、反応項はきわめて小さく現れていたものである。すなわち、反応項は表面前から離れた温度の高いところであることを意味する。大きな温,
\[
\eta = \sqrt[2]{2(1-e^{-\tau})}
\] について,
\[
\eta \text{erfc} \left(\frac{\xi_{st}}{\sqrt{2(1-e^{-\tau})}} \right) = \text{erfc} \left(\frac{\eta^2}{\sqrt{2}} \right)
\] と通用される。(25)

の近似が成り立つ。両辺を二乗して対数をとり、\(\ln \eta^2 \)
などの項を無視すると、大きな \(\eta \) の値を次式のよう
に陽的に与えることができる(26)。すなわち,
\[
\eta^2 = - \ln \left[\frac{\sqrt{2}}{\beta (\theta_s - \theta_r) \text{erfc} \left(\frac{\xi_{st}}{\sqrt{2(1-e^{-\tau})}} \right)} \right]
\] (26)

式(25)を式(23)に代入すると、時間項が拡散項に比べて \(\eta^2 \) のオーダだけ小さいことを知る。時間項を落として式(17)～(21)を代入し、ダムケラ数 \(D_i \) を用いると,
\[
\frac{2 \gamma r^2}{1-e^{-2r}} \eta^2 \frac{d^2 \psi}{d \xi^2} = - D_i (\xi + \gamma \psi) \psi - \tau \cdots (27)
\]

したがって、時間 \(\tau \) はこの式においてパラメータのよう
に振る舞う。標準状態が反応領域に形成されている。新しく \(\tau \) を含むパラメータ \(\sigma \) を用いて、式(27)は,
\[
\xi^2 \frac{d^2 \psi}{d \xi^2} = - \sigma (\xi + \gamma \psi) \exp(\psi - \xi) \cdots (28)
\]

境界条件は,
\[
\psi(0) = \frac{d \psi}{d \xi} \bigg|_{\xi = 0} = 0 \cdots (29)
\]

この方程式は前報(41)およびKrishnamurthy(42)のもとの
一致する。Li & Cresso(43)はこの数値解から次式のよう
な発火時間を与えている。すなわち,
\[
\sigma = 2(2 - \gamma)/e^{(1-\eta)^2} \cdots (30)
\]

発火時間が無限大、すなわち \(\sigma = D_i / 2\gamma^2 \) の関係か
ら次式のような発火限界の条件が得られる。

\[
D_i = \frac{4}{\pi(1-\gamma)^2} \ln \left[\frac{\sqrt{2}}{\beta (\theta_s - \theta_r) \text{erfc} \left(\frac{\xi_{st}}{\sqrt{2}} \right)} \right]^{-1}
\]

式(31)および式(11), (12)を用いて、燃料の混合割
合を変えたときの発火限界を求めた。用いた数値は、
\(T_i = 280 \text{ K, } \theta_s = 3.87, \sigma_s = 1.261/(\text{g K}), c = 2.89 \)
\(-1.17, Q^* = 1.28, E^* = 62.5, L^* = 0.317/\text{c c}, L^* =
0.125(1-w)/c, \) また \(\theta_m \) の値は前報(15)の図 2 を用い
た。結果を実験結果(前報(15)の図 5)とともに図 6 に示
す。低ヘキサン濃度の領域でこう配がよく合っており,
\(D_i \) に含まれる精度係数を可変にして限界流速が合致
するようにした。発火限界の複雑な傾向が解析によ
く現れていると考えられる。

このような変化の主な要因は、ヘキサン濃度が高い
ほど気相内燃料ガス濃度が高くなる一方で、沸点に近
い燃料表面温度が高いということは、この発火に対して
反応する作用が現象を複雑にしている。この基本的な
2 つの作用に加えて、この燃料では溶融面後退速度
(すなわち溶融熱)も複雑である。パラフィン濃度が
小さくなると、溶融熱は小さくなるが後退速度は大き
くなるがとであることである。2 章の最後に記したように、\(U_w \)が
一定のときの \(\sigma_m \) を用いているが、\(U_w \)の影響を調
べるために、特に大きな \(w \) に着目して図 7 のように種
々変えて計算してみた。この中で(c)が図 4 と同様曲線
がある。得られた結果は図 8 のとおりであり、与える \(\sigma_m \)の
影響が大きいことを知る。しかしこの溶融熱の変化
が最終的にどのように影響をもたらすか、その結果
燃料濃度の大きさがどの程度の変化にかかって発火
限界は決まってくる。実際、\(Y \) の値は図 6 と同じよ
うな変化をする。
4. 結論

