円管内ガス流の遷移域の圧力損失と
熱伝達に及ぼす入口形状の影響∗

小川 益郎**, 河村 洋**

Effects of Entrance Configuration on Pressure Loss and Heat Transfer of Transitional Gas Flow in a Circular Tube

by Masuro OGAWA and Hiroshi KAWAMURA

Pressure loss and heat transfer of a transitional gas flow are affected significantly by the entrance configuration. The friction factor and the heat transfer coefficient were measured using a circular tube with four different kinds of entrance configurations. The Reynolds number at the transition from laminar to intermittent flow was varied from about 1,940 to 9,120. The intermittency factor was measured for heated and unheated flows; and the relation between the intermittency and the friction factor or heat transfer coefficient was examined. Several existing correlations were tested and found to correlate with the experimental results fairly well.

Key Words: Thermal Engineering, Convective Heat Transfer, Transitional Flow, Friction Factor, Heat Transfer Coefficient, Intermittency Factor

1. 緒 言

円管内流の層流・乱流の遷移においては、層流域と乱流域が交差する間欠的な流れの現れがすることが、古くから知られている。層流から乱流へ遷移し始めるレイノルズ数 Re_t は、入口対数の大きさ、つまり乱流入口の形状が大きく影響される。過去の実験によれば、低い例では、$Re_t = 2 \times 10^4$、高い例では 5×10^4 という値も報告されている。

現在、日本原子力研究所で研究開発中の新しい高温ガス実験炉（VHTR）の熱設計上の特徴の一つは、ヘリウムガスを冷却材とし、レイノルズ数が、炉心出口で 3×10^5 と、通常の原子炉と比較して、かなり低い点である。そのため、設計においては、安全性の観点からも、遷移域における冷却材流れの熱流力特性に関するデータを收集する必要がある。しかしながら、円管内ガス流の遷移域について、摩擦係数や熱伝達率のような設計に直接必要となる諸量を、流れの間欠性との関連において調べた研究は少ない。

Wygamnski ら(1) は、遷移域の間欠的な流れについて、

昭和61年4月3日 第63期通常総会講演会において講演、原稿受付 昭和60年9月26日。

** 正員、日本原子力研究所 (延319-11 茨城県水戸郡東海村白方字白根2-4)。
円内ガス流の遷移域の圧力損失と熱伝達に及ぼす入口形状の影響

\[(\Re - \Re_0)/(\Re_0 - \Re_0), \Re_0, \Re_0, \Re_1\] は、各々、\(\gamma = 0\)（層流）、\(\gamma = 0.5\)（湍流）とするレイノルズ数である。

Spriggs\(^8\)は、遷移域の \(\Re\) が 1900 から 2900 という入口状態の十分大きい場合において、\(\gamma\) と \(\Re\) と直線的な関係を与え、摩擦係数 \(f\) を次式で近似した。

\[f = (1 - \gamma)f_1 + \gamma f_2\](3)

ここで、\(f_1, f_2\) は、各々、発達した層流と乱流の摩擦係数 \((f_1 = 16/\Re_0, f_2 = 0.0791 \Re_0^{-0.25})\) である。藤村ら\(^9\)、中西ら\(^10\)、竹野ら\(^11\)は、遷移域における間欠因子に関する実験を行なった。

遷移域における熱伝達は、入口状態の大きい場合について、二神ら\(^12\)が、\(\gamma\) と熱伝達率との関係に与える自然対流の影響を調べている。しかしながら、入口状態が大きく、遷移域の \(\Re\) が高い場合について、遷移域における熱伝達率を実験的に測定し、\(\gamma\) との関係を調べた例は、著者たちの知る限りない。

そこで、本研究では、円内ガス流の遷移域における摩擦係数、および熱伝達率と間欠因子の関係に及ぼす流路入口形状の影響を実験的に調べ、これらのデータを VHTR の設計に資することを目的とした。

2. 実験装置および方法

試験流路管には、内径 \(d\) 19.4 mm、外径 27.2 mm、長さ 5 m の滑らかな垂直円管を用いた。実験では、流路管の下部をプローブに接続し、上方より常温常圧の空気を吸い込んだ。図 1 に、この流路管の概略図を示す。流路管の入口より 464 直径までの非加熱助走区間を、その下流 111 直径を加熱区間にした。加熱は、流路管に巻きつけたシースヒータにより行った。大気への熱損失を補償するために、断熱管と補償用シースヒータを流路管の外側に巻き、流れ方向に七つの区間に分けて、各区間で流体内壁温度と内断熱材温度が等しくなり、補償ヒータの電気入力を調節した。

