アスペクト比が小さいティラー渦の実験*
(第2報, ティラー渦の不安定性)

中村 育雄*1, 戸谷 順信*2
山下 新太郎*1, 植木 良昇*2

An Experiment on a Taylor Vortex Flow in a Gap with a Small Aspect Ratio
(2nd Report, Instability of Taylor Vortex Flows)

Ikuo NAKAMURA, Yorinobu TOYA,
Shintaro YAMASHITA and Yoshinori UEKI

The instability of Taylor vortex flows in a gap with a small aspect ratio of concentric rotating cylinders has been investigated. In both the asymmetric and symmetric conditions, the critical Reynolds number of transition from Taylor vortex flow to wavy Taylor vortex flow was revealed. In the asymmetric case, the bifurcation between odd number cells and between odd number and even number cells was examined in relation to the aspect ratio and Reynolds number. In addition, the bifurcation diagram was drawn in the neighborhood of one aspect ratio, and the relations, as priority, between primary flow and secondary flow on a bifurcation set were discussed.

Key Words: Fluid Mechanics, Instability, Taylor Vortex, Bifurcation Flow Visualization

1. 論 論

同軸回転二重管の流れはレイノルズ数が増加するとトーラス状の流れ（セル）が幾重にも積み重なった特徴ある流れ、すなわち、ティラー渦流れになり、そのセル数は環状すきまのアスペクト比、レイノルズ数に複雑に依存する（11,12）。著者らはアスペクト比が小さく、液柱の上表面が自由である自由端（以下自由端と表す）の場合について実験を行い、アスペクト比が0.5～7.9の範囲では1～11個までの奇数個のセル流れと2～8個までの偶数個のセル流れの状態が存在すること、およびセルの形成過程を明らかにした（11）。その中で奇数個のセル流れはいったんその状態が確立した後、レイノルズ数が増加すると周知のごとく、波動ティラー渦、乱流へと分岐してゆく。一方、偶数個のセル流れに関しては安定な状態を保つ範囲は限定されている。すなわち偶数個のティラー渦流れの状態がいったん、十分時間を経て明確に形成された後、レイノルズ数が増加すると波動ティラー渦へ分岐する以前にその状態は不安定になり、奇数個のセル流れが分岐してしまわぬ。

* 昭和63年4月1日 第65期通常総会講演会において講演、原稿受付 昭和62年8月21日。
*1 正員、名古屋大学工学部（第464 名古屋市千種区不老町）。
*2 正員、長野工業高等専門学校（第380 長野市駒場716）。
3番目の出来事が明らかにし、主流（レイノルズ数を徐々に増加したときに発生する定常なティラー渦流れ）への到達はレイノルズ数とアスペクト比に対してどのように決定されるかを考察した。

記号

\(R_1 \)：内側回転円筒半径
(本装置では \(2R_1 = 40.19 \pm 0.006 \text{ mm} \))

\(R_2 \)：外側円管内半径（\(2R_2 = 60.11 \pm 0.024 \text{ mm} \)）

\(D \)：内外円管のすきま
\(= R_2 - R_1 \)（9.96 \pm 0.025mm）

\(L \)：作用体流体の円柱軸方向長さ

\(\Gamma \)：アスペクト比 \(= \frac{L}{D} \)

\(\omega \)：円筒の回転角速度

\(\nu \)：動粘度

\(Re \)：レイノルズ数 \(= \frac{\omega R_1 D}{\nu} \)

\(Re_1 \)：クエット流状流れからの変化が可視化によって認められるレイノルズ数

\(Re_2 \)：ティラー渦流れから波動ティラー渦流れへ分岐する臨界レイノルズ数

その他の記号はその都度定める。

3. 実験装置と実験方法

本実験に使用した装置は前報において述べたものと全く同じ物で、その概略図を図1に示し、環状部の寸法は上の記号表に示したとおりである。回転数の調整、可視化法などの実験方法の詳細については前報で述べたので省略する。実験パラメータの変化の範囲はほぼ \(Re = 0 \sim 2 \times 10^3 \), \(\Gamma = 0.5 \sim 7.9 \) である。

