Non-Darcian Boundary Layer Flow and Heat Transfer in a Porous Medium

Akira NAKAYAMA, Tetsuya KOKUDAI, and Hitoshi KOYAMA

The local similarity solution procedure was successfully adopted to investigate non-Darcian flow and heat transfer through a boundary layer developed over a horizontal flat plate in a highly porous medium. The full boundary layer equations which consider the effects of convective inertia, solid boundary and porous inertia in addition to the Darcy flow resistance, were solved using novel transformed variables derived from a scale analysis. The results from this local similarity solution are found to be in good agreement with those obtained from the finite difference method. The effects of the convective inertia term, boundary viscous term and porous inertia term on the velocity and temperature fields are examined in detail. Furthermore, useful asymptotic expressions for the local Nusselt number were derived in consideration of possible physical limiting conditions.

Key Words: Forced Convection, Boundary Layer, Porous Media, Similarity Solution, Flat Plate

1. 緒 言

そこで本稿は最も基本的な物理モデルと考えられる水平平板上の強制対流熱伝達問題を取り上げ対流慣性効果をも考慮した解析を試みる。まず多孔質内流問題にあっても適切なスケールアナリシス[23]に基づき、局所相似解[15]が有効な解析手段となり得ることを示す。さらに個々の支配パラメータが速度場および温度場に及ぼす効果を詳細に考察することと、実際の見解に有益な近似解を導きその適用範囲の図式化を試みる。

2. 基礎方程式および境界条件

Vafai-Tien[15]は連続の式、運動量の式およびエネルギー
多孔質体内の非ダルシー境域法流れおよび熱伝達

(1)
\[
\frac{\partial u}{\partial x} + \frac{\partial T}{\partial y} = 0
\]

(2)
\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = -\frac{e^2}{\rho} \frac{dp}{dx} + e v \frac{\partial u}{\partial y}
\]

(3)
\[
u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \alpha \frac{\partial^2 T}{\partial y^2}
\]

ここで、\(u, v \)：ダルシー速度成分（空間平均された見掛けの速度成分）、\(p \)：圧力、\(T \)：温度、\(\nu \)：流体の動粘性係数、\(\varepsilon \)：気孔率、\(K \)：透過率、\(\alpha \)：有効熱拡散率（多孔質層の有効熱伝導係数流体の密度と定圧比熱の積で除したもの）、\(C(\varepsilon) \)：無次元係数である。なお境界層外気温度 \(u_e \)、外気温度 \(T_e \) および壁温 \(T_w \) は一定とし境界条件を以下のようにする。

\[
y = 0 : \begin{cases} \frac{u}{v} = 0 & (4a) \\ T = T_e & (4b) \end{cases}
\]

\[
y \to \infty : \begin{cases} u = u_e & (4c) \\ T = T_e & (4d) \end{cases}
\]

運動量の式(2)の左辺は対流慣性項(Convective inertia terms), 右辺第2〜4項はそれぞれ境界粘性項(Boundary viscous term), ダルシー項(Darcy's term: Porous viscous term) そして多孔質慣性項(Porous inertia term)に対応している。\(\varepsilon \to 1 \)においては \(K \to \infty \)となり、式(2)は純流体流に対する通常の境界層の式に帰着する。

3. スケールアナリシス

支配方程式群の解法に先ずスケールアナリシスを実行する。まず運動量の式(2)を境界条件式(4c)をもとに考えると

\[
-\frac{e^2}{\rho} \frac{dp}{dx} = \varepsilon^2 \nu \frac{u}{u_e} + C \frac{u_e^2}{u_e} \equiv \lambda u_e^2
\]

ここで

\[
\lambda = \varepsilon^2 \left(1 + \frac{1}{Re_e} \right) \frac{C}{\sqrt{K}}
\]

\[
Re_e = C \sqrt{K} u_e / v
\]

透過率に基づくレイノルズ数 \(Re_e \) はダルシー抵抗に対する多孔質体形状抵抗の比、また \(\lambda \) は多孔質体がもたらす圧力損失の程度を表している（\(\lambda = 0 \)は純流体流に対応する）。ここで \(x \) 方向に関する長さスケールとして \(1/\lambda \) を採用する。

