The Gravity Controlled Film Condensation of Saturated and Superheated Binary Vapour Mixtures on a Vertical Plate

by Shigeru KOYAMA, Masaharu WATABE, and Tetsu FUJII

The gravity controlled film condensation of saturated and superheated binary vapour mixtures on a vertical plate is theoretically treated. Similarity solutions are numerically obtained for ethanol-water and air-water mixtures. It is revealed that the buoyancy force due to temperature difference is important as well as due to concentration difference and convective heat transfer is appreciable for superheated vapour and that the temperature distribution in the vapour boundary layer is markedly affected by the diffusion flux toward the vapour-liquid interface. New correlation equations of heat and mass transfer are derived from the numerical results. These equations can be reduced to the equations of condensation of saturated and superheated pure vapours, simultaneous heat and mass transfer for very small diffusion velocity, and single-phase free convection.

Key Words: Phase Change, Gravity Controlled Condensation, Binary Vapour Mixture, Saturated Vapour, Superheated Vapour, Vertical Plate, Numerical Analysis

1.緒言

2成分混合気の鉛直平板上の層流体積流量流膜状凝縮に関しては、Sparrow - Eckert (10)，Sparrow - Lin (12)，Minkowycz - Sparrow (13)，Sparrow - Marshall (14)およびRose (10)の研究などがあり、理論的問題点を捏造し尽くされているようにみえる。しかし、Roseの近似解を除けば、それらは2成分混合気（主に空気・水）の条件に限定して計算を行ったものであり、それらの結果は推奨値として取扱った場合との伝熱量値で示されている。したがって、条件が異なる場合にはそれらの結果を直接利用することはできず、あらたに複雑な計算を行う必要がある。

本報では、エタノール・水、空気・水の飽和および過熱2成分混合気について、若干の仮定と二相境界層モデルを用いて得られる比較的厳密な近似解を数值的に解く。そして、その結果を各種実験パラメータを用いて式化し、物質伝達および熱伝達を簡単に予測する方法を提案する。

記号

\(C, C_t \)：定数（式(11)および式(10)）
\(c_p, c_p^s \)：混合気および成分の定圧比熱
\(c_s \)：比熱比
\(S \)：速度関数（式(52)
\(C(S_c) \)：数を \(P_c \)に置換した関数

関数

\(F(\eta), F(\eta_2) \)：無次元流れ関数（式(6)および式(5)
\(G_{ac}, G_{al}, G_{cl} \)：グラシオフ数（式(35)
\(G_{es} \)：グラスホフ数（式(49)

\(g \)：重力の加速度

\(j_e \)：成分1の拡散質量流束

\(L_a \)：成分の凝縮の潜熱

\(M_a \)：成分の分子動量

\(M^* \)：無次元全凝縮質量流束（式(72)

\(M_{ac}, M_{al}, M_{cl} \)：成分の無次元凝縮質量流束（式(34)

\(m_{ac} \)：成分の局所凝縮質量流束

\(N \)：浮力に関するパラメータ（式(51)

\(N_{ac}, N_{al}, N_{cl} \)：局所スセルト数（式(64)，(63)および式(62)

\(P \)：圧力

\(P_c, P_{ac} \)：プラントル数

\(= \mu c_p/\lambda, = \mu c_p/\lambda \)
\(Q_{\text{ex}}, Q_{\text{ew}} \)：気液界面における無次元の縮密および対流伝熱量

\(q_{\text{ex}} \)：気相の局所対流熱流束

\(q_{\text{ew}} \)：気液界面での局所熱流束

\(q_{\text{ew}} \)：伝熱面での局所熱流束

\(R_{\text{ph}} \)：比熱体積比

\(S_{\nu} \)：シュミット数

\(S_{\alpha} \)：シャウド数

\(T \)：温度

\(T_{s} \)：圧力と重力から求めた飽和温度

\(\Delta T_{a} \)：過熱度

\(U, V \)：xおよびy方向の速度成分

\(W_{a} \)：成分kの質量流速

\(x \)：平板先端までに達った距離

\(y \)：平板からその法線方向に達った距離

\(\alpha_{\text{ex}}, \alpha_{\text{ew}}, \alpha_{\text{w}} \)：局所熱伝達係数（式（61）, （60）および式（59））

