波力発電用ウエルズタービンの基礎研究*
（第２報，翼端すきまの影響）

鈴木正己*1, 荒川忠一*1, 田古里哲夫*1

Fundamental Studies on Wells Turbine for Wave Power Generator
(2nd Report, Influences of Tip Clearances)

Masami SUZUKI, Chuichi ARAKAWA, and Tetsuo TAGORI

The self-rectified air turbine for wave power converters, the so-called wells turbine, has been fundamentally studied by many research groups, who found that there exists a big difference between then of stall angle on rotor blades even if they employ almost identical rotors in their own facilities. This research reveals that the difference is caused by the tip clearance which induces the tip vortices so as to prevent the flow separation on the rotor blade. The bigger the tip clearance is, the bigger the stall angle becomes, which results in the operational region in the sea being extended. Furthermore, the performance is improved even in the stall region, making the self-starting of the turbine easy, although the maximum efficiency is decreased owing to the leakage loss. The influences of another factors on the performance, that is, the boundary layer of the casing and the intensity of turbulence at the inlet, are much smaller than that given by the tip clearance. It is now possible to compare the experimental results between research groups as far as they use the same clearances.

Key Words: Fluid Machine, Wells Turbine, Wave Power Generator, Tip Clearance, Stall Angle

1. 緒 言

波力エネルギー変換用自己整流形空気タービンであるウエルズタービンの基礎研究が進むとともに、実機を含んだ波力発電プラントなどの海上試験結果も報告され、実機性能が明らかになりつつある。ところが一方において、各研究機関ごとに類似ロータによる失速角などの性能が大きく変化しており、これらの原因を究明することは当面の重要な課題の一つとなっている。特に、各研究機関ごとに失速角の特性が大きく異なっており、作動範囲、起動性能を大きく変化させるため正確な実機性能予測は難しくしている。

基礎研究ではソリディティ・翼厚比・アスペクト比・翼形状（前後および側壁）・ハブ比などの影響について研究が行われ、ウエルズタービンの特性は解明されつつある。しかし、上述の研究機関による性能の違いは、これらの研究結果から説明することはできない。

本研究は、これらの性能の違いを生じる主な原因がロータの翼端すきまであることを明らかにし、各研究

2. 記 号

\[ A : \text{環状流路断面積} \]
\[ AR : \text{アスペクト比} = \frac{b^2}{S} \]
\[ b : \text{翼幅} = R_e - R_i \]
\[ C_f : \text{トルク係数} \]
\[ C_t : \text{一周期平均トルク係数} \]
\[ I : \text{翼弦長} \]
\[ Q : \text{流量} \]
\[ R : \text{タービン半径} \]
\[ Re : \text{レイノルズ数} = \frac{U_i \cdot l_i}{\nu} \]
\[ s : \text{翼端すきま} \]
\[ S : \text{翼面積} \]
\[ s' : \text{翼端すきま比} = \frac{s}{b} \]
\[ T : \text{トルク} \]
\[ U : \text{チップ周速} \]
\[ V_d : \text{軸流速度} \]
\[ W : \text{チップ相対速度} \]
\[ z : \text{翼枚数} \]
\[ a : \text{迎角} \]
\[ \alpha : \text{波入力における迎え角の振幅} \]
3. 実験装置および方法

ウエルズターピンの略報性能を失速角および最大効率で表すことができる、これらに影響をおよぼす諸量を明らかにするため、翼端すきまを変化させる実験を中心に、さらにケーシング境界層厚、入口乱れなどを変化させることにした。図1は実験装置の略報を示す。ケーシング内側に発達した境界層厚の影響を調べるため、ロータ上流直管部の長さを3種類（15、200、1000 mm）選べるものとした。図1の装置はケーシングを取り替えることによりロータ上流直管部の長さを変更できるが、15 mmと200 mmを用意した。図1は200 mmのケーシングを表している。また、1000 mmのケーシングは前報の装置を用いた。入口乱れの影響を考慮し、乱れ度が小さい吸込形（2.1％）と大きな乱れ度（4.9％）を有する循環形の2種類について実験を行った。供試ロータはソリディティをσ=0.7とし、翼端すきまを0.5、1.0、2.0 mmを目標に3～4段に変化させた。図2は性能の比較用に実験ロータを用いたと記号を示し、翼端すきまを変化させながらアスペクト比・翼厚比の影響を把握できるようにした。図2（b）は佐賀大学で用いられた仕様のロータを製作したものであり、翼の取付位置は前縁と中心線間距離が翼弦長の35％になるようにスウィープされている。図2（d）は扇形翼である。翼厚はハブからチップまで一定で、チップの翼形はNACA 0012になっている。