\(y \) 方向の長さスケールを考えるにあたりまず運動量の式に注目し式(5a)を代入すると

\[
u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \varepsilon \nu \frac{\partial u}{\partial y} - \varepsilon \nu \frac{C}{\sqrt{K}} u_e^2
\]

\[
+ \lambda u_e^2
\]

境界層の発達域において境界粘性項は対流慣性項と同じオーダーであると考えられるから

\[
\varepsilon \nu \frac{\partial u}{\partial y} \sim \varepsilon \nu \frac{C}{\sqrt{K}} u_e^2
\]

\[
+ \lambda u_e^2
\]

これより

\[
\delta \sim \left(\frac{u_e}{\delta x} \right)^{1/2}
\]

一方、十分薄流においては対流慣性項が無視できることから右辺の釣合いより

\[
\nu \frac{\partial u}{\partial y} \sim \lambda u_e^2
\]

したがって

\[
\delta \sim \left(\frac{u_e}{\lambda u_e} \right)^{1/2}
\]

すなわち速度境界層厚さ \(\delta \) は発達域で \(\sqrt{x} \) に比例し増加した後十分流で一定値に漸近する傾向にある。

一方エネルギーの式(3)について同様のスケールアナリシスを行うと

\[
\delta \sim \left(\frac{u_e}{\delta x} \right)^{1/2}
\]

したがって速度境界層厚さ \(\delta \) は \(\sqrt{x} \) に比例し下流に限りなく増加していく。

このように \(y \) 方向における長さスケールが速度と温度境界層とで異なりかつ複雑に下流に変化することが支配方程式の解法を難しくしている。4章ではこのスケールアナリシスより得た知見を基に長さスケールを適切に設定する手順を通じ局所相似変換による解法を考える。

4. 運動量の式の解法

\(x \) 方向に対しては長さスケール \(1/\lambda \) で除し、また \(y \) についてはスケールが下流に変化することを考慮し以下の変数変換を考える。

\[
\xi = \lambda x
\]

NII-Electronic Library Service
ここで
\[\eta = \frac{2}{x} (Re_x/L)^{1/2} \] とおく。

また、
\[\eta = \frac{2}{x} (Re_x/L)^{1/2} \] とおく。

又は
\[f'' + \frac{1}{2} e^{-x} f'' - (1 - e^{-x}) \left[\frac{f + Re_x (f')^2}{1 + Re_x} \right] = 0 \] とおく。

任意の \(\xi \) について事前に係数が算出できるかし \((16) \) は素に関する常微分方程式を全く同様に扱うことができる（本計算では Runge-Kutta-Gill 法により積分し通常の Shooting 法を用いて \(f' (\xi, 0) \) を求めた）。

6 章ではこのような長さスケールが複雑に変化する場合にあう問題に適応可能な変換を導入する際局所相関解法が適用できることが直接差分計算との比較を通じて示す。なお無次元流れ係数が判明すれば局所摩擦係数は次式で与えられる。
\[C_{xx} = \frac{\eta}{\sqrt{T}} (\frac{d^2}{dx^2} \eta + \frac{1}{2} \frac{d^2}{dx^2} \eta) \] とおく。

ここで \(f' (\xi, 0) \) は次の近似値を有する。
\[f'(0, 0) = 0.332 \] とおく。（18-a）
\[f'(\infty) = 1 \] とおく。（18-b）
\[f'(\infty) = 1.555 \] とおく。（18-c）

このようにして \(f' = 1 - e^{-x} \) とおく。

より算出し、他の二つの近似値を求めた。

5. エネルギーの式の解法

温度境界層に関する関係式（9）を考慮し以下の変換を考える。
\[T = T_x = (T_w - T_e) \theta (\xi, \eta) \] とおく。

ここで
\[\eta_x = \frac{x}{\sqrt{T}} (\frac{d^2}{dx^2} \eta + \frac{1}{2} \frac{d^2}{dx^2} \eta) \] とおく。