3-1 波動ティラー渦流れの臨界レイノルズ数のアスペクト比に対する変化

まずセル数を保存したままのレイノルズ数に対する安定性の変化として波動ティラー渦流れへの分岐を調べた。自由端における結果を図2に示す。図2からも明らかのように同じ \(\Gamma \) の値においてそこで発生する安定したティラー渦の状態はいくつかあり、例えば \(\Gamma = 5.5 \) では3, 5, 6, 7セルの状態がある。これは初期条件と \(Re \) の変化のしかたに依存しており、このセル数の選択性については後に述べる。本実験においては判明した限りの状態についてその安定性を調べた。自由端の場合における奇数個のセル流れの状態では、波動ティラー渦流れへの安定限界曲線は各セルとも \(\Gamma \) に対して最大値を持つ各長脚の形状を示す。\(Re_2 \) が最大、すなわち最も安定な条件は \(\Gamma \) がそのセル数の数とほぼ同じ値、つまり1セルなら \(\Gamma = 1 \), 3セルなら \(\Gamma = 3 \), ... の付近であり、その \(\Gamma \) の値の前後ではその安定性が減少することがわかる。各セルの個数に対しての安定性についてみると、セルの個数が増加していくと全体的に安定性は低下している。しかし各セルに対する \(Re_2 \) の最大値は次第に一定になり、\(\Gamma \) に対する差は小さくなっていることからセルの個数が増加して行くとその安定性は次第に一定になるのではないかと思われる。しかしこの点についてはセルの数が増えたときの確認の実験が必要であろう。

一方、図2の自由端における偶数個のセルの安定性はティラー渦流れから波動ティラー渦流れへ分岐するのでなく、奇数個のティラー渦流れへ分岐する臨界レ
イノルズ数を調べた。\(\Gamma \) が大きくなるに従ってこの安定性は次第に減少する傾向があり、奇数数に見られるような特徴ある形は見られなかった。またその安定性はセル数によってあまり違いは見られない。全体として自由端における偶数個セル流れの安定性は奇数個セル流れのそれに比較して低いことがわかる。これは系の非対称性からも予想されることである。

固定端における対応する結果を図3に示す。各セルの \(\Gamma \) に対する安定性は自由端の奇数個セルの場合と比較的類似しており2セルの場合には最大値を持つきさび形で4、6セルはそれに対して最大値の先端が次第に丸みを持つ形になっている。最も安定である \(\Gamma \) の条件はセルの数と同じ値の付近であるが4、6セルに関してはわずかに \(\Gamma \) の値が大きい値のほうへ移っている。また、セル数が増すに従って全体的な安定性は低下する傾向にある。固定端に関して実験条件がやや異なるが、同様な観察がBenjaminによってすでに報告されており(8)，その結果と比較してみるとほぼ同様な結果が得られていると言える。

3-2 奇数個のセル数間における分岐 \(\Gamma \) が小さく両端が固定端の場合において偶数個のセル \(N \) と \(N \pm 2 \) 偶数のセルの流れの分岐の関係がすでに報告されている(9)，これらはある \(\Gamma \) について二次流れ \((Re_5) \) を超える範囲への急激な増加によって発生する流れの状態)から主流に分岐する \(Re_5 \) を求め、またある \(\Gamma \) の範囲においてヒステリシス現象があることを示し、その分岐曲線がくびび形をしていることを明らかにしている。本実験は \(\Gamma \) が小さく自由端の場合について奇数個のセル同志、奇数個と偶数個のセルの間における分岐の関係を調べた。

\(\Gamma \) が奇数個付近においては奇数個のセル流れの状態が非常に安定して存在する。特に図2でも明らかにのように \(\Gamma \) の数値とほぼ同じ値の個数のセルの流れが最も安定して主流として存在し、そのセル数±2個の奇数個のセル流れが二次流れとして存在する。本節では奇数個のセル流れの状態について、主流と二次流れの間の分岐の関係について述べる。その結果を図4、5に示す。図4は主流のセル流れよりセル数が2個多い二次流れがその流れに分岐する場合である。いったん二次流れ状態を発生させ、その状態が確認するまで十分な緩和時間 (約4分) をとった後、次第に \(Re_5 \) を徐々に増加させた場合にその二次流れが主流へ分岐する \(Re_5 \) と徐々に減少させた場合にその二次流れが主流へ移行する \(Re_5 \) を求めた（なおこのような分岐の定義については文献(9)を参照された）上側の線は \(Re_5 \) が徐々に増加した（図中で \(Re_5 \) と示す）結果である。下側の線は \(Re_5 \) が徐々に減少した（図中で \(Re_5 \) と示す）結果である。

