Prediction of the Turbulent Boundary Layer on a Convex Wall and a Recovery Flat Wall

Nobuyuki SHIMA

A second-moment closure applicable right up to a wall, which was proposed and successfully applied to the boundary layers in previous papers by the author, is employed here to calculate the boundary layer on a convex wall followed by a flat wall. It is shown that the numerical solutions are generally in good agreement with the experimental data. In particular, the model reproduces a slow recovery of the shear stress on the flat wall downstream, a feature not captured by most of the previous predictions. The improvement is traced to a particular generation term in the transport equation that augments the dissipation rate in the recovery flow.

Key Words: Turbulence, Boundary Layer, Convex Wall, Curved Flow, Recovery Flow, Reynolds Stress Model, Second Order Closure

1. 結言

流れ方向に曲がった壁面に沿う乱流境界層の構造がその曲がりに極めて敏であることはよく知られている。壁面凸面である場合、平均流線の曲がりに伴う二次的な平均ひずみは二次的なレベルをはるかに超えた安定化をもたらし、レイノルズ応力や壁面摩擦は著しく減少する。このような流れはダーボ機構や航空機の翼面上に現れるので実際ににおいて重要性を極めて高く、乱流モデルにとって基本的予測対象の一つとなっている。

標準的な k-ε モデルにおいては二次的な平均ひずみはそのまま二次的な効果しか含まれないのでは、このような流れを正しく計算できない。k-ε モデルによって妥当な結果を得るためには、通常の応力・ひずみ速度関係および流線の曲がりに依存するパラメータをさらに導入するなどの修正を加えなければならない。一方、応力方程式モデルやその輸送項に近似を施した代数応力モデルには、より一般的な能力を期待できる。すなわち、選択された座標系において自然に現れる項によって二次的な平均ひずみの効果を正しくとらえることを望み得る。

Gibsonら(2)は高レイノルズ数形の応力方程式モデルを用いて、数種の凸面上境界層発達の予測計算を行った。その結果、凸面上においては実験データとの良好な一致が得られた。しかし、Gillis-Johnston(3)の実験との比較において、凸面に引き続く平面壁面における回復過程でのモデル計算結果は急激な回復を与えずことが明らかになった。

1980-81 Stanford 会議(4)においては、Gillis-Johnstonの実験（文献(4)と同一ではないが同様の条件下での実験）が凸面上境界層の予測対象の一つとして取りあげられ、それに対しあ9種の計算結果が提出された。モデル計算の手法は、積分法、移行方程式モデル、k-ε モデル、代数応力モデルなどにわたっている。このうち、良好な結果を示したのは、修正 k-ε モデルによる一例のみであった。その他の移行方程式モデルによる結果は、凸面壁面では比較的良好である場合でも、引き続く平面壁面においてはやはりリレイノルズ応力や壁面摩擦の急激な増大を与えた（Rodi(5)の解説にこの流れの数値予測結果の簡単まとめがある）。

k-ε モデルに前述のような修正を導入して良い結果を得ることができとしても、より一般的なモデルに
凸面壁とそれに続く平面壁上の乱流境界層発達の予測

よって自然にこのような流れを再現することは重要なことである。本研究は、著者⑴が先に提案し、平板境界層、正負の圧力こう配下の境界層に良好な結果を与えることが示された応力方程式モデルをGillis-Johnston⑵の流れに適用し、その予測性能を検討しようとするものである。上で見たことから、凸面壁に続く平面壁上の回復過程が主要な興味の対象となる。

2. 支配方程式と解法

本研究で用いる応力方程式モデルは著者⑴の既報に詳しい、このモデルの特徴は、応力輸送モデルの再分配項とε輸送モデルの生成項の係数に応力非等方テンソルの不変量や乱れレイノルズ数などのモデル関数が導入されていることである。これによって、壁に至る全領域に適用可能なモデルになっている。モデルの一般的なテンソル表式は既報にゆずり、ここでは図1に示す座標系に対してモデル方程式を記述する。図1において、xは壁に沿う座標、yは壁直角方向座標、Rは壁の周長の曲率半径である（記号は異なるがいわゆるs-n座標⑴）。x、y方向の速度の平均分をそれぞれU、V、変動分をそれぞれu、vとする。またx-y面に直角方向の速度の変動分をwとする。この座標系において、定常二次元境界層に対する応力輸送モデルは次のように書かれる。

\[
\frac{\partial}{\partial x} (U \overline{u^2}) + \frac{\partial}{\partial y} (aV \overline{u^2}) + 2uv \frac{U}{R} \]

\[
= -2uv \frac{\partial U}{\partial y} - \frac{2}{3} ae
\]

\[
- C \frac{\partial}{\partial x} \left(\frac{|\overline{u^2}|}{\nu} - \frac{2}{3} k \right)
\]

\[
+ C \left(-\frac{2}{3} aU \frac{\partial U}{\partial y} + \frac{1}{3} \frac{U}{R} \right)
\]

\[
+ C \frac{\partial}{\partial y} \left(\frac{|\overline{u^2}|}{\nu - \frac{2}{3} k} \right)
\]

\[
+ \frac{\partial}{\partial y} \left(C \frac{|\overline{u^2}|}{\nu} + \frac{1}{3} \frac{U}{R} \right)
\]