このときエネルギーの式（3）および境界条件式（4-a）、（4-b）は以下のように変換される。
\[\frac{1}{\sqrt{T}} \theta'' + \frac{1}{2} \sqrt{T} f'' = \frac{\eta}{\sqrt{T}} (\frac{d^2}{dx^2} \theta + \frac{1}{2} \frac{d^2}{dx^2} (\sqrt{T} f)) \] とおく。

\[\eta_x = \frac{\eta}{\sqrt{T}} (\frac{d^2}{dx^2} \eta + \frac{1}{2} \frac{d^2}{dx^2} \eta) \] とおく。

ここで \(P_x = a \nu \) はプラント数で \(a(\eta) \) の関数で \(\eta_x = \frac{\eta}{\sqrt{T}} (\frac{d^2}{dx^2} \eta + \frac{1}{2} \frac{d^2}{dx^2} (\sqrt{T} f)) \) とおく。

\[\frac{1}{\sqrt{T}} \theta'' + \frac{1}{2} \frac{d^2}{dx^2} \theta = 0 \] とおく。

この節においては変数 \(\xi < 1 \) の場合（すなわち下流側または圧力こう配 \(\lambda \) が大きいとき）を考えると
\[f'' + \frac{1}{2} e^{-x} f'' - (1 - e^{-x}) \left[\frac{f + Re_x (f')^2}{1 + Re_x} \right] = 0 \] とおく。
多孔質体内の非ダルシー圧力流れおよび熱伝達

したがってよく知られた Newton 流体の水平平板の
相似解がそのまま適用できる。さらに ξ ≈ 1 において
\[\frac{\partial}{\partial x} \sqrt{f} = 0 \text{ かつ } \frac{\partial}{\partial x} \sqrt{f} \text{ が十分小さいと考えられること}

から、任意の ξ についてその微分量からなる右辺を無視する。

\[\frac{1}{\epsilon P_{f}} \theta' + \frac{1}{2} \sqrt{f} \theta' = 0 \] \hspace{1cm} (24)

上式を解き次の局所相似解が得られる。

\[\theta(\xi, \eta) = f(\xi, 0, \eta) \] \hspace{1cm} (25)

\[\begin{align*}
\int_{0}^{\infty} \exp \left[-\frac{1}{2} \epsilon P_{f} \sqrt{f} \int_{0}^{\infty} f(\xi, \eta) d\eta \right] d\eta \\
\int_{0}^{\infty} \exp \left[-\frac{1}{2} \epsilon P_{f} \sqrt{f} \int_{0}^{\infty} f(\xi, \eta) d\eta \right] d\eta \\
\int_{0}^{\infty} \exp \left[-\frac{1}{2} \epsilon P_{f} \int_{0}^{\infty} f(\xi, \eta) d\eta \right] d\eta \\
\int_{0}^{\infty} \exp \left[-\frac{1}{2} \epsilon P_{f} \int_{0}^{\infty} f(\xi, \eta) d\eta \right] d\eta
\end{align*} \hspace{1cm} (25)

したがって式4を求める \(f(\xi, \eta) \) がそのまま使われ、数
値積分により無次元温度分布 \(\theta(\xi, \eta) \) を決定できるこ
とができる。温度分布が明確すれば注目している局所
ノッセル数 \(Nu_{L} \) は次式により算出可能となる。

\[Nu_{L} = \frac{\epsilon P_{f}}{Re^{2}} \left[\sqrt{f} \int_{0}^{\infty} \exp \left(-\frac{1}{2} \epsilon P_{f} \int_{0}^{\infty} f(\xi, \eta) d\eta \right) \right]^{-1} \] \hspace{1cm} (26)

本章および4章より明らかのように独立変数を \(\xi \) および \(\eta \) (または \(\eta_{1} \)) に設定する際、二つのパラメー
タ、Re および \(\epsilon P_{f} \) が与えられれば \(f(\xi, \eta) \), \(\theta(\xi, \eta) \)
が決定できる点は注目に値する。なお Vafa-Tien(10) の
相似解の差分計算では五つた Falkner-Skan 変換を用いた
Kaviany(9) の計算では三つのパラメータを与え合う必要
がある。

