Structure of the Pulse Jet
(2nd Report, Energy Balance in a Transient Zone)

by Yutaka TANAKA

This paper is subsequent to that dealing with the statistical quantities of turbulences in a pulse jet, and is concerned with experimental analysis of the energy balance in the transient zones of axisymmetric jets, which are exhausted continuously or pulsedly from a circular nozzle.

The magnitude of each term constituting the energy equation for turbulent motion has been calculated, and the results of the steady jet are compared with those of Sami. Temporal and spatial variations of the turbulence scale and energy components are also evaluated.

It was found from the energy analysis of the pulse jet that the diffusion and pressure-transport terms which are of a negligible order for the steady jet, become the strong ones of the order compared to the other terms.

Key Words: Pulse Jet, Axisymmetric Flow, Turbulence Structure, Transient Zone, Energy Balance, Measurement

1. 緒 言

前報では間欠噴流と定常噴流の構造上の相違を乱れ成分の時間的、場所的推移、周囲空気の巻き込み、噴流のだっ行性などの面から調べたが、エネルギー収支に関しては噴流の初期領域についての Sami の研究、発達した領域についての Wygnanski の研究、また二次元噴流に関して Bradbury の研究などがあるが、非定常噴流について調べられた例はない。加えて、定常噴流におけるエネルギ収支の解析がこれらの研究によりすでに完結されためではない。Sami は 30.48 cm (1 foot), Wygnanski は 2.64 cm (1.04 inch), Bradbury は 45.7 cm (18 inch) のような大口径ノズルを使用している。これらの結果をそのまま実用燃焼で用いるような小規模な噴流に適用できるかどうかの疑問もある。また、これらの研究では成分項の変化についての資料が示されていないこともあって、定常噴流についても調べなければならならないことが多く残されている。

ここではこれらの報告において残差として算出され
間欠噴流の構造に関する研究（第2報）

およびそれぞれの増幅器9により静圧と2方向流速信号を得、シグナルアナライザで波形観測するとともに、A-D変換器を通じてパーソナルコンピュータ13に取り込む。パーソナルコンピュータでは熱線流速計出力の補正、乱流統計計算を行い、時間平均値、乱れ強さと相関関数など必要な乱流情報を得てディスケットに記録させる。噴流全体領域についてのデータが得られた段階でデータを大形計算機に転送し、乱れエネルギ収支の解析を行った。

定常噴流の流量は \(q_s = 1.27 \text{ L/s} \) を基準として、間欠噴流においては磁極の開時期平均流量がこの値に等しくなるように圧力容器2内の圧力を調整して噴流を発生させた。熱線流計のノズル断面で平均した流速が16.7 m/s、 \(D \) を基準にとしたレイノルズ数 \(Re \) は10^4程度である。間欠噴流の場合には磁極の開閉時期と閉閉時期で（それぞれ40 msを実験条件とするので噴流の一周期 \(t_b \) は80 msとなる） \(Re \) が10^4と0に交互に切換わるが、閉閉時期においても乱流残存流れが観察されるから噴流場が静止する時間はないと。

静圧取圧部は図2に示すものを用いた。同図に組み込んだ圧力変換器は容量形（41）のものであり（図2），456 kPaの搬送周波数で振幅変調する方式にて圧力の直流成分から交流成分（10 kHz以上）の応答特性をもっている。圧力変換成分を正しく表されるよう短い取圧管（1=40 mm、固定振動数2 kHz以上）を用いたが、\(\varphi_{5} \times \varphi_{1.6} \)の取圧部を噴流中に置き、変換器を組み込んだ本体を噴流外に置くことにより流れに及ぼすかど乱を最小限に抑えた。