ここで、kは乱れエネルギー \((\overline{u^2} + \overline{v^2} + \overline{w^2})/2\)、εはその散乱率、νは動粘性係数であり、パラは平均を表している。また、aは次式で定義されている。

\[a = 1 + y/R\]　

モデル定数 \(C_r = 0.22\), \(C_t = 2.5\)であり、モデル関数 \(C_f\), \(C_t\), \(C_{t+}\)は以下のように与えられる。

\[C_f = 1 + 2.55a_1 A_1l^4\]　

\[C_t = 0.75A_1^{1/2}\]　

\[C_{t+} = -2C_t/3 + 1.67\]
凸面壁とそれに続く平面壁上の乱流境界層発達の予測

\[C^* = [2(C_f - 1) + 3 + 0.50] \]
\[+ [2(C_f - 1) + 0.50]/2 \]
\[= 2(C_f - 1) + 3 + 0.50 \]
\[= 2(C_f - 1)/3 + 0.50 \] (9)

ここで、\(f_s \) は乱れのレイノルズ数 \(R_f = k/u_v \) の関数として次式で定義されている。

\[f_s = 1 - \exp[-(0.0067/R_f)] \] (10)

また、\(A, A_s \) はレイノルズ応力非等方テンソルの不変量であって次式で与えられる。

\[A = 1 - \frac{9}{8} A_s + \frac{9}{8} A_s \] (11)

\[A_s = \left(\frac{u'^2}{k} - \frac{2}{3} \right)^2 + \left(\frac{v'^2}{k} - \frac{2}{3} \right)^2 \]
\[+ \left(\frac{w'^2}{k} - \frac{2}{3} \right)^2 + 2 \left(\frac{u'v'}{k} - \frac{1}{3} \right)^2 \] (12)

\[A_s = \left(\frac{u'^2}{k} - \frac{2}{3} \right)^2 + \left(\frac{v'^2}{k} - \frac{2}{3} \right)^2 + \left(\frac{w'^2}{k} - \frac{2}{3} \right)^2 \]
\[+ 3 \left(\frac{u'v'}{k} - \frac{1}{3} \right)^2 \] (13)

輸送方程式 (1) ～ (4) に若千の説明を加える。\(u', v', w' \) 方程式の左辺第 3 項は、座標変換によって対流項より生じた付加的な生成項である。右辺第 1、2 項はそれぞれ生成項、散逸項であるが、\(w' \) 方程式には生成項がなく、\(u' \) と \(v' \) 方程式には散逸項がない。\(u' \) と \(v' \) の 4 個の項は再分配項であり、前の 2 項は return-to-isotropy 項、rapid 項、後の 2 項は壁効果項である。そして、最後の項は拡散項である。

これらの方程式は、テンソル形式で与えたモデル方程式を図 1 の座標系について書き下し、それに近似を施して得られた、この近似は、通常の境界層近似に加えて、流れの曲がりに伴う最終支配的な項を保持したものである。生成項と平均速度場の再分配項には、保持されているかに \(\partial(U^*/\partial x + 2\partial(V^*/\partial y) + 2\partial(W^*/\partial x) \) の形の項が存在するが、それらは無視されている。また、拡散項については、\([1/R] \) で近似する項は、Gibson らにしたがって無視している。この近似のレベルでは、\(a \) をとり除く (\(a=1 \)) ことも可能であろうが、ここでは保持されている。

結局、曲がりの影響は (\(a \) を除けば) 左辺第 3 項、生成項、平均速度場を含む再分配項に現れている。

\(\varepsilon \) 輸送モデルは、この近似において、次のように書かれる。

\[\frac{\partial}{\partial x}(Ue) + \frac{\partial}{\partial y}(Ve) \]
\[= \varepsilon(C_1 + \phi_1 + \phi_2) \frac{e}{k} P - aC_6 \left(\frac{e}{k} \right)^2 \]
\[+ \frac{\partial}{\partial y} \left(\frac{1}{\rho} \frac{\partial}{\partial y} \frac{\partial}{\partial y} \left(\frac{\partial}{\partial y} \right) \right) \] (14)