入口状態の大きさを変えるため、図 2 に示すような No.1～4 の 4 種類の入口部を準備し、流路入口に接続した。No.4 の入口部は、26:1 の絞り面積比を持つ断流管に、直圧力を介して、ハニカムと 5 枚のスクリーンを配置し、できる限り入口乱れを抑制したものです。他方、No.1 では、断流管の間に直径 1.6 mm のトリシングワイヤを入れ、できる限り大きな入口乱れを与えるようにした。No.2 と No.3 は、中間の大きさの入口乱れを与えるために、ハニカムと断流管の間に 10 mm の間隔を設けたものである。

ガス温度と流路内壁温度は、流路入口、出口ガス混合部、外壁表面に取付けた熱電対により測定し、流量は、流路管と流路弁の間に入せる層流型流量計により求めた。圧力損失を測定するために、図 1 に示した 3 本の断流管（P1, P2, P3）を用い、P1-P2 と P2-P3、もしくは P1-P3 の差圧を、測定範囲の異なる 2 台の差圧計により測定した。

間欠因子と間欠数を測定するために、流路入口より 250 直径の位置の管軸上に熱線風速計を挿入した。熟線は、直径 5 μm、長さ 2 mm のタンゲステン線である。加熱実験は、2 線式の熟線を用い、上流側を冷たいとして動作させて圧力損失を測定し、この温度信号を用いて、下流側の熱線からの流速信号を補正した。図 3 に、この測定系の系統図を示す。

実験では、各入口形状に対して、まず、等温流について、摩擦係数と間欠因子の関係を調べ、次に加熱流
について、熱伝達率と間欠因子の関係を調べた。入口レイノルズ数 \(R_e = \frac{\rho u_d d}{\mu} \)、\(\mu \)：密度、\(d \)：断面平均流速、\(\rho \)：入口ガス温度 \(T_i \) における粘性係数の範囲は、等温流では、566～16 500、加熱流では、1 270～13 100 とした。入口無次元流束パラメータ \(q^*(= \frac{q}{\rho C_p T_i}) \)、\(q \)：平均壁流束、\(C_p \)：単位面積当たりの質量流量、\(C_p : T_i \) における定圧比熱）は、0.53×10^{-3} 以下、出口ガス温度は、最高 348 K (75°C) であった。3. 実験結果と検討

3.1 等温流

3.1.1 間欠流の流速変化 等温流について、熱線風速計によって測定した流速のオンログラムを図 4 に示す。入口形状 No. 1 の場合は、Wygnanski ら（19）によるパラメータに相当する。No. 4 では、流速変動が小さい層流層と流速変動が大きい乱流層が、明確に区別でき、スラッグに分類される。No. 2, 3 と後者とはほぼ同様であった。

3.1.2 間欠因子と間欠数 間欠因子 \(\gamma \) は、Kovasznay ら（19）に従い、

\[\gamma = \frac{f}{f} = \lim_{t \to +\infty} \frac{1}{T} \int_0^T f(t) dt \quad \cdots \cdots \cdots \cdots (4) \]

\[I(t) = \begin{cases} 1 : \text{乱流} \\ 0 : \text{非乱流} \end{cases} \quad \cdots \cdots \cdots \cdots \cdots \cdots (5) \]

と表し、間欠数 \(F \) は、ある位置で単位時間に通過する乱流層の個数と定義する。乱流、非乱流の判別は、流速変動のスベクトル解析などによっても行えるが、今回、乱流層の管軸上の平均流速が層流層のそれより低下することを利用した。すなわち、オシロスコープ上で平均流速が高い場合を \(\langle u_i \rangle \)、低い場合を \(\langle u_o \rangle \) として、しきい値を

\[\langle u_i \rangle = \langle u_o \rangle + C_{1u} (\langle u_o \rangle - \langle u_o \rangle) \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots (6) \]

と定め、\(u \) が \(\langle u_i \rangle \) より小さい場合を乱流とし、

図 3 間欠因子と間欠数の測定系

HOT-WIRE ANEMOMETER
LINEARIZER
THRESHOLD
COMPARATOR
OSCILLATOR 10 kHz
AND
LOW PASS FILTER
COUNTER
COUNTER

図 4 遷移域における等温流の流速変化

図 5 等温流の間欠因子と間欠数
円管内気流の遷移域の圧力損失と熱伝達に及ぼす入口形状の影響

きくことは、本流路ではできなかった。逆に、보다近1000を4000〜9000の間にするのも、なかなか困難で、本実験では、図2に示すNo.2, 3のように、入口巻流樐に間接を設けることによりReoを調整した。