性能試験は、回転数一定（1500 rpm～4000 rpm）で流量を変化させる方法と、起動特性を調べるために流量調整弁を全開（軸流速度約8 m/s）で回転数を変化させる方法の2とおりで行った。

4. 実験結果および考察

本章では翼端すきまのターピン性能に与える影響を中心に述べ、ソリディティと入口乱れについても簡単に説明する。

解析に用いた定義式を以下に示す。

\[ \alpha = \tan^{-1} \left( \frac{V_a}{U} \right) \]  \hspace{1cm} (1)

\[ C_t = T \left( \frac{1}{2} \rho W^2 A \cdot R_l \right) \]  \hspace{1cm} (2)

![実験装置概略図](image1.png)

![供試ロータ](image2.png)
ポル発電用ウエルターピンの基礎研究（第2報）

\[ \phi = \Delta P / \left( \frac{1}{2} \rho W^2 \right) \]  
\[ \eta = T / (\Delta P Q) \]

ウエルターピンは波浪中で動作するため、往復流特性による性能把握が必要である。以下の式（5）および式（6）は往復流中のターピン特性を示し、各々周期を平均したトルクの無次元量と効率を表している。

\[ C_T = \frac{\int_0^T T dt / \tau}{\rho \int_0^T \int_0^T A_s \cdot R dt / \tau} \]  
\[ \eta = \frac{\int_0^T T dt / \tau}{\int_0^T \Delta P dt / \tau} \]

図3は本実験に用いたケーシングの境界層内の速度分布を示す。ケーシングはロータ上流管長さ15, 200, 1000 mmの3種類であり、各々境界層厚さ \( \delta^* \) は0.52, 1.08, 3.11 mmとなる。

4-1 アイ端すぎま

図4は翼端すぎさをパラメータとして、ロータ迎え角に対する特有の変化を示す。図4における供試ロータは図2（a）に示すアスペクト比 \( AR = 0.6 \)，NACA 0021 の形状であり、本図は翼端すぎさ \( s = 0.6, 1.1, 2.0 \) mmの3種類によって生じる性能の変化を表している。なお、図4の各図左上の部分は、ターピンの自己起動性に影響を与える迎え角の性能曲線を表している。図4（a）のトルク係数 \( C_T \) は翼端すぎさの増大によりロータの失速が遅延していることを示し、 \( s = 0.6, 1.1, 2.0 \) mmでは、失速角は各々 \( \alpha_{serr} = 14^\circ, 17^\circ, 22^\circ \) になっている。これにより、翼端すぎさの影響がターピン性能に大きく現れることがわかる。また、失速直後を除き、翼端すぎさが増加するにつれてトルク係数および圧力係数 \( \phi \) は減少する。これは翼端すぎさの減歯損失により生じたものである。図4
4からも理解できるように、自己起動性は、翼端すきまの増加により向上することがわかる。これは失速が遅ることと、失速点後の最小トルク係数が大きくなることによる。図5は、より明確に自己起動性を示すため、正弦波状の波入力と仮定したときのタービン特性について示す。図5（a）はこのときの一周期平均トルク係数$C_τ$である。自己起動性の一つの目安として$ar{C}_τ$は失速点後の最小トルクを示す。翼端すきま$s=0.6, 1.1, 2.0\,\text{mm}$では各々$ar{C}_τ\max/C_τ\min$は0.57、0.67、0.64となり、$s=2.0\,\text{mm}$では自己起動性が$s=0.6\,\text{mm}$のときよりも非常に容易になったことを示す。一方、図5（b）は一周期平均効率を示し、定常特性の最大効率よりも3～4％低下し、翼端すきまの増加により$s=0.6, 1.1, 2.0\,\text{mm}$の最大効率は各々46、40.5、35.5％となる。