高温好気よどみ点におけるノルマルヘキサンと固形パラフィンの混合給水燃料の発火についての知見を得た。
(1) 燃料表面付近の電離による温度測定の結果。発火に至るまでの溶融層の変化に多大な影響が見られた。その温度は沸点よりやや低い。
(2) 実験結果を基に現象をモデル化し、活性化エネルギーを考慮した放火限界の式を簡単な形に求めることができた。
(3) 燃料の挙動により発火限界の特別な変化は、気相燃焼温度が溶融面後退速度や燃料表面温度などによって複合的に作用し、最終的に複雑な変化をするために生じている。

記号

A: 気相反応の頻度係数
a: 流れの特性時間の逆数
c: 定数密度（添字がなければ凝縮相の値）
D: ダムな数流道
E, E*: 活性化エネルギーおよびその無次元量
f: 流速関数
L, L*: 蒸発潜熱およびその無次元量
M: 分子量
m: nM/L
Q, Q*: 反応熱およびその無次元量
R: 一般ガス定数
T: 温度
t: 時間
U: 高温好気ノズル出口流速
v, v*: 速度および無次元流速
w: ベイク重量ベースント
W: 反応速度
W*: 反応速度の無次元量
x: 燃料表面に垂直な距離
Y: 質量濃度
β: 活性化エネルギーのバランス
γ: (θ - θ) / γ
ξ = β(θ - θ) (式(18))
η, η: 式(15), (24)
θ = T/T (添字g がなければ凝縮相の値)
λ: 熱伝導率（添字g がなければ凝縮相の値）
ξ: 固相無次元距離 = (2apc/λ)^(1/3)x
ρ: 密度（添字g がなければ凝縮相の値）
σ: パラメータ
τ: 無次元時間
φ: θ - θ
ω: θ (式(17))

添字

e: 高温好気流（x = ∞）
F: 燃料ガス
g: 氣相
i: 初期およびx = ∞における値
ig: 発火
I: 未活性過程
m: 溶融面および溶融熱
O: 酸素
v: 水素燃焼

文献

(5) 三谷・汎用、日本航空宇宙学会誌, 31-348 (昭58), 14.
(7) 新聞・機関, 45-398, B (昭54), 1529.
(9) Niioka, T., 文献(6)の1807ページ.
討　論

（質問）　植 植 俊 一（筑波大学構造工学系）
相反する方向に競合する二つの要素（ヘキサン濃度増加による蒸発の容易化と温度低下）の影響が理論的にも把握されたのは漸近解析法の威力と評価にあたる。しかし、一般には理論が実験よりパラメータの変化に敏感に応答するのが普通であるのに、ここでは実験結果のほうがそうなっている。何か理論の中にパラメータ（ここではヘキサン濃度）の効きを鈍くするような近似を用いているのかどうか説明頂きたい。

（回答）　式(12)の下に説明する理由によって、後退速度v_mとして図4に示す値を用いている。この図4は空気流速U_0を一定とした値であって、現象の簡潔な説明のため平均的な$U_0=160 \text{ cm/s}$を選んで理論値を求めた。実際にはヘキサン濃度によって発火限界空気流速は変化するため、v_mはU_0の関数で与えられなければならない。しかし、$v_m=v_0(U_0)$とするとき実験的計算するとする。それでは実験的にも計算するうえでも雑多さを増すだけで本質が変わるわけではないので、図7のように種々のv_mに対して図8の理論値を算出してv_mが変わったときの傾向を調べている。この結果からも、正確にv_mを与えれば実験と理論がより一致することをうかがい知ることができる。

このように、定量的には溶融面後退速度によっても影響されるが、式(31)の下11行めに記したように、2成分系燃料の発火限界の変化が単純に直線的ではなく、複雑に変化することの基本的要因を明らかにできたことを強調したい。