3. データ整理

後述の式（7）にて示される散逸項は2本のI形プローブから得られる流速の差の時間平均値からの偏差を測定することにより求められる。この場合、2本の熱線は互いに3 mm離し、プローブ軸と熱線軸が流れに対して直交し、かつ2本の熱線が流れに直交する平面から見て十字に見えるように配置した。しかしながら、この方法で求めた散逸項はプローブを含めた流速計の応答周波数特性と両プローブが影響し合う流れのせき止め作用により小さすぎる値を与える。この点は散逸に寄与するうが流速形であり、局所流れに乗って移動するとの仮定のもとに場所xに関する微分を時tに関する微分に簡略化して行ったBradburyが同様である。一方、散逸項が正しく求められたとしても、測定には実験的誤差を伴うこととエネルギー方程式を導くために簡略化された項の影響がありエネルギー方程式を構成する各項の総和は零とはなら得ない。そこで、ここでは各項を次のように算出出した。

（1）散逸項を除く他の項の総和が散逸項となることを利用して、それぞれの半径位置における散逸率の推定値 \(\varepsilon_{0} \) を求め、これと直接測定値 \(\varepsilon_{\text{exp}} \) の半径 \(r \) に関する積分値の比 \(\alpha \) を求めた。ここではノズル出口よりはかっ軸方向距離 \(x = 50, 100, 150 \text{ mm} \) 各断面について求めた \(\alpha \) の平均（3.2）を \(\varepsilon_{\text{exp}} \) にかけ合わせ、その結果を \(\varepsilon \) の近似値とした。Wygnanskiの準静止方程式のものでの \(\alpha \) の評価によると（6），再現性に乏しいが2のオーダであることをLauferの円形内測定では2.5という結果を示している。本報の結果はこれらの値と比較して大きいので、その理由は用いた噴流が小規模で、小さな数の影響をとらえることができなかったことと、流速非等方性が強いことによっていると思われる。

（2）つぎに、各半径位置での各項の総和を零とするため残差を各項の大きさに比例させて各項に分配した。すなわち、（1）の方法で得られた \(n \) 個の各 \(T \) (i=1～n)、残差を \(\Delta T \) とすると、 \(T \) の推定値 \(T_{i} \) は式（3）より求められる。

\[
\Delta T = \frac{1}{n} \sum_{i=1}^{n} T_{i} \quad \text{…………（2）}
\]

\[
T_{i} = T_{i} - \Delta T \cdot |T_{i}| / \sum_{i=1}^{n} |T_{i}| \quad \text{…………（3）}
\]

これらの操作により、当然のことながら散逸項の大さくは大きく変わるけれども、他の項の変化は小さく（5%以内）各項の半径方向分布形状が大きく変化することになった。定常噴流で得られた上記の補正係数を用いて非定常徔流の測定値の補正を行った。
4. 乱流エネルギー式

流体が非圧縮性であるとし、ある時間 t における間欠流れのある微小空間内の状態量の時間・空間平均値が、間欠発射の開始から、時間経過に同期してとられた位相平均値に等しく、その点の真の乱れ強さが位相平均からの偏差の二乗平均根で表されると考える。このような等式化が間欠発射の到達時期にみられる尖端通過の部分を除いて成立することにはすでに確認されている。

平均値に対して上記記号を、平均値からの偏差に対してをとると、x 方向流速 u, r 方向流速 v, 円周方向流速 w に関する乱流エネルギーを乱流要素の一つと運動エネルギー

$$\frac{1}{2} q^2 = \frac{1}{2} (u'^2 + v'^2 + w'^2) \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots (4)$$

$$\frac{\partial q^2}{\partial t} = -\frac{\partial q}{\partial x} \frac{1}{r} \frac{\partial}{\partial r} (r v q) - \frac{\partial q}{\partial x} \frac{1}{r} \frac{\partial v q}{\partial r}$$

非定常項

$$-2 \left[\frac{u'^2}{\partial x} \frac{\partial u'}{\partial x} + \frac{u'^2}{\partial r} \frac{\partial u'}{\partial r} + \frac{v'^2}{\partial r} \frac{\partial v'}{\partial r} + \frac{w'^2}{\partial r} \frac{\partial w'}{\partial r} \right] - \frac{2}{\rho} \left(\frac{\partial P'}{\partial x} + \frac{1}{r} \frac{\partial r P'}{\partial r} \right) - 30 \nu \left(\frac{\partial u'}{\partial x} \right)^2$$