\(\beta_{\nu} \)：局所流動伝達係数（式（45））

\(\delta \)：液膜厚さ

\(\eta, \nu \)：相似変数（式（4）および式（3））

\(\Theta_{\text{ex}}, \Theta_{\text{ew}}, \Theta_{\text{w}} \)：無次元温度（式（9）および式（8））

\(\Theta_{s} \)：無次元飽和温度

\(\lambda \)：伝導率

\(\mu \)：粘度

\(\nu \)：動粘度

\(\Pi_{\text{ex}}, \Pi_{\text{ew}} \)：気液界面の相平衡の式（式（37）および式（38））

\(p \)：密度

\(\Phi_{\text{ex}}, \Phi_{\text{ew}} \)：無次元密度（式（7））

\(\chi_{\text{ex}}, \chi_{\text{ew}} \)：浮力に関するパラメータ（式（35）および式（69））

\(\Psi_{\text{ex}}, \Psi_{\text{ew}} \)：流れ関数（式（2）および式（1））

\(\Omega_{\text{ex}}, \omega_{\text{ew}}, \omega_{\text{w}} \)：浮力に関するパラメータ（式（48）, （18）および式（17））

添字

\(i \)：気液界面での値

\(L \)：液膜での値

\(x \)：位置xでの値

\(\omega \)：伝熱面での値

\(\infty \)：周囲流体での値

\(\gamma \)：外部気体圧に関する微分

ただし、添字Lに対応した位置に添字がないものは混合気相境界層に関する値を示す。

2. 基礎式およびその解法

2.1 基礎式

図1に示す気液界面における無次元の縮密および対流伝熱量に対する物性モデルおよび座標系を示す。

\[x = \text{平} \]

\[y = \text{平} \]

\(\delta \)：液膜厚さ

\(\gamma \)：重力の加速度

\(P \)：圧力

\(\Delta T_{a} \)：過熱度

\(T_{s} \)：温度

\(W_{a} \)：成分k（k=1, 2）の質量流速

\(U \)：平板およびy方向の速度成分

\(\alpha_{\text{ex}}, \alpha_{\text{ew}}, \alpha_{\text{w}} \)：局所熱伝達係数

\(T \)：温度

\(\Delta T_{a} \)：過熱度

\(U, V \)：xおよびy方向の速度成分

\(W_{a} \)：成分kの質量流速

\(\alpha_{\text{ex}}, \alpha_{\text{ew}}, \alpha_{\text{w}} \)：局所熱伝達係数（式（61）, （60）および式（59））

\(\beta_{\nu} \)：局所流動伝達係数（式（45））

\(\delta \)：液膜厚さ

\(\eta, \nu \)：相似変数（式（4）および式（3））

\(\Theta_{\text{ex}}, \Theta_{\text{ew}}, \Theta_{\text{w}} \)：無次元温度（式（9）および式（8））

\(\Theta_{s} \)：無次元飽和温度

\(\lambda \)：伝導率

\(\mu \)：粘度

\(\nu \)：動粘度

\(\Pi_{\text{ex}}, \Pi_{\text{ew}} \)：気液界面の相平衡の式（式（37）および式（38））

\(p \)：密度

\(\Phi_{\text{ex}}, \Phi_{\text{ew}} \)：無次元密度（式（7））

\(\chi_{\text{ex}}, \chi_{\text{ew}} \)：浮力に関するパラメータ（式（35）および式（69））

\(\Psi_{\text{ex}}, \Psi_{\text{ew}} \)：流れ関数（式（2）および式（1））

\(\Omega_{\text{ex}}, \omega_{\text{ew}}, \omega_{\text{w}} \)：浮力に関するパラメータ（式（48）, （18）および式（17））

添字

\(i \)：気液界面での値

\(L \)：液膜での値

\(x \)：位置xでの値

\(\omega \)：伝熱面での値

\(\infty \)：周囲流体での値

\(\gamma \)：外部気体圧に関する微分

ただし、添字Lに対応した位置に添字がないものは混合気相境界層に関する値を示す。
飽和および過熱の二成分混合気の鉛直板上での層流体積力対流模様凝縮

される。そこで、相対変数 \(\eta \) および \(\eta \)、無次元流れ関数 \(F(\eta) \) および \(G(\eta) \)、成分 1 の無次元温度 \(\Phi(\eta) \)、および無次元温度 \(\Theta(\eta) \) をそれぞれ次のように定義する。

\[
\eta = C y / \eta_0 \quad (3)
\]

\[
\eta = C (y - \delta) / \eta_0 \quad (4)
\]

\[
F(\eta) = - \Psi (x, y) / (4 C \nu \eta_0) \quad (5)
\]

\[
G(\eta) = \Psi (x, y) / (4 C \nu \eta_0) \quad (6)
\]

\[
\Phi(\eta) = (W_i - W_m) / (W_i - W_m) \quad (7)
\]

\[
\Theta(\eta) = (T_i - T_e) / (T_i - T_e) \quad (8)
\]

\[
\Theta(\eta) = (T_e - T_e) / (T_e - T_e) \quad (9)
\]