ここで、\(P \) は乱れエネルギーの生成率であり、\(\varepsilon \) は次式で与えられる。

\[\varepsilon = \frac{\rho \varepsilon}{\partial^2} \left(\frac{\partial}{\partial y} \right) \left(\frac{\partial}{\partial y} \right) \] (16)

\(\varepsilon \) は次式で与えられる。

\[\varepsilon = 2

\[\frac{\partial}{\partial y} \left(\frac{\partial}{\partial y} \right) \] (15)

\(\frac{\partial}{\partial y} \left(\frac{\partial}{\partial y} \right) \]

\(\varepsilon \) は次式で与えられる。

\[\varepsilon = 2

\[\frac{\partial}{\partial y} \left(\frac{\partial}{\partial y} \right) \] (16)

\(\varepsilon \) は次式で与えられる。

\[\varepsilon = 2

\[\frac{\partial}{\partial y} \left(\frac{\partial}{\partial y} \right) \] (15)

\(\varepsilon \) は次式で与えられる。

\[\varepsilon = 2

\[\frac{\partial}{\partial y} \left(\frac{\partial}{\partial y} \right) \]
3. 結果と考察

計算の対象は、先に触れたGillis-Johnstonの流れである。これは図2に示すような壁面に沿う二次元境界層であり、基準流速U_{ref}（上流における主流速）が16m/sの空気の流れである。上流側平面壁面の半径$R=0.45$mの円弧壁が続き、これによって流れは90°向きを変え、さらに下流の平坦面に沿って流れる。壁に沿う座標xの原点は凸面部の上端部にとられている。図2にはさらに、以下で諸量の分布が示される位置Station 5, 10（および初期位置Station 1）が指示されている。Station 5は凸面部の中ほどに、Station 10は下流側平面部に位置している。図示された壁面の対面壁の形状の調整やそこでの吸込みによって、測定壁面上での圧力こう配はほぼ零となるようにされている。これに応じて、計算において壁面での圧力こう配は零とされる。

以下に諸量の分布を示すが、比較のために、先に述べたGibsonらによる計算結果もできる限り示すこととする。

図3, 4に運動量厚さθ、形状係数$H=\delta* / \theta (\delta* は$排除厚さ$)$の流れ方向変化を示す（Gillis-JohnstonのデータはGibsonらより引用）。$\delta*$, θ は、従来の研究と同様に、ポテンシャル流れの速度を用いて次のよう

に定義されている。

$$\delta* = \int_0^h (1 - U/U_{ref}) dy$$ \hspace{1cm} (24)

$$\theta = \int_0^h (1 - U/U_{ref}) dy$$ \hspace{1cm} (25)

θ の変化に関しては、本計算結果、Gibsonらの結果とも、凸面部における実験データとの一致の程度は許容できる範囲内であろう。しかし、引き続き平坦面では本計算結果は若干小さな値を示しているように見える。H については、両計算結果とも全体的に実験データよく一致していると言える。θ の値は平均速度分布を算出する上で必要であるので、特に平坦部を比較する際にもう一度検討する。

図5に摩擦係数$C_f=2\tau_w/\rho U_{ref}^2$ が示される（摩擦速度U_{ref} は平坦面流れの速度）の変化を示す。実験データの特徴は、曲がりの安定化作用による急激なC_fの減少と、引き続き平坦面における急激な変化である。凸面部では、Gibsonらの結果はデータよく一致しており、本計算結果は若干小さいのがその差を許容できる程度であろう。それに引き続き平坦面におけるC_fの値が、従来最も問題となった関心の対象となってきたものである。本計算結果が$x \approx 0.8$m
図6に曲面部および下流域部における平均速度分布を示す（Gillis-Johnstonのデータは Gibsonらより引用）。Station 5における本計算結果とデータとの一致は良好である（Gibsonらの結果は区別がつきにくい程度であるので省略）。Station 10においては、本計算結果の分布はややふくらみを帯びている。Gibsonらの結果は外層において本計算結果より良いが、内層においてややふくらみを帯びている（図6はやや見にくいが）。そして、この内層におけるふくらみがC_rの大きい値につながっている。いずれにしても、平均速度分布の相違はそれほど著しいものではなく、先に見た本計算結果の運動量厚さの低すなわちその重要性は恐らく考えられない。