圧力輸送項

$$\text{拡散項} = -2 \varepsilon$$

図 3において $x = 50, 100, 150 \text{ mm}$ 断面における非定常項を除く他の 5 項の大きさを無次元半径 r/D に対してプロットしている。また、各項を構成する成分の大きさを調べたためと、Sami, Wygnanski, Bradburyらの論文では、非定常項についての分布について述べられていなかったこともあり、図 4 に対流、拡散、生成、圧力輸送各項を構成する各成分の分布を示した。各項は式 (7) の非定常項が増大する傾向を示していた。これをより詳しく見てみると、従来の研究と比較すると次のようになる。

(1) 図 3 に示したエネルギーフラックスの分布は全体に見ると Sami の場合に近い曲線をなしている。Sami の実験は $x/D = 1, 3, 6, 10$ において行われしていて、ノズル出口平均流速を用いて無次元化されているから、本報の

図 3 定常噴流のエネルギーフラックス

NII-Electronic Library Service
値をSamiの値と比較するためには2.11を本報の値にかけ合わせるとよい。たとえば、x/D=10における生成項の最大値はSamiでは0.00153、本実験では0.00125であり、両者の差は小さい。

(2) 対流項において、第1項と第2項は互いに符号が反対で類似した半径方向分布をなしている。x=50mmでは両項の大さきが同程度であるが、x/D<0.5とx/D>1.2では第2項のほうが大きいため対流項としては負となる。x=100mmでx/Dが小さいときには第1項が第1項より小さくなるため対流項は相対的に大きくなる。x=150mmでは第1項のみが残続し、生成項、散逸項と比較しうるほどになる。

(3) 扩散項においては、x=100mmでは第2項が第1項の5倍程度である。x=50mmでは第2項のみが著しく、対流項、散逸項と同程度全体の収支に寄与するが、x=150mmでは第2項も小さくなるため全体の収支に及ぼす影響は小さい。

(4) 流れのせん断作用によりつくられる生成項は全体のエネルギー収支において優勢である。この項はx=50mmのようにせん断が強い所では他項に対し支配的であり、対流、拡散、散逸項と釣り合っているが、x=150mmでは散逸項と釣り合う分布に変化していく。成分分についてみると第4項は他項に比較して2けた小さく、第2項が支配的であり、第1項と第3項は互いに符号が反対で相殺しうる大きさである。

(5) 壓力輸送項においては、第2項が支配的であり、測定された全領域において第1項より1けた大きい。また、この輸送項はエネルギー収支において他項よりも劣勢である。Samiは概算により、この項は噴流全体を通して拡散項と同程度の大さきであり、かつ同じ分布をなしていると推測した。測定結果から、両者はかなり異なる分布をなしすることが明らかであり、この推測は当てはまらないことが知られる。

5-2 間欠噴流の乱れ構造 図5においてx=100mmでのuの半径方向分布を実線で、中心軸上のuの経過を破線で示している。間欠噴流の特徴は、
図6 長さスケール L_e
図7 マイクロスケール λ
図8 間欠噴流のエネルギー取支
間欠噴流の構造に関する研究（第2報）

（a）ノズル直後の流速経過はほとんど長方形形であるが、次に進むにつれて、噴流の先端部の流速と仮定加速度が上昇し、$x = 100 \text{mm}$付近で図5のような先端形が観察される。

（b）それに続く流れにおいて、$x = 100 \text{mm}$で$\eta_{i} = 0.6$の半径方向流速分布は$r/D > 1$の噴流のすそ部分が定常流における場合より高流速である点を除くと定常噴流における分布とほとんど一致する。

このように、$x = 100 \text{mm}$($x/D = 10$)断面での噴流形状が間欠噴流の特徴を含んでいるので、以降では$x/D = 10$における流れ構造について観察する。