7→5セルの場合を例にとり説明すると、\(Re_5 \) が徐々に増加した場合、二次流れである7セルは主流である5セルへ分岐し、分岐する \(Re_5 \) の臨界値は \(\Gamma \) が大きくなると次第に増加していく。また \(Re_5 \) が徐々に減少した場合、7セルは同じように5セルへ移行するが、移行する \(Re_5 \) の臨界値は \(\Gamma \) の増加に対し次第に減少し

図4 奇数個間の \((N+2)\) 個から \(N\) 個への分岐

図5 奇数個間の \(N\) 個から \((N+2)\) 個への分岐
いく。\(\Gamma \)が5より小さい範囲については二次流れである7セルが発生しにくいこと、また発生しても安定せずに5セルへ変化してしまうことから実験で確認することは非常に困難であった。しかし、\(\Gamma \)を5より小さくしていくと上側の線と下側の線は次第に接近するのでではないかと思われる。この現象は5→3、9→7セルにおいても同様であると思われる。

図5は主流であるセル数より2個少ないセル流れの二次流れ状態を発生させ、安定後数次に\(Re \)が徐々に減少した場合にその二次流れが主流へ移行する \(Re \)を求める結果である。この \(Re \)は \(\Gamma \)の増加とともに増加していく。全体的な \(Re \)の値はセル数が少ないほど大きくなっている。これらの曲線はその端が切れているがその前後は二次流れが発生しにくく、また発生しても不安定でちちに他の流れ状態に変わってしまうので確認ができなかった。

なお、この二次流れの状態から逆に \(Re \)を徐々に増加させると、セル数を保存しつつ波動テイラー渦流れへと変化していくことがわからており、本実験では他のセルへの解析の状態については調べなかった。

3・3 奇数個と偶数個のセル間における分岐

\(Re \)が偶数個付近において実は偶数個のセルが比較的安定して存在する。しかし \(Re \)が増加するとその状態は不安定になりやすくなり、最終的に奇数個のセルへ分岐する\(^{10}\)。また、同じ \(\Gamma \)の範囲において奇数個のセルの状態は \(Re \)が徐々に減少すると偶数個のセルへ移行する。それらの分岐、移行が起こる \(Re \)を \(\Gamma \)の値に対して求めた結果を図6、7に示す。図中における黒丸印と白丸印は分岐、移行の種類を区別するため付けた。図6は偶数個のセルが確立した状態から \(Re \)を徐々に増加させた場合と、徐々に減少させた場合の図2において奇数個のセル流れの状態へ分岐、移行したときの \(Re \)の変化である。4セルの場合を例にとって説明する。\(\Gamma \)が4付近においては4個のセル流れの状態が変化し \(Re \)の変化によって3個、または5個のセル流れの状態へ分岐する。図において上側にある線は \(Re \)が徐々に増加した場合であり、下側にある線は \(Re \)が徐々に減少した場合である。まず \(Re \)が徐々に増加した場合の上側の線について注意する。\(\Gamma \)が4より小さい範囲では4セルは3セルへ分岐し、その分岐する \(Re \)の値は \(\Gamma \)の値に対して次第に減少していく。そしてその現象は \(\Gamma \)が4付近まで続き、\(\Gamma \)が4より大きくなると今度は4セルが5セルへ分岐する。その分岐する \(Re \)の値は4セルが3セルへ分岐する場合の曲線につながており、\(\Gamma \)の増加に対して減少していく。この4セルが3、または5セルへ分岐する現象は
ルへ移行したReを求めたものである。Γが4付近の場合を例にとって説明する。Γが4付近においては奇数個のセルとしては3と5セルの流れ状態が発生する。二次流れである5セルの流れ状態が4セルの流れ状態へ移行するReの変化はΓの増加に対し次第に減少していき、逆に二次流れである3セルの流れ状態が4セルの流れ状態へ移行するReの変化はΓの増加に対し次第に増加していく。この移行が起こるΓの範囲はΓが4の前後に関係されている。図7からも明らかのように5セルから4セル、3セルから4セルの移行のReの変化の線はある点で交差するがその点はΓが4の値より大きいところである。このことは図5に示した内容にも関係し、後節で述べるが、あるΓにおける主流は何なのかという問題に関係する。Γが偶数個付近であるとき、例えば、Γが4付近の場合には4→4.7付近に4セル流れが主流となりΓ<4では3セルが、Gamma4.7では5セルが主流になる。よって3→4セルのグラフで最小値がΓが4付近で切断しているのはΓ<4では3セルが主流となるためこれ以上移行はせず、5→4セルのグラフで最小値が4.7付近で切断しているのはGamma4.7では5セルが主流になるためこれ以上移行をしないからであると思われる。Γが2, 6, 8の付近についてはΓに対して移行するReの値が限られたものである。それらの傾向はほぼ同様であると思われる。