図7には、上記の速度分布を壁座標において示す（Gibsonらにはこの分布の表示はないのでここでは含まれていない）。ここで、U* = U/U_r である。Station 5における計算結果は、そこでのやや下向きのC_rの値に対応して、実験データよりもやや上に位置している。Station 10における計算分布とデータの分布との一致は比較的良好で、データに見られる大きな変動成分がよく再現されている。Gibsonらが用いたモデルはレイノルズ数形である。対数則に合うように境界条件が与えられているので、彼らのC_rの値から見て、かなり小さい変動成分を示すはずである。

図8には、せん断応力分布を示す。ここで、8は99%境界層厚さである。図8において、本計算結果とGibsonらの結果の相違が最も明りょうに現れている。曲がり部Station 5において、Gibsonらの計算結果は、外層で相当下向き化する逆符号せん断応力の領域を持っている。本計算結果は最大値がやや小さいものの、全般的にデータとの良い一致を与えているのがわかる。回復部Station 10においても、本計算結果はよくデータの分布を再現している。これに対し、Gibsonらの結果は極めて大きいせん断応力の値を示しており、参考のために示したStation 1における分布の程度にまで回復していることがわかる。前述のStanford会議に提出された予測計算の大半も、やはりこのGibsonらの結果のように大きく下向きせん断応力を持っている。

最後に、曲がり部Station 5における三方向乱れ強さu'i、v'i、w'iの分布を図9に示す。Gibsonらにはこのプロットはない。実験結果の特徴は著しいものである。w'iについては計算結果とデータの一致は比較的良いであるが、計算結果のw'iは全般的に大きすぎ、v'iは内層において小さすぎる。このように、曲がり部の垂直応力分布については十分満足すべき結果が得られていない。

以上において、本モデル計算の結果を実験データおよびGibsonらの計算結果と比較した。主要なことは、
曲がりからの回復過程において本モデルが従来の計算に見られる急激な回復を克服し、せん断応力分布をほぼ正しく再現し、摩擦係数についても比較的良好な結果を与えた点である。

凸面の流れに関しては、応力方程式モデルを用いる場合、ある程度の予測性能をあらかじめ期待できる。それは、応力輸送方程式、とりわけ $u\nu$ 方程式において曲がりに伴って現れた帯状の生成膜に主としてよっている（もちろん再分配モデルの影響も大きい）。式（4）においてそのような生成膜は（左辺第3項も含めて）$(2u\nu - \nu\nu)\nu\nu/R$ であり、これは一次的な生成膜 $-\nu\nu \partial\nu/\partial y$ に逆らう、(動)せん断応力 $-\nu\nu$ を減少させる方向に働く。流れが平面壁から凸面に入ってくるとき、$u\nu$ の値は、$y/\delta = 0.2 \sim 0.4$ で2～3の程度、対数則領域で4～5の程度である。したがって、$\nu\nu/R$ が $\partial\nu/\partial y$ に比べて1オーダ小さい程度であると、付加的生成膜は一次的生成膜に比肩する（あるいは無視できない）大きさになる。(Gillis-Johnston の流れの場合 $R = 0.1$ であるので、$\nu\nu/R$ は $\partial\nu/\partial y$ に比べて、外壁において1オーダ小さい程度であり、対数則領域においてはもちろんそれより相当小さい) 主として、このことによってせん断応力は著しく減少していく。もちろん、下流に進むにつれて上述の諸量の値は変化していくが、すでに見があったように、本モデル計算では、Station 5 において垂直応力の等方化傾向が再現されていないにもかかわらず、せん断応力はほぼ正しく再現されている。このことから、せん断応力が相当低レベルになったこの段階での生成膜の相対的な重要性が低下していることを示唆している。しかし、この垂直応力分布に関する結果から見て、再分配モデルに改良の余地があるとは言えない。

流れが凸面から引き続き平面に流入していくとき、曲がりに伴う流れ方向が切れ、せん断応力、乱れエネルギーは増大の方向に向け、従来の応力方程式モデルや仮定応力モデルは、すでに見せて、このとき極めて急速な回復を示す。これは Gibsonらも示唆するように、$\nu\nu$ 輸送モデルの問題であると考えられる。乱れエネルギーの生成率 P が増大しようとするとき、当然、その散逸率 ϵ も増大しようとする。

図 8 レイノルズせん断応力の分布
図 7 壁面近傍における平均速度分布
図 9 三方向乱れ強さの分布
従来のモデルでは、このときの増大が緩慢すぎるため、極めて急激な乱れエネルギーを、せん断応力の増大が生じると推測される。本モデルの \(\varepsilon \) 輸送モデルには、式(14)に見るように、生成項の係数として \(\alpha \) の項が含まれており、それが \(P > \varepsilon \) のときの生成を増幅しレイノルズ応力の急激な成長を妨げていると考えられる。\(\alpha \) は、逆圧力こう配下の境界層において、実験で观察される逆圧力こう配下の境界層において、実験で観察される逆圧力こう配下の逆圧力こう配下の生成分を再現するために導入されたものであるが(10)、曲がりからの回復過程においても、このように適切な働きをするのである。

