噴流-円柱発振系における渦構造と発生音の関係

望月 修*1, 木谷 勝*1, 田住 正弘*2

Vortex Structure and Sound Generated by a Plane Impinging Jet on a Circular Cylinder

Osamu MOCHIZUKI, Masaru KIYA, and Masahiro TAZUMI

An experimental investigation was conducted on relations between a sound and vortices generated by a plane jet impinging on a circular cylinder: the vortices consisted of those formed in the impinging jet and those shed from the cylinder. A thin splitter plate was attached to the rear side of the cylinder to modify the shed vortices. The nature of the shed vortices is shown to have a significant influence on the intensity and frequency of the sound. The intensity of the sound is closely related to the streamwise extent of the distributed vorticity within the vortices: the more compact the vortices, the stronger is the sound. The r.m.s. pressure fluctuation on the surface of the cylinder has no systematic relation to the intensity of the sound.

Key Words: Fluid Vibration, Vortex, Edge Tone, Circular Cylinder, Two-Dimensional Jet, Body-Vortex Interaction

1. 緒 言

噴流-くさび発振系のように、せん断層と物体が干渉して音が発生する流れでは、直列の流れが上流へ伝ばずフィードバック機関が重要と考えられている1,2)。しかし、流れの乱れが原因となる噴流渦やこれに よる物体からののはく離渦が、発生する音とどのように関連しているかについてはまだ明らかではない。

従来の研究3)~7)では、発生する音の周波数に重点が 置かれており、音の強さに関する情報は少ない。著者らは噴流-円柱発振系について、発生する音と円柱の 位置および直徑との関係を調べ4)、円柱からはく離す る渦の状態が音の強さに影響することを示唆した。

本論文ではこの結果にもとづいて、円柱位置の変化 および円柱下流に取付けた仮断板によって流れの状態 を制御し、発生する音と噴流渦およびはく離渦の構造 との関係を明らかにする。

2. 実験装置

供試円柱としては、二次元噴流中において最も強い
音を発生する \(D/H = 2.0 \) \([D: \text{円柱直径}(=30 \text{ mm}), \]
\(H: \text{噴出口径}(=15 \text{ mm})]\) のものを採用した。噴流
発生ノズルの幅は 240 mm、円柱の長さは 350 mm で
ある。なお、実験装置の詳細は文献8)に示せてある ので、本論文では説明を省略する。円柱のスパン中央部
には 2 個の半導体圧力変換器が組み込まれており、 回心上の任意の位置における圧力変動の測定が 可能である。速度測定には定温度形熱線流速計によっ
て作動する X 形熱線プローブ。音の測定にはコン

![図 1 位置と主な記号の定義](image)

* 昭和 62 年 8 月 21 日 第 65 項全国大会講演会において講演。
** 昭和 62 年 3 月 9 日。
*1 正員、北海道大学工学部（藤岡 606 札幌市北区北13条西8丁目）。
*2 学生員、北海道大学大学院。
デンサマイクロホン（設定位置は \(x = x_0, y = 20H\)）を使用した、速度、音、圧力の信号波形は同時にデータレコーダーに記録し、その後大形計算機によって位相平均などの統計処理を行った。図1に測定結果および記号の定義を示す。

3. 実験結果

実験は文献(4)と同じ条件で行った。すなわち、噴出口の流速 \(U_0\) は 11.5 m/s、レイノルズ数 \(Re(=U_0H/\nu, \nu: 動粘性係数)\) は 1.2×10⁴ である。このとき \(D/H = 2.0\) の円柱によって最も強い音が発生する円柱位置は \(x_0/H = 5.2\)（\(x_0\): 噴出口から円柱先端までの距離）であり、その無次元周波数 \(f_0 = f_0H/U_0, f_0\): 音の周波数）は 0.09 である。

3-1 円柱表面の圧力 前述の位置 \(x_0/H = 5.2\) における円柱表面の時間平均圧力の分布を、ほかの位置 \(x_0/H = 4.0, 8.5\) における分布とともに図2（a）に示す；横軸は円柱前線から計画回りに計った角度（\(\theta\)）を、縦軸は圧力変数 \(C_p = (p - p_0)/[(1/2)pU_0^2], p_0\): 時間平均圧力、\(p_0\): 周囲圧力、\(U_0\): 円柱先端 \(x_0\) における自由噴流の速度、\(\rho\): 密度）である。これらの三つの位置 \(x_0\) における音の強さは 13 dB 程度（約 20 倍）の差がある(3)にかかわらず、平均圧力分布には大きな差は認められない。すなわち、音の強さは平均圧力分布とほぼ無関係である。