ここに,

\[
C = (g / 4 \nu \eta_0) \quad (10)
\]

\[
C = (g / 4 \nu \eta_0) \quad (11)
\]

液膜および気相の境界層方程式は、式（1）～（11）を用いれば、次のようになされる。

\[
F_i^2 + 3 F_i F_i^2 - 2 F_i^2 + 1 = 0 \quad (12)
\]

\[
\Theta_i^2 + 3 P c_i \Theta_i = 0 \quad (13)
\]

\[
\Theta^2 + 3 P c \Theta^2 + (P c_i / S_e) (W_i - W_m) \Theta^2 = 0 \quad (14)
\]

\[
\Theta^2 + 3 P c \Theta^2 + (P c_i / S_e) (W_i - W_m) \Theta^2 = 0 \quad (15)
\]

\[
\Theta^2 + 3 P c \Theta^2 + (P c_i / S_e) (W_i - W_m) \Theta^2 = 0 \quad (16)
\]

ここで、\(P_i \) はプラントル数、\(S_e \) はシュミット数、\(c_i \) は比熱比、添字 \(i \) は \(\eta \) あるいは \(\eta \) に関する微分を示す。また、浮力に関するパラメータ \(\omega_w \) および \(\omega_r \) はそれぞれ次のように表す。

\[
\omega_w = (M_i - M_m) / (M_i - M_m) W_i \quad (17)
\]

\[
\omega_r = 1 / T_e \quad (18)
\]

境界条件は、次のようになる。

\[
\eta = 0 \quad (19)
\]

\[
F_i = 0 \quad (20)
\]

\[
\Theta = 0 \quad (21)
\]

\[
\eta = \infty \quad (22)
\]

\[
F_i = 0 \quad (23)
\]

\[
\Theta = 0 \quad (24)
\]

気液界面での適合条件は、\(\eta = \eta_e \) および \(\eta = 0 \) で

\[
\Phi = R (M_i + M_m) / 3 \quad (25)
\]

\[
F_i = R F_i \quad (26)
\]

\[
F_i = F_i \quad (27)
\]

\[
F_i = R F_i \quad (28)
\]

\[
F_i = 1 \quad (29)
\]

\[
\Theta = [W_i / \eta_0 (1 - W_i / M_i)] R S_e \quad (30)
\]

\[
\Theta = 0 \quad (31)
\]

\[
\Theta = 0 \quad (32)
\]

\[
\Theta = \mu_l (L_1 + L_2 + L_3) / \lambda (T_i - T_e) \quad (33)
\]

\[
\Theta = \mu_l (G_{\text{ax}} / \lambda) \quad (34)
\]

\[
\Theta = \mu_l (G_{\text{ax}} / \lambda) \quad (35)
\]

液膜の層厚と凝縮質量流束の関係は次のように表される。

\[
W_i = \mu (M_i + M_m) / (k - 1, 2) \quad (36)
\]

気液界面においては次の相平衡の関係が成立する。

\[
W_i = \pi (P_i, T_i) \quad (37)
\]

\[
W_i = \pi (P_i, T_i) \quad (38)
\]

2-2 解法 あらかじめ \(P_i, W_i, \eta_i, T_i \) を既定値として与えれば、微分方程式（12）～（16）を、境界条件（19）～（24）を、液気界面の適合条件（25）～（33）およびその他の条件（36）～（38）のもとに解き、6 個の未知数 \(T_i, T_e, M_i, M_m, W_i \) および \(W_i \) を求めることができる。

以下に解法の手順を説明する。

（1）既定条件 \(P_i, W_i, T_i, \eta_i \) を指定。

（2）計算領域 \(\eta, T_i \) および \(F_i \) を仮設定。

（3）代表物性値およびパラメータを計算。

（4）\(F_i \) が既定値として（12）条件式（19）、（20）のものに級数展開法によって解いて得られた次式から \(F_i(\eta_i) \) を求める。

\[
F_i(\eta_i) = F_{i0} + F_{i1} + F_{i2} + F_{i3} + \cdots \quad (39)
\]

