カプセル流体輸送に関する基礎的研究*
（第4報，浮揚限界速度および実用輸送速度）

大橋 昭**1, 柳井田 勝彦**2

The Fluid Mechanics of Capsule Pipelines
(4th Report, Analysis of the Lift-off Velocity and Practical Transport Velocity)

Akira OHASHI and Katsuya YANAI
d

Key Words: Fluid Transportation Systems, Capsule Transport, Lift-off Velocity, Practical Transport Velocity, Froude Number, Lift Force

1. 緒 言

水力カプセル輸送と空気カプセル輸送とに共通する合理的な輸送理論を確立する目的で系統的な研究を行った結果、円筒状カプセルの基本的な力学挙動に関する諸特性を高い精度で予測することが可能となった。すなわち、第1報**1ではカプセルを走行させる際に必要な圧力損失特性の一般式を明らかにし、第2報**2にいわし第3報**3においては道路を囲むあるいは傷の状態で走行するカプセルの幾何学的条件で形成される圧力損失特性と、これに関与する速度特性について定式化することができた。

カプセルの輸送機構を正確に記述するためには、前報までに行った一連の圧力損失解析とともに、高度度域で現れる複雑なカプセル運動を理解することも重要である。本研究では輸送流体より密度が大きなカプセルの高速度域における浮揚現象を捉え、この現象を代表する浮揚限界速度と輸送計画における設計基準とし重要な実用輸送速度について解析を試みる。

水力カプセル輸送にはあわせて走行車軸のない円筒カプセルの輸送方式を企画することが多い。この場合に輸送速度の広範囲にわたってカプセルが完全な偏心状態で管底をしつつ動輸送されるが、速度の增大に伴いカプセルの前部が浮揚（nose-up）あるいは後部が浮揚（tail-up）しはじめ、さらにはカプセル速度が浮遊速度近くに達するとカプセル全体が管底を離れ完全に浮揚した輸送状態（lift-off）を形成することが観察される。研究者らのなかには輸送エネルギーの減少と機器の摩擦が抑制されることを理由にあげて、lift-offを最も適切な輸送条件とみなす考え方があり、カプセルがlift-offしてはじめる流体速度で浮揚限界速度（lift-off velocity）に対して少なくとも関心がはらわれてきた。しかし、従来の研究**4**5**6**7にはスラリー輸送における浮遊限界速度の一般性があり設計指針として役立つ成果をほとんど見いだすことができず、また浮揚現象のメカニズムについても合理的な説明が十分になされてはいない。

著者らは、高い速度域にあるlift-offでの輸送が実用上必ずしも有利ではなく、むしろ安定した動輸送状態においてこそ安全で能率的な輸送が実現できるものと考え、かつ水力と空気の浮揚機構に本質的な

* 昭和62年3月14日 関西支部第62期定時総会講演会において講演、原稿受付 昭和61年6月16日
** 正員（株）新堀組技術研究所（〒554 大阪市北区西出深54-3-55）
*** 正員、大阪府立工業高等学校専門学校（〒572 姫路市幸町26-12）
3. 静止カプセル実験

3.1 実験装置および方法

スラリー輸送ならびに空気輸送における撒粒子は、流体の複雑な作用力と粒子自身体の運動的影響を考慮して飛行するものであるが、単純な形状の粗大粒子であるカプセルにあっては、空気の流れがカプセル表面での圧力分布の不均一性に求めることが可能である。よって、図1に示す実験装置を用い、静止カプセル周りにおける円周方向の圧力分布を管路軸に沿い検出し、作動流体には空気を使用し、第2報で評価した水の静止カプセル実験装置を転用している。試験管路（φ92.7 mm）はポリカーボネート樹脂製、供試カプセル（4種類）は塩化ビニル樹脂（PVC）製である。カプセルは管路に完全密閉の状態で固定されているが、カプセルの固定位置が管路中央のことが可能である。管外径には放射状に13点の静圧測定孔（φ1 mm）を設け、管頂部の圧力を基準圧力として各測定孔における圧力変動を測定した。測定孔の配置については第3報の偏心モデルと同様、カプセル軸と管路軸の直交関係を保持するように周辺に配置した。なお、管間距離（φ=π）には測定孔を設置することが困難であるため、管径を飽和外径とした測定孔の圧力値を管頂部の圧力p0とみなした。測定の際、流れ道の側面に取付けた圧力変換器と熱電対で流速を測定した。流体の管内平均流速については、熱線風速計で管路出口速度を測定した後、断熱変化を仮定して圧力測定位置における流速を算出した。