竹野らは、鋳鉄直管の流入管に対して、Reo=2100, 円錐形の巻流樐を設けた場合に、Reo=3400, ベルマウスを設けた場合に、Reo=8800に至ったと報告している。

図6に、遷移域のレイノルズ数の幅とReoの関係を示す。Reo<10^4の場合、(Reo-Reo)は、およそ500〜1200の範囲にあるが、100〜200や2000近いという値もあり、入口形状だけでなく、入口での流れ分布などの影響も受けていると考えられる。一方、(Reo-Reo)の値は、300〜500の間に集まっており、スラッグにおいては、乱流層、流れ方向に成長するため、(Reo-Reo), (Reo-Reo)は、管入口からの距離xに依存するが、250直径程度までは、入口形状などの効果のほうが大きいようである。パラの場合は、スラッグの場合より、(Reo-Reo), (Reo-Reo)の値のばらつきは、少ないが、これは、乱流層の成長が小さいためと考えられる。

3-1-3 摩擦係数 次式により摩擦係数fを定義した。

\[f = \frac{d}{4} \frac{dP}{dx} \rho \frac{2}{\gamma} \] (7)

図7に、各入口形状におけるfとReoの関係を示す。入口形状に関係なく、fは、乱流域では、Blasiusの式

\[f = 0.0791Reo^{0.25} \] (8)

層流域では、Shahの半經驗式

\[f_{app}(x)Reo = \frac{3.44}{\varepsilon} + \frac{1.25(4x^*)+16-3.44/\sqrt{x^*}}{1+2.1 \times 10^{-4}(x^*)^{-2}} \] (9)

とほぼ一致している。ここで、x^*=x/dReo である。ただし、式(9)のf_{app}は、入口からxまでの圧力損失dP_{app}を用いて、

\[f_{app}(x) = \frac{d}{4} \frac{dP_{app}}{dx} \rho \frac{2}{\gamma} \] (10)

と定義されているので、ここでは、x_{i}からx_{i}の測定区間に応答するように、

\[f_{i} = \left(f_{app}(x_{i}) \frac{x_{i}}{d} - f_{app}(x_{i}) \frac{x_{i}}{d} \right) \frac{d}{(x_{i}-x_{i})} \] (11)

と補正した値を図示している。

図7の遷移域における実線と破線は、式(3)のf_{i}をf_{i}で置き換えた

\[f = (1-\gamma)f_{i} + \gamma f_{i} \] (12)

であり、計算したものである。ここで、γは式(1)または式(2)の値を用いた。なお、γの測定位置(x'/d=250)と差压の測定位置(x'/d=220)が異なることから、乱流域の成長を考慮して、次式を用いてその差を補正した。

\[\gamma(x'/d) = \frac{\varphi}{\varphi} dP_{app} \frac{d(x'/d)}{d} \] (13)

ここで、u_{r}とu_{r}は、各々、乱流層の下流側、上流側の層流層との境界面の移動速度であり、LindgrenやWygnanskiによって測定された値を用いた。

Fについては、適当な整理式が提案されていないので、図5の実験値を内挿して用いた。

図7より、式(12)を用いて予測されるfの値は、本実験値とかなりよく一致しているのがわかる。

3-2 加熱流

3-2-1 間欠流の流速と温度変化 図8に、加熱流の管軸上における流速と温度のオシログラムを示す。左側のオシログラムは、No.1入口形状で、Reo=
円管内ガス流の遷移域の圧力損失と熱伝達に及ぼす入口形状の影響

2280, qf =6.5 ×10⁻², 右側は No.4 で, Re = 9270, qf =3.3×10⁻²である。No.1 と 4 の流速波形は、等流速の場合と同様に、各々、典型的なパラ、およびスラッグの波形を示している。

温度のオシログラムでは、乱流塊の部分で温度が高く、これは、乱流と層流の流体内温度分布の相異によるものである。温度のオシログラムには、乱流変動が見られないが、これは、冷熱の応答速度が低いため、熱流束が低いため、温度変動幅が小さいことによる。No.4 の温度のオシログラムの乱流塊に相当する部分には、温度上昇が見られるが、これは、乱流塊で次第に温度分布が中心まで発達してくることによる。また、乱流塊の上流側の境界では、流速の場合に比べ、少し緩やかに温度が乱流塊の値から層流塊の値に変化しているのが特徴的である。