（5）式（39）と式（26）～（28）より求めた \(F_i, F_i \) および \(F_i \) を用いて式（14）をルンダ・クック・ギル法で数値的に解き、\(F_i(\eta) \) を求める。

（6）式（15）を条件式（23）、（29）のものに解いて得られた次式に \(F_i(\eta) \) を代入して \(\Phi(\eta) \) を求める。

\[
\Phi(\eta) = 1 - \int_0^{\eta} \exp \left(-3 S_e \int_0^\eta F_i(\eta) d\eta \right) \phi(\eta) d\eta \quad (40)
\]

（7）式（16）を条件式（24）、（32）のものに解いて得られた次式に \(F_i(\eta) \) および \(\phi(\eta) \) を代入して \(\Theta(\eta) \) を求める。

\[
\Theta(\eta) = \cdots \quad (41)
\]
 Hospalおよび過熟の2成分混合気の鉱道板厚上での層流体積対流伝達現象

\[
\int_0^t \exp \left[-3 \tau \int_0^t \left(\frac{f + c^2}{3e^2} (W_{1t} - W_{2t}) \phi \right) dt \right] \frac{d\tau}{d\theta} d\theta \\
\int_0^t \exp \left[-3 \tau \int_0^t \left(\frac{f + c^2}{3e^2} (W_{1t} - W_{2t}) \phi \right) dt \right] \frac{d\tau}{d\theta} d\theta
\]

(8) 式(25), (30)および式(36)から得られる式

\[1 - 3 F_1 S_c = (W_{1t} - W_{2t})/(W_{1t} - W_{2t})\]

(42)

と条件式(22)が与えられた収束半径以内で満足されるまで, \(T_t\) および \(F_{1t}\) をニュートン・ラプラシオン法で修正し, 手順(3)から手順(8)までを繰返す.

(9) \(T_t\) および \(F_{1t}\) が確定したら, 計算領域 \(\eta_t\) が十分であるかどうかを次式で検討する.

\[F_{1t} = 0\]

(43)

計算領域 \(\eta_t\) が不十分であれば, それを大きくして, 再び手順(3)から手順(8)までを繰返す.

(10) 以上の手順により解が収束すれば, 式(21), (31)のもとに解いて得られる次式に \(F_{1t}(\eta_t)\) を代入して \(\Theta_t(\eta_t)\) を求める．

\[\Theta_t(\eta_t) = 1 - \int_0^t \exp \left[-3 \eta_t \int_0^t \left(F_{1t} d\eta_t \right) d\eta_t \right] \frac{d\eta_t}{d\eta_t} d\eta_t \]

(44)

そして, 式(25), (36)より \(M_{ct}\) および \(M_{st}\) を, 式(33)より \(T_t\) を求める.

計算を行った飽和および過熟の2成分混合気はエタノール・水および空気・水の2種類で, それらの物性値の計算には文献(6)および文献(7)の式を用いた．なお, 混合気の代表物性値には \(T_t\) および \(W_t\) における値を, 混合気の代表物性値として \(T_t\) および \(W_t\) に対する相対的な飽和温度における値を採用した．

エタノール・水の計算範囲は \(P = 50\sim 200\) kPa, \(W_{1t} = 0.145 \sim 0.604, \eta_{1t} = 0.1 \sim 0.3, \Delta T_t = 0 \sim 100\) °Cであり, 空気・水の計算範囲は \(P = 50\sim 100\) kPa, \(W_{1t} = 0.022 \sim 0.184, \eta_{1t} = 0.1 \sim 0.2, \Delta T_t = 0 \sim 100\) °Cである．