4. 結 言

凸面壁とそれに引き続く平面壁面に沿う乱流境界層の発達を数値計算し、代表的な実験データと比較検討した。用いた乱流モデルは、著者が先に提案した、応力非等方テンソルの不変量を取り入れた壁面付近全領域に適用できる応力方程式モデルである。数値予測の結果は全体的に良好であり、とりわけ、従来の応力方程式モデルや統計モデルがとらえられなかった平面壁面での回復過程を合理的に再現することが示されたため、このモデルはすでに平板境界層、正または負の圧力こう配下の境界層に良好な予測結果を示しており(11)、それが修正なしに本研究での流れに適用され好結果を与えたことが確認されなければならない。

最後に、本研究の数値計算は名古屋大学大型計算機センター FACOM M-780/20 によって行ったものであることを付記する。

文献

2. Launder, B. E., Turbulence models and their applications, 2 (1984), 1, I. EYROLLES.
6. Rodi, W., Turbulence models and their applications, 2 (1984), 297, EYROLLES.

討 論

【質問】 笠木伸英・明 賢國
【東京大学工学部】
(1) 曲率壁に沿う緩慢な回復過程の予測に改良を加えた点は評価されるべきと考えるが、一方曲率壁面での予測は必ずしも良好とは言えない。また文献(10)で指摘されているように回復過程での実験値も疑問点があると考えられるので、混合層の曲がりからの回復過程などを含めて他のモデルとの比較がなされていないと、貴モデルの優位性を主張するのではなくだろうか。
(2) 局所の流速曲率を1/Rで近似した場合に、特に回復過程の始まり部分での問題点について、どのようなお考えをお持ちか。
(3) 拡散項のうち気流 \(a=1 \) とした根拠は何か、他の項目に対しても \(a=1 \) とするとどのような結果になるか。
(4) ここで扱った流れに対しては、壁面近傍の現象の影響は小さいと考えられるが、貴モデルの有効性を評価するためには、むしろ壁面近傍の各応力などの断面流動の焦点を合わせることが必要ではないかと考えるが、いかがか。

【回答】 (1) Gillisらの実験は回復過程の挙動が注目を引き多くの予測計算や考察の対象となってきた。実験結果に有力な反証があるわけではないが、少なくとも現在のところ、乱流モデルの検証のための代表的データの一つであろうと思われる。この実験との比較によるモデル性能についての本文中の記述は妥当であると考えるが、より多種のケースへの適用が望ましいこともあり、その点は今後の課題としたい。
(2) 応力方程式モデルでは曲がりの効果はモデリングの対象ではなく座標変換の結果にすぎないので、本来、流速曲率の近似の問題はない。もちろん、支配方程式系にさらにどのように近似を施したかという問題はあり、本研究では、式(15)と式(14)の間に述べたような省略が行われている。一方、比較の対象としたGibsonら(10)の計算結果は（少なくとも生成項に関しでは）そのような省略なしに得られたものである。彼らの結果から見て、そのような項の保存が回復過程の予測を改善することではないと推測される。本文中に述べたように、\(\varepsilon \) 輸送モデルにおける生成（消滅）項モデラが緩慢な回復を再現するか否かであると考えている。
(3) 拡散項においても \(\alpha \) はそのまま扱っており、

NII-Electronic Library Service
α=1としていない。その点に関する記述が誤解を招きやすい表現であったことをおわびする。その部分の意味は、例えば方程式においては、式(1)中の拡散項のほかに \((1/R)(C\mu \beta v^2/\varepsilon + \nu) \partial u^2/\partial y \) に比例する項などが存在するが、それらを無視するということである。なお、すべての式において α=1とした場合については、計算を実行していないので確たることは言えないが、その影響は二次のものであると推測する。

(4) 本研究で用いたモデルは壁に近い全領域に適用できる応力方程式モデルであり、そのねらいの一つはもちろん壁のごく近傍の応力非等方性の強い粘性影響領域を適切にとらえようということである。一方そのような領域を離れてても、応力非等方テンソルの不安定や \(P/\varepsilon \) を含んでいることによって本モデルは従来のモデルと異なる挙動（例えば本研究における回復過程）を示すものである。その意味で、興味ある種々の流れに適用してその性能を検討し、広い適用性をもつモデルを確立したいと考えている。