3.4 アスペクト比と主流の選択性

以上述べてきた結果を従来用いられてきたようなカタストロフィー理論で用いられる図で示すことを試みたが、首尾一貫した図が見いだされなかったのでここでは流れの状態の分岐をブロック線図形式でアスペクト比に対して示した。このような分岐は微妙なので多数の繰返し観察の結果ごく少量でまとめたものである。図8のはΓが6を中心にその前後のΓの範囲における流れの分岐図である。ここでRe<6, Re=6の記号について述べたのがRe=6の記号はRe=6を越える範囲へ急激に増加することを意味する。そしてこの急激に増加する方法は1とおりでなく、増加の速度が違う場合や、Reが増加する以前の流れの状態で異なったりする。しかし図8中ではその区別をしない。Re<6はRe=6とRe=6が相を示す流れの状態間で分岐しうることを示す。以下の説明ではこの記号を用いる。また図8中の四角で囲まった部分はその流れの安定状態を表し、その間を結ぶ線を矢印はその方向への分岐、移行を示す。また各タイプが存在する図の範囲を示す。Γの値は図8(1)の値6.7と6.8の間は別の状態があるので現在確認できている範囲を示している。実験では微妙な変化のため明らかにできなかったが、この両値はさらに近づき一つの値を境にすると思われる。流れの分岐は大きく分けて五つのタイプに分類できる。