式(25)および式(26)より \(\epsilon P_{f} \) の大きさが速度境界
層厚さと温度境界層厚さの比に関連していることがわ
かる(関係式(7-b), (8-b), (9) からも (\delta h/\partial x) \epsilon P_{f} \text{ かうかがわれる}）。以下に2種の近似状態を考える。

\(\epsilon P_{f} \ll 1 \): 速度境界層が温度境界層に比べて極めて
薄くなるためスラグ流れ近似できる。

\[f'(\xi, \eta) = 1 \] \hspace{1cm} (27-a)

したがって式(25)および式(26)より

\[\theta(\xi, \eta) = 1 - \text{erf} \left(\frac{1}{2} \sqrt{\epsilon P_{f}} \eta \right) \] \hspace{1cm} (27-b)

ここで \text{erf}(\cdot) は誤差関数である。

\(\epsilon P_{f} \ll 1 \): 速度境界層が速度分布が線形なほど薄い
層にうねるも

\[f'(\xi, \eta) = f'(\xi, 0, \eta) \] \hspace{1cm} (28-a)

したがって式(25)および式(26)より

\[\theta(\xi, \eta) = 1 - \frac{1}{3} \Gamma(1/3) \int_{-\infty}^{\infty} e^{-x^{2}} d\xi \] \hspace{1cm} (28-b)

ここで \(\Gamma(\cdot) \) はガンマ関数であり \(\frac{1}{3} \Gamma(1/3) = 0.893 \)
なる値をとる。

6. 局所相似解と差分計算結果の比較

本局所相似解 (実線) と Kaviany(9)の直接差分計算
結果の比較の項を速度および温度分布について
その誤差が最も顕著に現れる \(\xi = 1 \) の場合を取り上げ
図2に示す。壁より離れた所で温度分布に若干の相違
があるがそれが考えるものの温度分布、速度分布ともに極めて
良好な一致が認められており本局所相似解の妥当性が
確認できる (Kaviany の結果との比較のため速度分布
についても軸線を \(\eta \) をとり示してある)。

図3 には局所摩擦係数を変化を \(1/2C_{H}Re^{2} = f'(\xi, 0, \eta) \) の形で横軸に \(\xi \) をとり示してある。Kaviany(9)
は多孔質体の慣性効果 (Porchheimer 項) を無視し差
分計算を行ったが、Kaviany の結果と Re = 0 の場合
の本局所相似解とはほとんど差違が認められない。
図3 には式(18)および式(17)で与えられる流速線も示し
たが \(\xi \) が大きくなるにつれ \(\epsilon P_{f} \) の比例増し増加して
いく傾向がわかり、なお多孔質体の慣性効果 (Re) が
顕著になるために摩擦係数は増加する式(18-b), (18-c)
が示すように Re → ∞ では Re = 0 の1.155倍の値に
流速近似していく。

局所ノッセル数の係数 \(Nu_{L}/Re^{2} \) に関する比較を
図4に示す。本局所相似解は \(\epsilon P_{f} = 0.7 \) でいくつかの値の
値を示すが、\(\epsilon P_{f} = 7 \) では差分数値解はほとんど一
致する。以上の比較より知るように本結果と
Kaviany の直接差分計算結果は速度分布、温度分布の

\[\begin{align*}
\text{--- Finite difference soln.} \hspace{1cm} & \hspace{1cm} \text{Local similarity soln.} \\
\xi & = 1 \hspace{1cm} \text{Re} = 0 \\
\epsilon P_{f} & = 0.7 \\
\theta & = 0.893 \\
f' & = 1
\end{align*} \hspace{1cm} (29)

図 2 速度および温度分布の比較

\[\begin{align*}
\text{--- Finite difference soln.} \hspace{1cm} & \hspace{1cm} \text{Local similarity soln.} \\
\xi & = 1 \hspace{1cm} \text{Re} = 0 \\
\epsilon P_{f} & = 0.7 \\
\theta & = 0.893 \\
f' & = 1
\end{align*} \hspace{1cm} (29)\]
詳細に至るまで詳しく良好な一致を示しており、各所相似近似の妥当性がうかがえる。