以上のように、翼端すきまの増加は海上運転に欠かすことのできない自己起動性の大きな改善を図ることができるが、一方で効率低下を生じ、したがって翼端すきまのタービン性能に与える影響を詳細に知ることが重要であり、以下に翼端すきまと他のパラメータとの関連を詳しく述べることにする。

なお、後述する図6、8、9の作成に当たっては、同一レインノズ数で比較することに主眼を置いた。このとき、実験データの内挿により求められるレインノズ数をできるだけ用いるため、効率については$Re=10^5$、失速角については同一回転数2000rpmのレインノズ数（$AR=0.61$は$Re=10^5$, $AR=1.23$は$Re=0.55\times10^5$）を選択した。

### 4.1.1 翼端すきまとアスペクト比の相互影響

図6（a）は最大効率の翼端すきまに対する変化を、アスペクト比をパラメータとして示す。アスペクト比$AR=1.23$の効率は$AR=0.61$より、約3％高くなっている。失速角は、翼端すきまが大きいところで、アスペクト比の影響が顕著に現れ、アスペクト比の減少により失速角は伸びる。これは図6（b）より明らかであり、アスペクト比の影響は翼端すきま$s=0.32\,\text{mm}$付近では現れていないが、$s=2.0\,\text{mm}$では$AR=0.61$のとき$\alpha_{\text{stab}}=23^\circ$に対し、$AR=1.23$のとき$\alpha_{\text{stab}}=15.5^\circ$と失速角に$7.5^\circ$の差を生じている。以上から翼端すきまとアスペクト比は、効率および失速角に大きな影響

(a) 一周期平均トルク係数

(b) 一周期平均効率

図5 翼端すきまによる自己起動性

(a) 最大効率

(b) 失速角

図6 翼端すきまとアスペクト比の相互影響
翼端すきまと翼厚比の相互影響

4-1-2 翼端すきまと翼厚比の相互影響
図7は翼厚比の影響を示している。翼厚比の効果は翼端すきまが増加すると顕著に現れてくる。薄翼（NACA 0012のF 12-05 N）ではs=0.5, 2.0 mmの失速角は各々10°および12°である。これに対し、厚翼（NACA 0021のR 21-06 N）の失速角は11°から23°への大きく変化しており、翼端すきまの影響を強く受けてきていることがわかる。ここに示したロータのアスペクト比は約0.6である。

4-1-3 翼端すきまとケーシング境界層厚の相互影響
図8はケーシング境界層の影響を示しており、パラメータとしてその除厚δ*を3種類とっている。供試ロータはR 21-06 NとR 21-12 Nである。翼端すきまの増大によって、失速角が選れる理由の一つに、翼端すきま端の発生が挙げられる。翼端すきま高の大きさは、翼端すきまから内の面積に影響を受けると考えられる。この大小はケーシング境界層厚とも密接な関係があると予想され、この影響を把握しておく必要があった。しかし、図8は境界層厚の影響が少ないことを表しており、ケーシング境界層厚のターピン性能に与える影響は、少なくとも実験条件においては翼端すきまのそれに比べて無視できる程度に小さいと考えられる。

図8はアスペクト比0.61に固定することにより、ケーシング境界層の影響を示したのに対し、図9はアスペクト比0.61と1.23の2種類について翼端すきまとケーシング境界層厚の関係を一つの図にまとめたものである。図9からはケーシング境界層厚の影響は、アスペクト比や翼端すきまに比べて無視できることがわかる。

4-2 翼端すきま以外の因子の影響
4-2-1 ソリディティ
ソリディティは自己起動性に大きく影響する。また、ソリディティの増加は、圧力係数を増加させるためから、比速度を小さくする特性を有する。ただし、翼端すきまによって大きく変化する失速角および効率への影響は小さい。ロータに扇形翼（s=0.32 mm）を用いたとき文献(1)よりs=0.4〜0.8の範囲で失速角は1°前後の差にすぎない。扇形翼（s=1.0 mm）については、図10の佐賀大学の結果をもとに検討を行った。
果からも理解でき、σは0.56～0.78で1°前後の差となっている。