乱れの長さをスケールL_{r}とマイクロスケールr_{0}の変化を図6と図7に示す。これら2図より、乱れの長さスケールは流速u_{r}乱れエネルギーu_{r}^{2}の大きさの付近で大きく、大きな時間的な変化と場所的変化を伴うことが認められる。マイクロスケールは噴流の全期間を通してあまり変化せず、むしろr, \tilde{r}の増減と反対の傾向を示す。

図8は間欠噴流の全エネルギー収支を対流、拡散、生成、圧力輸送、散逸、非定常の順に示している。これらの図から間欠噴流の特徴点を見い出す次のようになる。

（1）非定常項の変化が小さくなる$t/t_{i} > 0.5$では他の項の分布形状は以下述べる一部の相違を除いて定常噴流におけるその他の項に近い。

（2）対流項は定常噴流における場合と同様に場所により複雑な変化をなす。このことは第1項と第2項が場所により変化を伴うことを意味する。

（3）拡散項と圧力輸送項は定常噴流では他項よりも劣勢であったが、中心軸上のrの変化が小さくなる時点($t/t_{i} = 0.6$)で他項と同程度の大きさとなっている。とくに圧力輸送項は$r/D = 2$の噴流周辺部で負の最大となり、しかかも、対流、拡散項と釈合する大きさとなる。この点の絶対値はrが大なる場合を含めた他項の最大値よりも小さいが、断面のエネルギー積分値に占める比重が大いから、このことは間欠噴流においては圧力輸送項が無視し得ないことを意味する。

（4）散逸項の分布は定常時と似かよっているが、流速の変化はまたは乱れエネルギーの変化に対応して変化している。

（5）非定常項は、本来のことながら、尖端流速の到達時($t/t_{i} = 0.2$)に最大かつ正の分布を示しているが、$t/t_{i} > 0.4$では半径方向にわたって負となり、その最大は生成項が最大となる半径位置で生じている。

6. 結 言

燃焼研究に応用する規模の円形ノズルから噴射される定常噴流と間欠噴流の乱流成分を測定し、それぞれのエネルギー収支を比較した。得られた結果を要約する次のようにある。

（1）小口径のノズルから噴出される定常噴流の無次元エネルギー各項はSamiの大口径噴流における各項とほとんど相違した値と半径方向分布を示す。しかし、圧力輸送項に関しては、Samiの概要に基づく結論（圧力全領域において拡散項と同程度であり、同様な半径方向分布をなす）とは異なり、両者がかなり相違する分布を示すことがわたった。

（2）定常噴流のエネルギー成分各項について、対流項の各項は場所により異なった差があり比率となること。生成項では第2項が支配的であり、第1項と第3項は互いに相殺し相殺し合う大きさであると、第4項が最小であること、さらに、拡散項において第2項が支配的であることが知られた。

（3）間欠噴流において、乱れの長さスケールは乱れエネルギーに対応して変化するが、マイクロスケールは噴流の全期間を通してあまり変化しない。

（4）間欠噴流においては半径の大なる位置で、拡散項と圧力輸送項が無視できなくなるほど大きくなる。半径が大きい位置の値は断面のエネルギー積分値に占める比重が大きいから、これらの項が重要で得られた間欠噴流の流量増加などの特徴を形成しているものと推測される。

文 献

（1）田中，機論，49-448，B（昭58），2783。
（2）Sami, S., J. Fluid Mech., 29-1 (1967), 81。
（3）Wynanski, L. and Fiedler, H., J. Fluid Mech., 38-3 (1969), 577。
（5）田中・ほか2名，機論，49-437，B（昭58），71。
（6）田中・ほか2名，機論，48-431，B（昭57），1247。
（7）Laufer, J., NaCA Rep., 1174 (1954), [文献(3)に掲載]。
（8）田中・ほか2名，機論，48-427，B（昭57），554。