7. 対流慣性効果の考察

4 章で運動量の式を通して考察した様に対流慣性項は流れの発達過程を支配している。流れの助走区間は
0 < ξ < 1 (0 < μ < 1/μ) 程度であると考えられるから圧力降下 (Δp) が大きいほど流れは早く発達することになる。Re∞ = 0 の場合について ξ = 0 (Blasius の解), 1, ∞で得られた速度および温度分布を図 5 に示す。
位置 (x) を固定して考えれば ξ (Δx) の増加は圧力降下 (Δp) の増加に対応している。圧力降下が増大するにつれ壁での速度こう配は急になっており境界粘性抵抗が増す傾向にあることがわかる。一方、圧力降下が一定の下での ξ の増加は x の増加にほかならない。すなわち図 5 を速度分布の発達過程に対応させることができブラジウスの分布形式 (19) で与えられる分布に徐々に発達していくようが観察できる（注：縦軸は
η = y/δ にとってある。δ は関係式 (7*8), (8*8) に従い下流に増加している）対応する温度分布も縦軸を η によりプロットしている。圧力降下が増大するにつれ壁での温度こう配が急になり ξ → ∞ においては誤差関数式 (27*8) で与えられる分布に漸近することが認められる。

8. 多孔質体慣性効果の考察

式 (16) よりも多孔質体の慣性効果 (Re∞ の効果) は ξ が大きい場合に顕著に現れ、その時運動量の式は式 (15) に変換される。多孔質体慣性効果を隔れべ光式 (15) において Re∞ = 0, 1, ∞ と変え求めめた無次元速度分布 f を図 6 に示す。近寄り速度 uc が増し多孔質構体の形状抵抗が増すにつれ速度はより平らな分布となり境界粘性抵抗が増加する傾向にあることがわかる。図 6 に示す ξ = 1 として Re∞ = 0, 100 と変え求めた温度分布も示してある。壁温度こう配は Re∞ とともに若干増加するものの Re∞ の変化が無次元温度分布 θ には極めて微細であることがわかる。このことは多孔質体の慣性効果が速度場に表われることで ξ の領域で ξ の関係式 (8*8) で与えられる一定値をとるのに対し
9. 局所無量数の漸近式

Kavianyの積分法を用いて局所無量数に関する漸近式を求めその適用範囲の図式化を試みている。ただし積分法の性質上、支配パラメータを速度分布の形状係数に選んで一般性を有する表示にはなっていない。また低プラント数域についても領域の図式化がなされていない。ここでは5章で得た速度分布の漸近解より実質的に総数に有益となるスケール数の漸近式を求める。その適用範囲の図式化を試みる。

(27-b), (28-b)および式(18)より局所無量数に関する以下の漸近式が導かれる。

\[sP_l I \geq 1 \text{かつ} \xi \geq 1: \]

\[N_x/(Re_x)^{1/2} = 0.398(eP_l)^{1/3} \quad \ldots \quad (29a) \]

\[sP_l I < 1 \text{かつ} \xi \geq 1: \]

\[N_x/(Re_x)^{1/2} = \left(\frac{0.489(eP_l)^{1/3} \xi^{1/6}}{0.513(eP_l)^{1/3} \xi^{1/6}} \right) \quad \ldots \quad (29b) \]

\[\geq 0.5(eP_l)^{1/3} \xi^{1/6} \quad \ldots \quad (29c) \]

\[sP_l I < 1 \text{かつ} \xi < 1 \quad \ldots \quad (29d) \]

\[N_x/(Re_x)^{1/2} = (sP_l/\pi)^{1/2} \quad \ldots \quad (29e) \]