図2（b）の圧力変動の r.m.s. 値の分布を図2（b）に示す：圧力変動の r.m.s. 値 \(C_p = (\bar{p}^2)^{1/2}/[(1/2)pU_0^2]\) である。圧力変動の卓越周波数(4)と同一である、\(C_p\) の

図3 噴流の過渡分布（等値線の間隔は 0.1: (a)，0.2: (c)，\(\theta = 90^\circ\)）
最大値は、\(x_v/H = 5.2 \) のとき \(\theta = 50^\circ \) で、\(x_v/H = 4.0 \) より \(8.5 \) のときには \(\theta = 110^\circ \) に現れる。流れの可視化から判断すると、\(\theta = 50^\circ \) の最大値は嘩流渦の衝突、\(\theta = 110^\circ \) のものは円柱表面における流れのはく離によるものである。最も強い音が発生する位置（\(z_v/H = 5.2 \)）における円柱表面の圧力変動は \(x_v/H = 4.0 \) のそれよりも小さい。したがって、強い音の発生があるときには必ずしも圧力変動が大きいとは限らない。3.2節および3.3節において、音の強さと嘩流渦およびはく離渦の関係、圧力変動とはく離渦の関係について述べる。

3.2 円柱近傍における嘩流渦の構造 円柱の近傍における嘩流渦の構造を調べるために、\(\theta = 90^\circ \) の直線上における速度の測定を行った。円柱の直径および先端位置は \(D/H = 2.0, x_v/H = 4.0, 5.2, 8.5 \) である。この直線上の各位置における速度変動を、\(\theta = 50^\circ \) における圧力変動の一周期 \(T \)（音の周期と一致する）の間の各相について計算した。これに \(\langle u \rangle \) ：x方向速度成分、\(\langle v \rangle \) ：y方向速度成分、\(\langle k \rangle \) ：位相平均、\(\phi \) ：時刻、\(U \) ：位相速度である。結果を図3に示す。音の強い場合（\(x_v/H = 5.2 \)）には、速度は短い位相間に集中しているが、音の弱い場合（\(x_v/H = 4.0, 8.5 \)）には、速度は広い範囲に分散（\(x_v/H = 4.0 \)）または拡散（\(x_v/H = 8.5 \)）している。いずれの場合も、嘩流渦の循環は一定と考えられるから、流れの時間的集中的程度が音の強さに大きな影響をもつことが示唆される。

3.3 仕切板によるはく離渦の変化 円柱表面からはく離する流れは円柱表面に比べて速い流体が流出する。円柱の下流に仕切板を取付け（図4）、発生する音がどのように変化するかを調べた。\(x_v/H = 5.2 \) の位置において仕切板の長さ \(l \) を変化させたときの音の周波数および音強さの変化を図4に示す。なお仕切板の厚さは1.5 mmである。音の強さは \(I/D \geq 2 \) ではほぼ一定値をとり、仕切板の

図4 仕切板の長さに対する音の変化

図5 円柱後端から1.8D下流における嘩流渦およびはく離渦の渦度分布（A:嘩流渦、B:はく離渦）
開流・円柱発振系における流れの持続と発生音の関係

ない場合（I/D=0）に比較して13 dB程度小さくなることがわかる。一方、音の周波数はく離渦の放出周波数は工変板の長さによって変化せず、しかも両者は互に同一である。

図4の結果を考慮して、以下の測定はI/D=4.0の場合について行った。

円柱後端から1.8D下面の断面における流れの分布を、仕切板のある場合とない場合について比較したものが図5である。これによりは一定は13 dB程度の音の強さの差があることはすでに述べた。音が強い（仕切板が無い）場合には、噴流部（図5中のA）とく離渦（図5中のB）における速度の最大値はほぼ等しい。これに対して、音が弱い（仕切板がある）場合には、噴流部およびく離渦の両者ともに、横軸の方向（Taylor仮説による帯軸方向）に拡散している。しかも噴流部の速度の最大値が音の強い場合と同じであるのに対し、く離渦のそれは前述の1/3程度に減少している。また、大きい速度の等価線は図5（（a））では開曲線となるのに対し、図5（b）では時間軸に平行である。したがって、強い音が発生するときは速度よりはよりせまい時間帯に集中していることがある。このことは図3の結果と定量的に同一である。