3.2 実験結果および考察

図2は円周方向圧力分布の測定結果を示すものであり、管頂部と所定の位置における圧力分布を基に、管頂部と管底部との差圧（p0−p∞）を無次元化表示している。ただし、カプセル後端近傍の無圧延びおよびこれに連接した影響領域における圧力分布は複雑に変動し、カプセル内圧力分布特性を示す。
明らかにするにはより精密な実験を必要とするため、この領域に相当する測定結果は除かれている。それらの結果によると、カプセル後端に近い部分では比較的直動が確認されているが、後端位置がカプセル上端より x/d=4~5 をこえると大きくずれると急激な分布形をとることがわかった。またカプセル後端近傍のくびれとその直接的な影響域を除き、広い範囲での測定位置にわたって (p_{m0} - p_{m}) > 0 となり管頂部の圧力 p_{m} が最も高く、カプセルを管底に押しつけるように圧力分布を形成することが確認された。したがって、高度堂万においてカプセルの不安定性が強まり、上下運動が現れるようになる時点からこの圧力分布が有効に働きはじめ、一定の浮揚状態を支持するようになるものと思定することができる。

ここで、周方向の圧力分布を定式化するために、速度エネルギー分布を用いた放物式を仮定する。

\[p_{m0} - p_{m} = K_{m} (V_{m0} - V_{m})^{2} / 2 \]

上式の K_{m} は比例係数を示し、また V_{m0}, V_{m} はそれぞれ \varphi = 0 の動径上における十分に発達した二重流の平均速度を表しており、前報(3) では完全衡駐状態について放物式の関係を得ている。

\[V_{m} = V_{m0}(1+\cos \varphi) / 2 \]

すなわち、無次元圧力分布では、

\[(p_{m0} - p_{m}) = \frac{1}{2} (1 - \cos \varphi) \]

となり、図 2 の実験で示すように (x/d<4) の測定結果を近似に表現することができる。したがって、(x/d<4) における圧力分布の近似式として計算式(1)を与える。

次に (p_{m0} - p_{m}) に着目して管軸方向の分布特性を調べてみる。ただし、カプセル形状の圧力損失 \Delta p_{m}

\[\Delta p_{m} = \lambda_{m} \frac{k}{(1-k)} \frac{1}{2} \rho_{m} V_{m}^{2} \]

環状断面の均一速度 V_{m} で無次元化した圧力係数 C_{p} を用い測定結果を整理した。

\[C_{p} = \frac{p_{m0} - p_{m}}{(1/2) \rho_{m} V_{m}^{2} \frac{k}{(1-k)}} \]

ここに、k (k=d/D) は直径比を、\lambda (\lambda=L_{d}/d) はカプセル長さ比を示す。

C_{p} に関する実験結果を図 3 に示す。この結果ではレイノルズ数の影響を詳細に荷さげていないが、実験のレイノルズ数域は十分に大きく、測定結果には \alpha の影響のみがほぼ的確に反映されているものと考える。分布特性について述べると、例えば \alpha = 0.9174 の場合、x/d = 0.3 以下では C_{p} が急減し、しました離端に相当する領域では (p_{m0} - p_{m})<0 となり C_{p} も負荷をとるが、x/d = 0.4 〜 5 では C_{p} が x/d にほぼ比例する。また x/d ≧ 5 〜 6 では一定値に近づきる傾向がみられ、図 2 において