まず図8(c)について注目すると、ここでは、6セルが主流である。よってRe<6.0よりクリティカル流れの流れは6セルへ分岐し、5セルや7セルへ分岐することはない。6セルになった状態が確立した後、さらにRe>6.0になるとほとんどの7セルへ分岐する。また、実験では制御しがたい微小かつ低乱によりときどき5セルへ分岐することがあった。しかしこれは図6に示すように7セルへ分岐するのが一般であると思われる。ただし図8(d)のように、6<5が注意深く実験しても発生したかった。これは分岐理論で言う系の不完全敏感性(Imperfection-Sensitivity)が原因であるとも考えられ、理論状態でも5セルへの分岐が存在するかは不明である。一方、6セルは主流であるにもかかわらずこの状態からRe>6によって6セルのままさらに分岐して波動タイラー流や流れ、乱流へと変化していこうことは、これは本実験系が自由であるため偶然である。
数個セルが存在しないからであると考えられる。
図8(c)形における5セルと7セルは二次流れとして存在し、Reでによってクエット流状の流れが発生するか、もしくは主流である6セルからの分岐によって発生する。したがって、この流れの状態が確立するとReによってその流れは渦動テイラー渦流れ、乱流へと変化していく。このテイラー渦流れはセル数について可逆的であり、Reによって渦動テイラー渦流れはテイラー渦流れになる。変化はステリシスを示す。そして渦動テイラー渦流れから渦流へと移行するレイノルズ数はReに対する数値小さいことがこの実験で明らかになった。これは、これらの研究結果と一致している。さらに5セルと7セルの状態はReによってのセルへと移行し、5セルと7セルはクエット流状の流れへ移行することはない。6セルの状態はReによってクエット流状の流れへ移行する。以上のように6セルが主流となるGammaの範囲はほぼ6<Gamma<6.7であり6セル前後ではないことが注目される。
次に図8(b)と図8(d)に注目する。図8(b)と図8(d)は図8(c)と異なり各国図8(b)は5セルが主流、図8(d)は7セルが主流の場合である。そしてクエット状の流れからReによって図8(b)で流れは5セル、図8(d)では流れが7セルへ分岐する。したがって、その主流が確定するとReの変化によってセルのセル数の状態へ分岐することがなく、Reによって渦動テイラー渦流れへ分岐する。これは固定端においてReの増加や減少によって4セルと2セルが相互に分岐するという関係と異なる、さらに図8(b)において7セルが、図8(d)において5セルが二次流れとなり、これらはクエット流からReによって発生する。この二次流れはいったん確定するとReによって渦動テイラー渦流れへ分岐する。しかしReによってそれらの二次流れは6セルへ移行する。さらに6セルにおいて、Reによって図8(b)では主流である5セルと図8(d)ではその主流である7セルへ移行する。また、いったん6セルの状態からReによってはより主流である5セルあるいは7セルへ分岐する。よってこの形における6セルはこれまで分岐されてきた主流でも二次流れでもない中間流れとなり得ることができる。しかもこの中間流れは極めて不安定な状態であると言える。一方主流はReによってクエット流状の流れになる。
次に図8(a)と図8(e)について注目する。ここではすでに6セルの発生は見られず、5セルと7セルの関係になる。すなわち図8(a)では5セルが主流に、7セルが二次流れに、図8(e)では7セルが主流に、5セルが二次流れになる。これらのReに対する関係は図8(b)と図8(d)の場合の中間流れがない場合と同じである。さらに現象を複雑にするのは図8(a)に示されていないが、二次流れとして図8(a)には7セルの他に3セル、図8(e)には5セルの他に9セルが存在する。実際にこれらの二次流れを発生させるには図8(a)における3セルは図8(e)における5セルを発生させる方法、図8(a)における9セルは図8(a)における7セルを発生させる方法と同じである。
すなわち現段階の実験では、主流のセル数より2個多いセルの二次流れを実際に発生させるにはRe≧RaでReを急激に増加させることで可能である。また主流のセル数より2個少ないセル数の二次流れを発生させるにはRe≧RaでReを急激に増加させることで可能である。実験により、Re付近まで急激にReを増加させることで可能で容易に達成された。これらの図8(a)における3セルと図8(e)における9セルの他の流れと流れの分岐関係は各々図8(a)における5セル、図8(e)における7セルと流れの関係であるのでここではこれらの流れの関係は省略した。
また、あるGammaの範囲では渦動テイラー渦流れ状態においてReによって二次流れが主流へ分岐する場合がある。これは自由端において最上層のセルがReが大きくなると遠心力により上表面が凹面になり、ついには最上層のセルが崩壊し二次流れへ分岐する場合、すなわち7->5と、Reが大きくなると最上層のセルの高さが高くなるにつれ、一回セルの数が減少して二次流れへ分岐する場合、すなわち7->5が可能である。以上、7->5の現象の場合は図8(a)のGammaの範囲内でGammaが比較的小さいとき、5->7の場合は図8(e)のGammaの範囲内でGammaが比較的大きいときに起こる。以上主流の選択関性に関して述べてきたが、主流の定義について、従来の主流の定義は、Reが徐々に増加した後に発生する流れを主流としている。しかしこの定義は渦流状態を渦流状態の一方向のみである。一方、図8から明らかのように主流はReの徐々の増加または減少の変化に対してクエット流状の間に分岐又は移行を行う。その意味で従来の定義に加えてReが徐々に減少するとときにクエット流状の流れが活動する直前の流れの状態を主流と定義することもできる。
4. 結論
本研究はアスペクトが小さい場合のテイラー渦流れ
れの不安定性について調べたものであり、特に \(\Gamma \) に対してテラーグ流れからスイフィテラーグ流れへ分岐する \(Re \) の変化を自由端と固定端について比較を行い、さらには自由端において奇数個のセル間、奇数個と偶数個のセル間の複雑な分岐現象を明らかにした。主な結論は次のとくである。（1）自由端の場合の奇数個セルと、固定端の場合の偶数個セルについて、テラーグ流れからスイフィテラーグ流れへ分岐する \(Re \) の \(\Gamma \) に対する変化を明らかにした。すなわち流れはセルと同じ符号の \(\Gamma \) の近傍が最も安定である。また、セル数が増加するにつれ、流れの安定性は全体的に低下する。さらに自由端における偶数個のセルは限られた \(\Gamma \) と \(Re \) の範囲にしか存在せず、偶数セルのままスイフィテラーグ流れや乱流へ分岐しないことが明らかになった。（2）自由端における奇数個セル同士の流れ、または、奇数個と偶数個セルの流れの間の分岐、移行するレイノルズ数を求めて、それらの複雑な相互関係を明らかにした。