3. 計算結果

表1に計算結果の一部を示す．\(F_{1t} - \Theta_t\)および \(-\Theta_t\)に関して, 本計算結果とNusseltの理論との差異はそれぞれ最大26%, 0.5および1.4%程度である．表2に, 気相と液相浮力に関するパラメータ \(\omega_t(W_{1t} - W_{2t})\) および \(\alpha_t(T_t - T_l)\) との値を比較してみる．環和および過熟のいずれの場合も, 湿度差に基づく浮力だけでなく, 温度差に基づく浮力も考慮する必要があることがわかる．また, 気相界面における気相の対流伝熱量と全伝熱量との比 \(Q_{aw} / (\Theta_t)\) は, \(Q_{aw} = 100\) °Cで, 最大0.33としてある．このような場合には, 気相の対流熱伝達を無視できない．さらに, エタノール・水系においては \(\eta_{1t} = 0.3\) で \(F_{1t} < 0\) となっているが, これは液相によって気相がanchorしていることを示している．なお, 表記していないが, 拡散項（気相のエネルギーバランスの16の左辺第3項）の影響は, \(-\Theta_t\)に関して顕著に現れるが, その他の境界層に関しては無視できる程度である．

図2に \(F_t, F_{1t}, F_{2t}, F_{3t}\) および \(\Theta_t\) の境界層内の分布例（気相・水系）を示す．分布形に関して特徴的なことを示すことができる．まず \(\eta_{1t}\) が大きな時, 気相境界層厚さ \(\eta_{1t}\) が小さい時, \(\eta_{1t}\) が十分に薄い時, \(\eta_{1t}\) が1 levyに対しても同じであるが, 無次元化後の速度が \(\Delta T_t\) が増すにつれて大きくなる．さらに, 混合気の温度分布はあまり直線的である．

図3に温度分布から求められた無次元温度 \(\Theta_t\) と式(16)から求められた無次元温度 \(\Theta_t\) との差の境界層内の分布例を示す．図3(a), (b)および図3(c)は, それぞれ図2(a), (b)および図2(c)と同一の条件であり, 式(16)中の拡散項がある場合を実線で, 拡散項がない場合を破線で示す．図3(a)では, 無次元化の気相内では過熟であり, 実線と破線との差異は小さい．図3(b)では気相界面の近傍で混合気は過冷となる．この場合実線と破線との差異は大略, 拡散項を無視できないことがわかる．図3(c)は, \(P, W_{1t}\) および \(\eta_{1t}\) が図3(b)と同一であるが, 過冷域は生じていない．なお, 無次元化していないが, エタノール・水系においては, 周囲流体が飽和の場合も気相内の混合気は過熟であった．

4. 物性定数および熟伝達に関する無次元表示

4-1 物性定数

成分1の局所拡散係数を \(j_{12}\) とし, 各項物性定数 \(S_{aw}\) を

\[j_{12} = -\rho_2 \sigma \frac{3}{2} (W_{1t} - W_{2t}) \]

(45)

\[S_{aw} = \beta_2 (\rho_2) \]

(46)

と定義すれば, \(S_{aw}\) は次のようにになる．

\[S_{aw} = (\Theta_t)(G_{aw} S_c) \left[\sqrt{\Theta_t}(\Theta_t S_c) \right] \]

(47)

つまり

\[\Omega_t = \omega_t (W_{1t} - W_{2t}) + \omega_t (T_t - T_l) \]

\[\omega_t \omega_t (W_{1t} - W_{2t}) \Omega_t \]

(48)

\[G_{aw} = \frac{\partial \Omega_t}{\partial \Omega_t} \]

(49)

田中は吸収速度が無視できる程度の熱と物質の対流現象を対流に近似する方法を用いて計算を行うのである．
時移動を伴う自由対流に関する従来の理論的研究を検討し、次の近似式を提案している。

\[S_{ax} = C(S_S) \left[\frac{N}{N+1} - \frac{(S_D/P_s)^{1/2}}{N+1} \right]^{3/4} \left(G_r S_S \right)^{1/4} \] \(\cdots \cdots \cdot (50) \)

ここに,

\[N = \omega (W_t - W_m) / [\omega (T_m - T_t)] \cdots \cdots \cdot (51) \]

\[C(S_S) = 4 \left(\frac{2.4 + 4.9 \sqrt{S_S}}{S_S + 5.5} \right)^{3/4} \cdots \cdots \cdot (52) \]

式(48)の右辺第3項は他の項に比して1けた小さいので、浮力に関するパラメータ \(N \) は次のように近似できる。

\[N = [\Omega_t - \omega (T_m - T_t)] / [\omega (T_m - T_t)] \cdots \cdots \cdot (53) \]

式(53)を式(50)に代入すれば、次式が得られる。

\[S_{ax} = C(S_S) \left[\frac{\chi}{\Omega_t} \right]^{3/4} \left(G_r S_S \right)^{1/4} \cdots \cdots \cdot (54) \]