\begin{figure}
\centering
\includegraphics[width=\textwidth]{image1.png}
\caption{円周方向の無次圧力分布}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{image2.png}
\caption{管軸方向の圧力係数分布}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{image3.png}
\caption{圧力係数のマックスと \alpha の関係}
\end{figure}
る圧力分布の変化とよく対応しているのがわかる。
この領域では、離域や二次流れの影響が減衰し、十分に発達した二次流れを形成しているのである。同様な解析を仮定性であるが、\(k = 0.061 \) でも認めることができる。
一方、\(k = 0.822 \) 以下のカペールについては、圧力
が著しく微小であるため測定領域が限られたものとなっているが、ほく離域および二次流れの影響を強く受けて、カペール後部の \(C_p \) が大きく増大することがわかる。
カペールの浮揚力を見積もる際には、\(C_p \) をカペール全体に平均化して取扱うのが便利な方法と考えるが、\(k = 0.822 \) 以下のカペールでは圧力係数
の平均値 \(C_p \) を簡単に求めることができない。それゆえ、実用的にカペール長さの範囲内では \(C_p \) が圧力係数
分布の最大値 \(C_p_{\text{max}} \) に比例するものと仮定しようと
で、図 3 より \(C_p_{\text{max}} \) を推定し、その結果を図 4 に
示し、\(C_p \) と \(k \) の関係を次式で表すこととする。
\[
C_p = \frac{x_2}{l} = (1-k)^{1/3} \frac{x_2}{l} \tag{6}
\]
ここで \(x \) は比例係数を示し、カペールの実用的な長さ
は \(l = 3 \sim 6 \) の範囲にあるので、\(k = 0.9174 \) の場合には
近似して次式を適用することができる。
\[
C_p = 0.0160 \frac{x_2}{l} \frac{l}{x_2} \tag{7}
\]
よって、はく離域とその直接的な影響域（\(x_2/d < 0.3 \)）を
考慮して \(C_p \) を計算したとき次式を得る。
\[
C_p = 0.0160 \frac{x_2}{l} \frac{l}{x_2} \frac{d}{x_2} \tag{8}
\]
さらに、上式の \(C_p \) 値を用いて式 (6) の \(x \) 値を求め
ると、
\[
x = (0.079 \log l + 0.096 l) \tag{9}
\]
となり、\(l = 3 \) では \(x = 0.061 \)、\(l = 6 \) では \(x = 0.093 \)
を得る。

いま、\(k = 0.9174 \) のカペールについて示された \(x \) 値をすべての \(k \) に適用することができ、かつ実用的な
カペール長さにおいて式 (3) の圧力分布が成立するものと仮定し、式 (1) の \(k \) を決定する。ただし、カペール
の前端が圧力分布に及ぼす影響と、カペール後端近傍（\(x_2/d < 0.3 \)）における圧力の作用力は無視するものと
する。式 (5) の \(C_p \) に \(C_p \) を代入し、さらに式 (1) を用
いると次式を示すことができる。
\[
K = C_p (V_d/V_p) 1/2 \tag{10}
\]
ここで \(V_d \) と \(V_p \) の関係を導くと、まず、カペール環
状部の流量 \(Q \) を次式で与える。
\[
Q = \int_{0}^{l} \int_{0}^{r} R \cdot RdR \cdot dp \tag{11}
\]
これに、\(R \) は \(\varphi \) 上の任意距離を表し、カペール外径の
距離 \(R_1 \) と管路の距離 \(R_2 \) は前報 (12) によると近似的に、
\[
R_1 = -(r_2 - r_1) \cos \varphi / 2 + r_1 \tag{12}
\]
\[
R_2 = -(r_2 - r_1) \cos \varphi / 2 + r_1 \tag{12}
\]
であり、式 (2) と式 (12) を代入して式 (11) を積分する
と次式を得る。
\[
Q = (8/3)(d - r_1) \cdot V_p \tag{13}
\]
一方、流束は次式でも表すことができ、
\[
Q = \pi (r_2 - r_1)^2 V_p \tag{14}
\]
流体の速度比として次式を示すことができる。
\[
V_d/V_p = 0.848 \tag{15}
\]
よって、式 (6)、(15) を用い式 (10) を次式のように
書きかえる。
\[
K = 0.720 \pi (k(1-k))^{1/2} \tag{16}
\]