4-2-2 入口乱れ 各研究機関による失速角の違いが、入口乱れの影響を受けることも予想された。このため、入口乱れが小さな（2.1％）吸込み形状と十分大きい（4.9％）循環形状を用いて実験を行った。しかしその性能に有意な差が認められず、この結果、失速角および効率への影響はほとんどないことが明らかになった。

5. 研究機関による性能差

著者らの従来の研究では、小さな翼端すきまで0.32 mmの供試ロータを用いていた。この結果、アスペクト比、翼厚比、ソリディティ、ロータ形状（翼形および形翼）、入口乱れおよび形状により、失速角はほとんど変化せず、10°前後であるという結果を得ていた。また、三菱電機グループの実験による失速角も10°前後（s=0.6 mm）である。これに対し、佐賀大学およびケイズ大学の実験結果は類似のロータで10°前後となっており、非常に大きな違いにかかわらず、原因は不明であった。本研究では、この違いを明らかにするために、佐賀大学と類似のロータ（図2（b））を製作し、比較を行った。図10は佐賀大学の実験結果とトルク係数C_tを比較したものである。

実験では、s=0.32 mmの結果（供試ロータはR 21-06 N）であり、○印はs=1 mmの結果（R 21-06 S）である。同一ソリディティのデータがないため、佐賀大学の結果としてσ=0.56, 0.67, 0.78の3とりを併記している。佐賀大学の結果（s=1 mm）は失速角が18～19°であり、同じ翼端すきま1 mmでは、著者らの結果は19°とおり、翼端すきまを一致させることにより失速角が一致することを図10は表している。これにより、研究機関による性能の違いが、主に翼端すきまに依存していたことが明らかとなった。

佐賀大学および三菱電機の各研究グループで行われた実験結果を整理すると、失速角は図11のようなになる。ただし、クイーンズ大学のデータは翼端すきまが不明であるため、参考程度に示した。図11（a）は失速角とアスペクト比の関係を、翼端すきまと翼形をパラメータにして表し、破線と印は著者らの結果であり、破線はNACA 0021の翼形で、図6（b）より得ている。他の研究機関の結果も著者らが示した結果と同様であり、図11（a）は翼端すきまが大きいときにアスペクト比の影響が顕著に現れていたことを示す。NACA 0015とNACA 0020および21の各々の翼厚比で翼端すきまとアスペクト比の関係は知ることがである、すなわち△と図の比較、および▲と□の比較により、大きな翼端すきまs=1 mmで著者大
6. 結 言

ウエルスバーピンの性能を支配する最も重要なパラメータは失速角と最大効率であり、類似のロータでも各研究機関ごとにこれらの性能が大きく異なっている。この原因を究明することは、各研究機関で行われた実験結果を統一的に解釈するうえで重要課題であった。

本研究は翼端すきまがターピン性能に大きな影響を持つことを示した。つまり、翼端すきまの増加により、ロータの失速が遅れ運転範囲が広がり、自己起動性も良くなる。しかし、最大効率は減少する。ケーシング境界層厚や入口部流れの乱れ度などの性能に対する影響は、翼端すきまに比べて無視できる。さらに、研究機関による性能差の原因はこの翼端すきまの違いから生じたことを明らかにし、各研究グループで行われている基礎実験を統一的に解釈することが可能となった。

終わりに、本研究を行うあたり、卒論生として協力していただいた嶋尾修司君および小野潤一君に感謝の意を表する。また、本研究は昭和60～61年度文部省科学研究費補助金エネルギー特別研究の援助を受けて行われたことを、ここに記して謝意を表する。

文 献

(1) 鈴木・ほか3名，機論，50-449, B (昭59), 241.
(2) 鈴木・ほか3名，第13回ターピン機構講演論文集，昭58，62.
(3) 井上・ほか3名，機論，No.838-1 (昭58)，55.
(4) 井上・ほか2名，機論，50-459, B (昭59)，2599.
(5) 関根・ほか2名，第13回ターピン機構講演論文集，昭58，68.
(6) 関根・他3名，第14回ターピン機構講演論文集，昭59，94.