ここに,

\[\chi = \Omega_t + \omega (T_m - T_t) [(S_D/P_s)^{1/2} - 1] \cdots \cdots \cdot (55) \]

凝縮質量流束が零に近づくと、本相解の物質伝達特性は式(54)と等しくなるはずであるので、式(47)と式(54)より得られる無次元数と境界値との関係を表す次式は1に漸近する。

\[\frac{S_{ax}}{C(S_S) \chi / \Omega_t} \left(G_r S_S \right)^{1/4} = \left(\sqrt{\frac{2}{C(S_S) \chi / \Omega_t}} \right)^{3/4} \cdots \cdots \cdot (56) \]

図4に物質伝達に関する本計算結果を示す。軸測は式(56)で、実線は試行錯誤により選定した。○印および●印はそれぞれ \(\Delta T_m = 0, 50 \)℃および100℃におけるエタノール・水の結果、□印および■印はそれぞれ \(\Delta T_m = 0, 50 \)℃および100℃における空気・水の結果である。計算結果は次式で近似できる。

表1 計算結果の例

<table>
<thead>
<tr>
<th>(\chi)</th>
<th>Ethanol</th>
<th>Water</th>
<th>(\chi)</th>
<th>Ethanol</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega)</td>
<td>0.01</td>
<td>0.01</td>
<td>(\omega)</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>(\phi)</td>
<td>0.1</td>
<td>0.1</td>
<td>(\phi)</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>(T_m)</td>
<td>29.38</td>
<td>29.38</td>
<td>(T_m)</td>
<td>29.38</td>
<td>29.38</td>
</tr>
<tr>
<td>(T_i)</td>
<td>29.38</td>
<td>29.38</td>
<td>(T_i)</td>
<td>29.38</td>
<td>29.38</td>
</tr>
<tr>
<td>(V_{ax})</td>
<td>0.0000</td>
<td>0.0000</td>
<td>(V_{ax})</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>(X_i)</td>
<td>0.0000</td>
<td>0.0000</td>
<td>(X_i)</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>(Z_i)</td>
<td>0.0000</td>
<td>0.0000</td>
<td>(Z_i)</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>(x)</td>
<td>0.0000</td>
<td>0.0000</td>
<td>(x)</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

* \(S_{ax} = \frac{S_{ax}}{C(S_S) \chi / \Omega_t} \left(G_r S_S \right)^{1/4} \), \(\chi = \Omega_t + \omega (T_m - T_t) [(S_D/P_s)^{1/2} - 1] \cdots \cdots \cdot (55) \)
飽和および過熱の二成分混合気の鉛直平板上での層流体積力対流熱損失

\[-\frac{\partial i}{\sqrt{2C(S_i x_i x_i)^{n_i}}} = \sqrt{\frac{1}{2} Y^{n_2}} \]

ことに,

\[Y = (W_i - W_{li})/(W_i - W_{li}) \]

なお，上式と計算結果との差異は±5%程度である。

4-2 熱伝達

伝熱面熱流束 \(q_{ux} \)、界面熱流束 \(q_{ix} \) および気相の対流熱流束 \(q_{ex} \) に対応した局所熱伝達係数 \(\alpha_{ux} \), \(\alpha_{ix} \) および \(\alpha_{ex} \) を

\[q_{ux} = \lambda_i (\partial T_i/\partial y) = \alpha_{ux} (T_i - T_w) \]

\[q_{ix} = \lambda_i (\partial T_i/\partial y) = \alpha_{ix} (T_i - T_w) \]

\[q_{ex} = \lambda_i (\partial T_i/\partial y) = \alpha_{ex} (T_e - T_i) \]

と定義すれば、それらの無次元数 \(N_{ux} \), \(N_{ix} \) および \(N_{ex} \) は次のようになる。

\[N_{ux} = \frac{\alpha_{ux}}{\lambda_i} = (-\Theta_{ix})G_{ix}/\sqrt{\sigma} \]

\[N_{ix} = \frac{\alpha_{ix}}{\lambda_i} = (-\Theta_{ix})G_{ix}/\sqrt{\sigma} \]

\[N_{ex} = \frac{\alpha_{ex}}{\lambda_i} = (-\Theta_{ex})G_{ex}/\sqrt{\sigma} \]

\[\sqrt{\sigma} (G_{ex}) \]