4. 浮揚限界速度の解析

カペールを管頂部でも支え得るような圧力状態下で
は、カペールが不安定になり三次元的な運動も起こ
されるよう、よって、この状態を含む連続性の Lift-off 限界
に対応するものと考え、静止カペール実験の考察結果
を適用して浮揚限界速度に関する一般式を明らかにする。
まず、静止カペールに働く単位長さ当たりの浮揚
力 \(F_L \) は次式のように評価することができる。
\[
F_L = -2 \int \left(\rho_0 - \rho \right) \cdot R \cdot C_p \cdot \varphi \cdot dp \tag{17}
\]
上式に式 (1)、(2)、(12) を代入すると次式を得る。
\[
F_L = \frac{\pi}{8} K \rho_0 V_d (r_2 + r_1) \tag{18}
\]
一方、浮力を考慮した単位長さ当たりのカペール重
量 \(W \) は次式で示される。
\[
W = \pi r (s - 1) \rho \tag{19}
\]
静止カペールの浮揚限界速度は釣り合い式 \(F_L = W \)
よりただちに求められるが、走行カペールでは流体と
カペールの相対速度を考慮する必要がある。したがっ
て、第 2 報 (12) の解析方法を踏まえ、カペール速度 \(V \)
が周方向の速度分布における最大平均速度 \(V_0 \) に直
接関与するものとみなし、カペールの相対速度 \(\omega \)
(1-k) と式 (18) に導入する。すなわち
\[
F_L = \frac{\pi}{8} K \rho_0 V_0 (V_0 - V^2) \tag{20}
\]
よって、式 (15) を用い \(F_L = W \) を計算すると、浮揚時
の \(V_0 \) を表す浮揚限界速度 \(V_o \) として次式を得る。
\[
V_o = \frac{\sqrt{(1-k) k (1-k) 8 \rho_0 \pi r}}{2 \pi} \tag{21}
\]
ここに、カペール速度は次式で表す。
\[
R = V_0 / V_o = (1 \pm |k|) V_o \tag{22}
\]
また管路内の平均速度 \(V \) を用いると式 (21) は次式の
ように書きかえることができる。
\[
V_o = \frac{\sqrt{(1-k) k (1-k) 8 \rho_0 \pi r}}{2 \pi} \tag{23}
\]
さらに、浮揚時の限界フロード数を以下に示す。

$$Fr_{ad} = \left(\frac{V_{ad}}{\sqrt{gD}} \right)$$

$$= \frac{2k(1-k^2)}{K_{Fr}(1.178-R_e)(1+k)^{1/2}}$$ \hspace{2cm} (24)

$$Fr_{a2} = \left(\frac{V_{a2}}{\sqrt{gD(s-l)}} \right)$$

$$= \frac{2k(1-k^2)}{K_{Fr}(1.178-R_e)(1+k)^{1/2}}$$ \hspace{2cm} (25)

式(25)の修正フロード数はカプセル密度の相似性を含む無次元数であり、スラリー輸送でも広く慣用されているので、この式に基づいて本解析の予測精度を検討する。なお、カプセルに着目したフロード数は次式のように表記され、方が相似条件としては本質的に述べている。

$$Fr_{a2}^* = \left(\frac{V_{a2}}{\sqrt{gD(s-l)}} \right)$$

$$= \frac{2k}{K_{Fr}(1.178-R_e)(1+k)^{1/2}}$$ \hspace{2cm} (26)

5. 浮揚カプセル実験

5-1 実験装置および方法 非走行 ($R_e=0$) の浮揚カプセル実験を行い、式(25)で予測した浮揚限界フロード数を検証する。実験装置の概要を図5に示す。

図5 浮揚カプセル実験の装置概要

実験装置は第1報で詳細した定常走行の実験装置と同様構成をもち、水力と空気を用いできる。水平に設置された実験管路 (452mm) は透明ポリカーボネート樹脂製であり、供試カプセルは、水力の場合 ($k=0.900-0.500$, $l=3$) の形状をもつ PVC 製の中空カプセルを、また空気の場合には ($k=0.923-0.615$, $l=3$) の PVC 製中空カプセルを使用した。カプセルはナイロンの張り革を用いて上流側と結ばれであり、所定の管路位置に制限しながら自由に管内を浮揚できる。浮揚過程の観察および浮揚限界速度の測定は目視で行った。測定に当たっては、管路中心軸の水平位置にレベル測定器を設置し、カプセル中心軸の平均的な運動位置が管路軸に達する状態、すなわちカプセルが管路とほぼ同心状態になる時点を浮揚限界とした。また浮揚過程がtail-upからlift-offに至る場合には、カプセル前面の中心が管路軸まで浮揚した時点を浮揚限界とした。