（3）自由端において \(\Gamma \) に対するセル数間の分岐、移行の関係を求め、主流の選択性を明らかにした。さらに主流の定義について新たな提案を行った。最後に本装置の製作に当たり、名古屋大学工学部、神田博邦、村上先輩の両技官から多大のご協力をいただいたことに厚く謝意を表す。

文 献
（1）中村ほか3名、機械、54-504、B（昭63）、1898。
（4）Mullin、T., J. Fluid Mech., 121 (1982), 207。
（5）Mullin、T. and Benjamin、T. B., Nature, 288 (1980), 567。
（6）Thompson、J. M. T.（吉澤・柳田訳）、不安定性とケタス
トロフ、昭60、157、産業図書。

討 論
（質問）山田 亜男・今尾 茂樹
（名古屋工業大学）
（1）貴論文で使われている「主流」と「二次流れ」の意味は、例えば曲がり管などで用いられている一般的な意味と全く異なっている。文献(4)のprimary flowとsecondary modeを直訳的な上記の表現ではなく、例えば一次モード(primary flow)と二次モード(secondary mode)のようにしたほうが誤解が少ないと思うがいかがか。
（2）\(Re \) を徐々に下げてクーラ流れに戻る直前の流れを「主流」と定義してもよいといわれるか、それを行う必要があるのか？

（回答）（1）ご指摘のこと、本論文で使用されている「主流」と「二次流れ」の意味は、例えば曲がり管などで用いられている一般的な意味と全く異なっている。ご指摘いただき一次モード（主モード）と二次モード（副モード）の名称を文献(4)のprimary flowとsecondary modeのようにしたほうが誤解が少ないと思う。前報と本報においては「主流」と「二次流れ」を使用したが、現在、当テーマにおける流れの定式化を検討しており、今後の参考にさせていただきたいと思う。
（2）本研究では \(Re \) の増加と \(Re \) の減少によって流れの分岐、移行が発生することを明らかにした。すなわち、主流は \(Re \) が徐々に増加するとき、クーワ流れが発生する場合と、\(Re \) が徐々に減少するとき、二次流れから発生する場合があることになる。よって \(Re \) が減少した場合も主流の定義に加えてよいと考える。

（質問）中 林 功一・土田 陽一
（名古屋工業大学）
（1）貴論文中の「主流」および「二次流れ」という言葉は、流体力学で一般に用いられているものと相違し、誤解を招くように思う。主流モード、第2次セールモードというような名に変更したほうがよいように思うかいかがか。
（2）\(Re \) を急激に加速、減速させた場合には、セールのdislocationなど、環状セルとは異なったモードが現れることが報告されている。本実験では、すべてのセルは常に環状を保つのか。

（回答）（1）山田、今尾両氏のご質問内容の（1）と同じ内容であると考えるので、その回答をご参照願いたい。
（2）ご指摘のようなセルの転位などのセルが積み重なった流れと異なる流れは、アスペクト比が比較的

（付1）山田ほか3名、機械、51-461、B（昭60）、271。
（付2）Anderon、C. D. ほか2名、J. Fluid Mech, 164(1986), 155。

NII-Electronic Library Service
大きな実験において、特に内円筒、外円管ともに回転する場合に多く報告されており（付1）、（付2），また内円筒のみが回転する場合も報告されているが（付3），本実験では、トーラス状のセルが積み重なった流れのみが観察された。本研究のReがあまり近い範囲については扱っておらず、Reを2000程度まで増加したが、乱流に近い流れを示すもののセル構造は維持された。