図 5 (a) および図 5 (b) に、それぞれ \(-\Theta_{ix} \) および \(-\Theta_{ex} \) の関係を示す。同一の \((M_{li} + M_{ex}) \) における \(-\Theta_{ix} \) と \(-\Theta_{ex} \) の差異は無視できる程度であり、\(-\Theta_{ix} \) と \(-\Theta_{ex} \) はいずれも近似できる。

\[-\Theta_{ix} = (M_{li} + M_{ex})^{-1} \]

田中は、物質伝達と同様に熱伝達に関しても次の近似式を提案している。

\[N_{ux} = C(P_r) \left(\frac{1 + N(P_r/S_i)^{\alpha_2}}{N + 1} \right) \left(G_{ix} \right)^{\alpha_4} \]

図に、\(C(P_r) \) は関数 \(C(S_i) \) の \(S_{Ti} \) を \(P_r \) に置き換えた関数。浮力に関するパラメター \(N \) は式 (51) と同一であるが、熱伝達の場合は次のように近似する。

\[N = \omega_{ix} (W_i - W_{li})/(Q_i - \omega_{ix} (W_i - W_{li})) \]

式 (67) を式 (66) に代入すれば、次式が得られる。

\[N_{ux} = C(P_r) (x_i/Q_i)^{\alpha_4} \left(G_{ix} \right)^{\alpha_4} \]

図 2 空気-水系における速度、温度および濃度の分布例

(\(P = 50 \text{kPa}, W_{li} = 0.0223, T_e = 81°C \) の場合)

図 3 空気-水系における \(\Theta_i \) と \(\Theta_e \) の分布例

(\(P = 50 \text{kPa}, W_{li} = 0.0223, T_e = 81°C \) の場合)
ここに、

\[\chi_i^* = \Omega_i^* + \omega_i^* (W_i^* - W_0^*) [(P_i^* / S_i^*)]^{1/2} - 1 \]

(69)

物質伝達の場合と同様に、式(64)と式(68)より得られる無次元数と境界値の関係を表す次式は凝縮質量流束が等価に近づくと1に漸近する。

\[N_{neq} = \frac{C(P_r^*) (\chi_i^*)^{1/2}}{\sqrt{2} C(P_r^*) (\chi_i^*)^{1/2}} \]

(70)

図6に気相の対流熱伝達に関する本計算結果を示す。縦軸は式(70)で、横軸は試行錯誤により選定した。○、●、□、△印および■印は図4の記号と同一条件である。参考までに、ΔT_b = 20, 50℃および100℃における過熱エタノール蒸気の計算結果をそれぞれ○、●印および□印で、ΔT_b = 20, 50℃および100℃における過熱水蒸気の計算結果をそれぞれ△、△印および■印で示す。すべての計算結果は±5%以内の精度で次式で近似できる。

\[\frac{\sqrt{2} C(P_r^*) (\chi_i^*)^{1/2}}{\Omega_i^*} = 1 + 1.25 P_r^{1/2} \left(M^* \left[1 - \frac{C_i^*}{2} \right] \right)^{1/2} \]

(71)

ここに,

\[M^* = (m_1 + m_2) \chi_i^* / [\mu (\chi_i^*)^{1/2} (G_{re} / 4)^{1/2}] \]

(72)

5. 結論

飽和および過熱の2成分混合気の鈍直平板上における体積力対流膜状凝縮に関する相対軸を、エタノール・水、空気・水の2種類の場合について数値的に解いた。そして、気相の浮力に関しては、温度差によるものだけでなく、温度差によるものも考慮する必要があること、過熱蒸気の場合には気相の対流熱伝達を無視できること、およびエネルギー式における拡散項の影響は無視できないことを示した。さらに、計算結果をまとめて、物質伝達および熱伝達に関する無次元表示式(57)、(65)および(71)を得た。これらの表示式と気液界面での相対軸式(30)および(33)、液濃度と凝縮質量流束との関係式(36)、および相平衡の関係式(37)および(38)からなる連立代数方程式を解くことによって過熱および飽和の2成分混合気の物質伝達および熱伝達を計算することができる。
飽和および過熱の二成分混合気の鉛直平板上での層流体構造対流膜状凝縮

文献

(6) 藤井ほか2名. 九州大学産業科学研究所報告, 66 (昭52), 81.
(7) 藤井ほか2名. 九州大学産業科学研究所報告, 75 (昭58), 62.
(9) 田中, 九州大産業科学研究所報告, 78 (昭60), 47.