5-2 実験結果と考察 浮揚過程におけるカプセルの運動状態を3種類（lift-off, tail-up, up & down）に分け、それぞれの開始点を示すフロード数を図6にまとめてある。測定値は5ケースの平均値であるが、kが小さくなるほど再現性が低下する傾向にあり、本実験のR_e範囲では±10%～±20%程度のばらつきをもつ目視による測定精度が得られている。ここでtail-upはカプセル後部が管壁にほとんど接していない状態を表すが、kが小さくなると流体速度の増減過程はtail-up速度に差が現れるので、この場合には減速過程で得られる下限速度を測定値としている。

水力カプセルの挙動を以下に要約する。

(1) すべてのカプセルでnose-up はおこらず、tail-up が頻出する。

(2) ($l=3$, $k=0.781$) および ($l=5$, $k=0.810$) ではtail-up およびlift-offが明確に現れ、lift-off後は
わずかに前傾姿勢をとりながらだたに管頂へ回旋する。
（3）（l = 3, 3 ≤ 0.740）および（l = 5, 3 ≥ 0.615）ではtail-upがほとんど認められず、カプセル全体の間欠的な上下自動を起こしlift-offによると、とくに、3 ≥ 0.615では管内をゆっくり回旋するようになる。
（4）（l = 5, 3 ≥ 0.615）ではlift-offによる前傾姿勢を保つながらlift-offする。なお、3 ≥ 0.740ではtail-upが流体の減速過程にのみ現れる。
Lift-offの測定結果については、（l = 3, 3 ≥ 0.781）と（l = 5, 3 ≥ 0.740）のカプセルが式（25）の予測値よく一致している。これらの3の範囲ではカプセルの動揺も少なく安定した走行を期待することができます。パインドラインの曲りや变形などを考慮して3の上限を与えると、カプセルの実用範囲として3 = 0.90～0.75を推し進むことができる。一方、（l = 3, 3 ≥ 0.740）と（l = 5, 3 ≥ 0.615）では測定値が予測値を大きく上まわり、ほぼ一定のフールド数を示している。このフールド数はスリリー輸送の浮遊限界速度に関する結果（4）に近似した値であり、3の小さなカプセルとスリリーとの関連性をうかがわせる。また、図5の点線はFrを54%ないし55%の値を示すもので、浮揚限界速度の50%前後でtail-upが発生することがわかる。図7に浮揚過程の観察例を示す。
5-3 空気カプセルの実験結果と考察
測定結果を図8に示す。空気カプセルではtail-upが認められず、流体速度の増加に伴いカプセルが管壁で激しく振動しながら間欠的に回転を繰り返し、そして瞬間にlift-offに達する。lift-off後はカプセルが激しく回転するとともに、管壁に衝突しながら管内を旋回する。したがって、lift-off時点は明確に判別でき実験の再現性も良好で、±7%の精度を得た。測定値は3の広い範囲にわたって予測値よく整合している。なお、浮揚限界速度の50%付近からカプセルの振動が著しくなり、この状態が水力におけるtail-upに対応するものと考える。
6. 浮揚限界速度および実用輸送速度の考察
6-1 走行時の浮揚限界速度
Liddle（14）の研究は、水平管内を水力で走行する円筒カプセルの挙動を写真観察で詳しく検討したものであり、浮揚限界速度に関する実験的研究として唯一のものとしている。そこで著者らは、Liddleの実験結果を利用して走行カプセルに対する式（25）の予測精度を確かめる。
Liddleは、水の密度に近いごく軽量のカプセル（s = 1.02～1.15）に限定して実験を行い観察結果を整理した結果、次式の関係式（著者らが図より導出）を得た。
\[Fr_{cr} = 7.5(s-1)(1-3L/D)^{1/2} \]
なお、Liddleはカプセルを含む流動流の平均速度を用いているが、単一カプセルの輸送ではこの速度が流体の管内平均速度Vsに一致する。
水力カプセル実験でのlift-off領域はRs = 1以上の速度域で実現する。いま、lift-offがはじまる速度条件としてRs = 1を定め走行時の浮揚限界速度を推定する。
すると、式(24)、(25)より次式を得る。

\[Fr_{w} = \frac{11.23k(1-\beta)}{K_{w}(1+\kappa)^{1/2}} \] (28)

\[Fr_{s} = \frac{11.23k(1-\beta)}{K_{s}(1+\kappa)^{1/2}} \] (29)