3.2.2 間欠因子
図 9 に、加熱流のγとRe の関係を示す。図 9 には、比較のために、等流速のγとRe の関係をも示した。本実験のようにガス流を加熱する場合には、物性値の変化によって局所のパルクレイノルズ数 Re = ρu²d/μs のパルクレイノルズ数 Re = ρu²d/μs のパルクレイノルズ数 Re = ρu²d/μs のパルクレイノルズ数 Re = ρu²d/μs の値を変える（μs: パルクレイノルズ数 Re における μ）は、下流に向かって減少する。Re と γ の関係を求めると、図 9 に見る通り、等流速の場合と非常に異なっているが、Re に対して γを図示すると、加熱流のγも等流速のそれに比較的よく一致している。すなわち、本実験のように火加熱の場合には、式（1）もしくは式（2）において、Re の代わりに Re を与えることによって γ を予測できると述べる。

3.2.3 熱伝達率
熱伝達率 h を次式で定義する。

\[h = \frac{q_w}{(T_w - T_s)} \](14)

ここで、T_w は、内壁表面の温度である。q_w は、加熱ヒータへの電気入力から、流体管壁の流れ方向の熱伝導と断熱材への熱損失を補正して求めた。入口ガス温度差に関する計算値と測定値の差は、測定値の10%以内であり、熱伝達率に与える影響は、20%以内であった。\d を代表長とする流れのレイレイ数は、15 以下であり、浮力の熱伝達率への影響は、ほとんどないと考えられる。

図 10 に、加熱開始点より \(x_s/d = 825 \) の位置におけるスタントン数 S_t (= h/\(G_C_{P_s} \)) と Re の関係を示す。入口形状に関係なく、S_t は、乱流域では、Magee らの(11)の温度助走区間と物性値变化の影響を補正した S_t* である。

\[S_t* = 0.021 R_{\infty}^{-0.4} P_{\infty}^{0.5} (T_w/T_s)^{0.4} \]
\[\times \left(1 + 0.6 \frac{x_s}{d} \right)^{0.6} (T_w/T_s)^{0.4} \](15)

に、また、乱流域では、速度・温度助走区間の影響を補正した S_t* である。

\[S_t* = \left(4.364 + 8.64(10^x)^{-0.508} e^{-4.1x} \right) \]
\[\times R_{\infty}^{0.5} \xi(x) \](16)

に約一致している。ここで、x* = x_s/d (Re \(P_{\infty} \)) であり、\(\xi(x*) \) は、加熱開始点における速度分布の未発達の程度を補正する因子である(12)。

遷移域における S_t について、Spriggs(14)の関係式を S_t に置き換えた関係式

\[S_t = (1 - \gamma) S_t* + \gamma S_t* \](17)

を実線で、二神ら(18)の関係式

\[\frac{S_t - S_t*}{S_t*} = 1 - \sqrt{1 - \gamma} \](18)

を図示する。
円管内ガス流の遷移域の圧力損失と熱伝達に及ぼす入口形状の影響

4. あとがき

4種類の入口形状に対して、円管内ガス流における摩擦係数と熱伝達率を測定した。間欠流の現れる始めるレイノルズ数は、入口形状に応じて、1940から9120まで変化した。間欠因子と摩擦係数や熱伝達率との関係を検討したところ、遷移域の上限、および下限のレイノルズ数が実験から求められれば、既存の整理式は、実験結果をほぼよく整理しうることがわかった。しかし、与えられた入口形状に対して、遷移域の上・下限のレイノルズ数を予測することは、現状ではほとんど不可能である。最近、遷移域を含んだ領域で、機器の熱流力設計を行う必要が生じており、今後、さらにこの分野の経験を蓄積する必要があると考えている。

最後に、本研究の遂行に際し、ご助言、ご助力頂いた日本原子力研究所・高温工学部の藤村雅氏に深く感謝する。

文献

(3) 二村・阿部, 業務大学紀要, 第60巻 (工学), 8-3 (昭51), 167.
(5) 藤村・ほか2名, 機械論, No.804-8 (昭55-11), 52.
(6) 中西・ほか2名, 第8回流体シンポジウム, (昭52), 141.
(7) 竹野・小谷, 第12回流体シンポジウム, (昭55), 35.