円柱表面の平均圧力および圧力変動に対する仕切板の影響を図6に示す。平均圧力の分布には仕切板の影響はみられないが、圧力変動は仕切板をつけることによって著しく減少する。この圧力変動の減少は、図5（b）に示したく離渦における速度分布の拡散および変動の大きさの減少に対応している。

3-4 音の周波数および強さ D/H=2.0の円柱

に仕切板（I/D=4.0）を取り付けた状態で、風出口から円柱先端までの距離（L/H）を数値的に変化させたときの、音の周波数および音の強さの変化を図5に示す。仕切板の存在によって、音の周波数はまったく影響を受けないが、その強さはL/Hの0.4から0.9の範囲で小さくなることがわかる。

パラメータD/Hの影響を調べるために、同様の実験をD/H=0.67および3.3について行った。結果を図8に示す。D/H=0.67の円柱では、仕切板によって音の周波数が消失する、このことは噴流・円柱発振系の音の発生機構を解明するうえで重要な事実と思われる。また、仕切板の影響によって、D/H=0.67の円柱に対する音の周波数および強さのL/Hに対する変化は、D/H=2.0の場合と類似のものとなる。D/H=3.3の円柱については、仕切板は音の周波数および強さにまったく影響をおよぼさない。この直径の円柱では、仕切
図8 円柱の位置に対する音の変化（$l=4D$）

板がない場合にもはく離渦が形成されないことが知られている。したがって、噴流渦の衝突によって円柱からはく離渦の放出が生じていないときは、切板を設置しても発生する音は変化しないと考えることができる。以上の結果から、円柱からはく離する渦の特性は、発生する音の強さおよび周波数に影響を与えること、音の強さに対する影響のほうが頭著であること、がわかる。

4. 結言

本論文では噴流-円柱発振系における音と、噴流渦および円柱からはく離する渦（はく離渦）との関係を、実験的に明らかにした。主な結果を要約すれば次のとおりである。

（1）強い音が発生するときには、円柱近傍を通過する噴流渦およびはく離渦はせまい位相範囲内（噴流の軸方向）に集中している。一方、これらの渦が比較的広い位相帯に分散しているときは、発生する音声を弱い。

（2）円柱表面の時間平均圧力および圧力変動は、発生する音の強さと直接的な関係を示さない。

（3）噴流渦の衝突によって生じる円柱のはく離渦の構造は、発生する音の強さに顕著な影響を与える。

最後に本研究を遂行するにあたり、援助を受けた本村久敏、鈴木義宏両氏に謝意を表する。なお、本研究の一部は平和61年度文部省科学研究費助成研究(A)（61750130）による助成を受けたことを記して謝意を表する。

文献

（4）社団法人・ほか4名, 機械, 51-469, B (昭60), 2897.
（6）望月・ほか2名, 機論, 53-487, B (昭62), 911.
（7）冨田・ほか2名, 機論, 51-470, B (昭60), 3308.
（8）熊田・ほか3名, 機論, 40-330 (昭49), 471.
讨论

（質問）長安央（横浜国際総合研究所）

噴流-円柱発振系で発生する音に関する精力的な研究に敬意を表す。以下の点をご教示願いたい。

$D/H=0.67$ の円柱で仕切板によって音の周波数跳躍が消失することが噴流-円柱発振系の音の発生機構を解明するうえで重要であると指摘されているが、実際には何か起こっていると考えか。

また、$D/H=0.67$ で X_o/H が 5 以上の範囲では逆に仕切板を付けたほうが音が大きくなっている（図 8 (a)）原因は何か。

（回答）噴流渦ははく離渦によって円柱近傍で生じるしけなる乱は、上流に伝ばして噴出口における噴流のせん断層を加振し、噴流渦の形成および成長に影響する。また、円柱を単位時間に通過する噴流渦の個数（中心軸の片側だけの個数）は発生する音の周波数と常に一致している（文献①）ことから、周波数跳躍はせん断層から巻上げる噴流渦の個数の増加に対応すると考えられる。したがって、仕切板を取り付けることによって周波数跳躍が消失したのは、はく離渦に起因するしけなる乱の強さが弱まったために噴流のせん断層から巻上げる噴流渦の個数が増加しなかったためと考えられる。

$D/H=0.67$ の円柱に仕切板を付けると、$X_o/H > 5$ において仕切板のないときによりも音の強さが大きくなることは、噴流渦の大きさ、循環、配置などが周波数跳躍の有無によって異なるためと考えられる。ただし、現時点ではそれらの違いは明らかではない。