Liddleの実験条件と解析手法を従い、式(28)を適用して予測値をプロットした結果が図9である。予測値の分布はLiddleの実験データのそれより少し大きいが、式(27)との相関性は明るように示されている。Liddleの実験条件の妥当性を解析的に裏づけるとともに、本解析の予測式が浮揚限界速度の相関条件を精度に規定していることを確かめることができた。

図10に示されるように、非走行時（Fr=1）と非走行時（Fr=0）の浮揚限界フロード数は理論的に示されている。この図は力と空気に対するものであるが、空気カプセルにとっては限界フロード数が極めて過大であり、lift-offを現実化することがほとんど不可能である。

6-2 浮揚力と浮揚機構

一般に、流体中物体に働く揚力は物体周りの速度場の非対称性に起因するさまざまな力が複合し合したものであり、なかなか壁面近くでは速度こう配が大きくなる揚力も弱くなる。それゆえ、カプセルに働く力の変動を示すため、前述の不均一な速度分布による浮揚力だけでなく、複雑な速度場から生じる各種の力が関与する。以下、これらの力がどのようにカプセルの浮揚過程に寄与するのかを推察し、浮揚機構の合理的な説明を試みる。

(1) 非走行時の水力カプセル 流体速度の増加に伴い、まずカプセル後部における二次流れと、さらに揚程が増大するかのように、揚程の変動を受けて後部が浮揚しそうに、ついでカプセル前部・後面の差圧の成り立つモーメントの働く前傾姿勢を強め、lift-offする。さらに揚程と前傾姿勢に対する抗力が増大してカプセル前部を浮揚するために、lift-offに達する。lift-off以上の速度域では圧力分布に依る浮揚力が強まりカプセル重力の大さき向上するので、管付近においても浮揚する前傾姿勢を保ちながら安定した浮揚状態を維持するようになる。

(2) 非走行時の空気カプセル

この場合には、カプセル前部の二次流れと、それに波の非対称力が働いて、カプセル全体が瞬間的にlift-offする。lift-off後は流速が動的にカプセルが管内を旋回するようになり、安定した浮揚状態を保つことができない。なお、水力カプセルでも同じく影響すると、空気カプセルと類似した過程で浮揚するようになる。

(3) 走行時の水力カプセル

カプセルが走行すると管付近に一定速度の流体部分がカプセルに対して近寄ると、カプセル前部の流速が増し、また二次流れの力も発生する。よって、カプセルの増速に伴い、これらの作用力が強まる。後流の非対称力と相まってカプセル前部が浮揚し、特にno-scale-upのノースアップモーティメントを示す。なお、カプセル前部・後面の圧力分布も、lift-off以上に増し、圧力分布に基づく浮揚力が大きく増えるとは限らない。これのためにlift-off後はカプセルが管内を動的に中立状態で釣合せばよいことになる。従来の走行実験ではno-scale-upとみられが、速度の立ち上がりが遅く比較的重いカプセルでは、非走行時のカプセルと同様にtail-upの発生も予想することができよう。

6-3 実用速度の範囲

水力カプセルの浮揚現象はカプセル重力とその運動力との微細な釣合いから成り立つものであり、カプセルの上下運動を含む不安定な走行状態を示す。この状態での推進はカプセルの管路を損傷し、拍動、騒音を生じさせる。また、流体の運動によく波動する密度比が1に近いカプセルを除き、実際の流体中における浮揚限界速度の現れを現実化することは水力としても困難である。したがって著者らは、走行カプセルにおいても浮揚限界速度の50%近いno-scale-upないしtail-upが発生するものがとみなし、安定した運動状態を実現するためにはこれらの挙動が現れる速度以上に推進速度を止めることができる必要があると考え、実用速度の限界フロード数Frの(30)として次式を提案する。

\[Fr = 0.5 Fr_{s} \] (30)

上式の具体的な計算例を図11に示す。一方、パイプライン全体の圧力損失を考慮した推進効率から判断して実用速度を検討する点は重要であるが、このような観点からカプセル流速を巨視的に考察すれば、Fr=3
カプセル流体輸送に関する基礎的研究（第４報）