Re_xの効果はsP_l I ≥ 1かつξ ≥ 1の場合に限って現れるがその影響は極めて小さい。そこでRe_xの値に無関係にこの領域で成立する近似式として式(29d)を提案する。各漸近式(29a),(29d)および(29e)の適用範囲を軸上にsP_lを横軸にξを取り図7に示した。図8にはこれらの漸近式の妥当性を確認するべくsP_l = 10および1000の局所相関数を漸近式とともにプロットしてみた。式(29a),(29d)を形と(29e)で表現されるスケール流に至る過程が良くわかる。

10. 結言

多孔質体内的非デルサイン強制対流熱伝導について対流慣性効果、多孔質体慣性効果および境界面粘性効果を考慮し解析を試み以下の要約を結論を得た。

図7 各漸近近の適用範囲

図8 局所相関と漸近解との比較
論文

(3) 中山・児山, 機論, 53-491, B (昭62), 2192.
(4) Muskat, M., The Flow of Homogeneous Fluids through

論文

【質問】木村繁男（東北工業技術試験所）
3章のスケールアナリシスにおいてx方向の代表
長さの導出がやや唐突に思える。境界層の外の流れ
がForchheimer モデルに従っているが、境界層内部圧力
こう配は境界層外压力こう配と一致していることを明
記したほうが良い。

また式(7.1)および式(8.1)の導出において、境界層
が助走区間と完全発達区間に分けられることを前提に
している。このような区切りは内部flowに対して
は成立するが、本問題のようなexternal flowに対して
も成立するのか、もし成立するならば、それは運動量
と質量保存式を適切に無次元化することにより直接導
くことが可能なのかではないか。いずれにしても導出に
あたっても少し丁寧な議論が必要だと思う。

【回答】ご指摘のようにスケールアナリシスに関
する記述が不十分であったと考える。以下に補足させ
ていく。

境界層近似前の基礎式はテンソル形で

\[\frac{\partial u_i}{\partial x_j} = 0 \quad \text{…………(i)} \]

\[u_i = \frac{e^2}{\rho} \frac{\partial p}{\partial x_i} + ev \frac{\partial u_i}{\partial x_j} \frac{\partial u_j}{\partial x_i} \]

\[- e^2 (\frac{v}{x} u_i + \frac{C}{\sqrt{k}} (u_i u_i)^{1/2}) \quad \text{…………(ii)} \]

連続の式(i)を用い通常の境界層近似(付1)の下で運
動量の式(ii)より高次の微小項を無視する。

\[u_i \frac{\partial u_i}{\partial x_j} + v_i \frac{\partial u_i}{\partial y} = - e^2 \frac{\partial p}{\partial x_j} + \frac{1}{Re} \frac{\partial^2 u_i}{\partial y^2} \]

\[\delta_{conv} \sim 1/\sqrt{Re} \quad \text{…………(vii)} \]

\[\delta_{darcy} \sim (Da/e)^{1/2} (\frac{e}{Ma})^{1/2}/L \text{（注: AL} \sim \frac{e}{DaRe} \]

すなわち式(7.1)および式(8.1)が導かれる。通常Da
\ll 1であり、いずれの場合においても\delta \ll 1 の仮定が
満たされる。さらに式(vi)について上記の関係よりオーダーを検討すると

\[e^2 \frac{\partial p}{\partial y} \sim \delta \ll 1 \quad \text{…………(viii)} \]

すなわち多孔質体内で形成される境界層内にあっても
y 方向に圧力は不変とみなせる。ご指摘のとおり、
この事実を踏まえたうえで流れ方向の参量化を1/\delta
に設定している。ちなみに上式(v)および式(vi)を用い
て\delta_{conv} \sim \delta_{darcy} より助長を概算すると

\[
\frac{K^3}{\rho v^4} \left(- \frac{dp}{dx} \right) \frac{1}{x} \quad \text{(viii)}
\]

を得る。これより下流で流れはほぼ発達した状態にあると考えられる。このように多孔質体の内部流れには内部流れと同様な完全発達域が存在する。（ただし多孔質体の内部流れにおいては圧力降下の式(5・a)に Brinkman 項を残す必要がある。）なお空気、水および各種の油について境界層厚さおよび助走長さを概算した例が文献(6)に紹介されている。