以下に輸送速度を制限するのが妥当といえる。

空気カプセルは水力に比べてはあるに高速で輸送されるため、カプセルの慣性力も大きく走行中の風を激しくする。いま、形状が同じで流体中での重量がい等しいカプセルをそれぞれ水力と空気で輸送した場合を想定し、両者の F_r* とカプセル速度比 F_r を一致させカプセル運動の相似条件を整えると、空気カプセルのレイノルズ数は水力のそれに比して2倍程度大きくなる。このように、レイノルズ数に代表される流体の違い、カプセルの慣性力の違いを十分に考慮したうえで、空気カプセルに対する実用輸送速度の限界フロード数を式(30)より大幅に低下させることが必要である。現段階では空気カプセルの実用輸送速度を合理的に設定することは難しいが、水力カプセルと同様にバイブライン全体の圧力損失と輸送効率の面から判断すると、F_r*=1 ないし F_r=30～40 以下に輸送速度を抑えるべきであろう。

以上、管路中を偏心状態で走行するカプセルを対象にして浮揚現象を検討したが、管路中をほぼ同心の状態で走行する車輪つきカプセルにおいても流れの本質に変わりはなく、本研究の知見をカプセル流れ全般に適用することが可能であると考える。

7. 結 言

本研究によって得た結論を要約すると次のとおりで

文 献

(1) 深尾・嶋田, 等, 機論, 51-470, B (昭60), 3145.
(2) 深尾・嶋田, 等, 機論, 52-476, B (昭61), 1470.
(3) 深尾・嶋田, 等, 機論, 52-475, B (昭61), 1307.
(8) 鈴木・越智, 機論, 33-254 (昭42), 1625.

討 論

著者(大阪大学工学部)

(1) 静止カプセルに働く圧力による浮揚力 F_r の計算式(17)に負荷 (=) が付くのか。

(2) (1)に関連して理解しにくい点は、著者研究では管頂部の圧力 p_a が管底部に比べ高くなるが、このような分布は、2087 ページ左欄 3 行めで述べているように、カプセルを持ち上げる力は正反対にカプセルを管底に押しつける作用をもつことである。このような圧力分布がなぜ浮揚力として作用するのか、本文で見る限り、カプセル運動の不安定をその理由としているように思えるが、説明を加えていただきたい。

【回答】(1) 式(17)の圧力分布項は (ρ_a - ρ_w) > 0 であり、かつ (ρ_a - ρ_w) 0.0001 < (ρ_a - ρ_w) である。よって、式(17)の積分関数は常に負荷をとるので、F_r = W_a を成立させるために負荷を冠し正值に換換している。

(2) カプセルの浮揚過程には、速度場の非対称性に起因する各種の作用力が不可分に関与する。著者では、恒常的な lift-off 状態を支配する安定した作用力として、各種の作用力のうちカプセル周りの不均一圧力分布に基づく力が仮定した。一方、実験結果によると、圧力分布から得られる力は水平管内のカプセルを管底に押し付けるように働くことが知られた。この実験結果等の仮定と相矛盾するように見受けられるが、観点を変えて、この力を浮揚に寄与する潜在的なボテンシャル力として積極的に評価することが可能である。すなわち、この作用力の実質成分がカプセル自重を上回るような圧力状態下ではカプセルを管頂部でも支えることができる。重力の拘束力を緩和してカプセルの三次元的な運動を許容するある種の臨界状態が形成されているように仮定することが可能である。この臨界状態については、5-3 節における空気カプセルの浮揚状態から説明し具体的なイメージを描くこともできる。なお、浮揚過程に働くさまざまな
な水力学的圧力の作用機構については、6-2節で推察したとおりである。したがって著者らは、圧力分布に基づく力と正の浮揚力として見掛け上取扱い、

\[F_L = W_0 \]

の時点でlift-offの開始点に合致するものとみなし、式(23), (25)を導いた。上式は浮揚限界速度に関する現在唯一の実用的な解析式であり、浮揚実験の結果をよく表している。しかし、著者らも現段階では、浮揚に関する前述の仮定が十分に検証されたものとは考えていない。本研究でのアプローチを契機として、今後の究明に期待したい。

Liu\(^3\)は揚力係数 \(C_L \) を用いた一般表式でカプセルに働く揚力を見積もり、Liddeの実験結果\(^9\)を当てはめ \(C_L \) に関する実験式を求めている。しかし、本研究で明らかのように、Liuの試みはカプセル揚力の評価方法として適切でない。本研究では揚力という表現を極力避け揚力に統一したが、圧力分布に基づく作用力については「カプセル支持力」という直接的な表現がより的確であろう。