HYPERSONIC RAREFIED FLOW AROUND A CIRCULAR DISK

Kenichi NANBU, Saburo ICARASHI and Yasuo WATANABE

Rarefied flows around a circular disk in a hypersonic stream are analyzed by the direct simulation Monte Carlo method. The domain of calculation is fully three-dimensional. The rarefaction effect upon such quantities as the flow field, the drag and heat transfer coefficients, and the recovery temperature is shown for Kn=0.1 - 20 at the wall to a stagnation temperature ratio of 0.5 and 1. The drag coefficient is in good agreement with the experimental data of argon by Legge. The cell network proposed here can easily be applied to lifting flows.

Key Words: Rarefied Flow, Hypersonic Flow, Three-dimensional Flow, Direct Simulation Monte Carlo Method, Modified Nanbu Method

1. 緒 言

最近、直接シミュレーション・モンテカルロ法（DSMC法）は半導体製造プロセスに用いられる中間流、例えば、ガスソースの分子鎖エビタキシー法（MBE法）や減圧CVV法による成長装置内の、流れや板巻上に形成される膜厚分布の解析に応用された11). 一方、このような板巻周りの中間流は宇宙工学における圧力利用軽荷間輸送機（ADTV）の最も簡単なモデルと考えられる。

高度30km以上を航じる宇宙船まわりの中間流の解析は、DSMC法によってのみ解析可能とされている。このような流れは、一般に解釈、電離や衝撃波による複雑な３次元非平衡流れであるが、ここではその第一段階として、極超音速流中に流れに垂直に置かれた円板周りの中間流を解析する。より一般的な迎角がある場合にも容易に拡張できるようにこの問題にあらわれる流れの軸対称性は用いず、計算領域を3次元にとる、気体は剛体球分子から成る単原子気体とし、反応は考えない。分子衝突のシミュレーションには、Bird法22)よりも理論的基盤が確かな、かつベクトル化に適しているModified Nanbu法33)を用いた。従来この種の問題に対しては、Degra14)やHermi15)のDSMC法によらない解析があるが、転対称性を用いて計算領域を2次元にし、かつ気体は四元素に近似した仮定を用いている。本研究では流れを3次元として扱い、また、このような仮定は用いない。このため、シミュレートする分子の数は多く、約50万個となる。しかしこの程度の分子数はスーパーコンピューターでは十分に計算できない。特に、本研究の目的は、実験との比較が可能な数少ない希薄気体力学の基本問題の一つである円板周りの希薄流を、あいまいな仮定を一切用いず解析すること、およびほとんど試みられていないDSMC法による3次元流の解析が、スーパーコンピューターで十分可能なことを示すことにある。

2. 数値計算法の概要

* 平成元年 4月 4日 第66回通常総会講演会において講演、原稿受付 昭和63年4月 22日。
** 正員、東北大学気体科学研究所（〒880 仙台市青葉区平和2-1-1）
図1に示すように速度u_0の一様流のなかにおかれ
た半径r_0の円板周りの流れを考える。解析にあたっ
て計算領域として半径R、長さ$(a + b)$の円筒を採
用する。DSCM法では計算領域を小さなセルに分割
する。分子の運動は、分離の原理を満たすように平均
自由時間が十分小さくとった時間$Δt$の間の自由運
動による移動並びに衝突による速度の変化に分けて考
えることができる。時間$Δt$、流れが定常状態に
達するまで進行させる。DSCM法は確率的方法なの
で、さらにそれ以降も時間を遅め、時間平均から流れ
のマクロ現象を得るものである。詳細については文献
(2), (3)を参照されたい。

まず領域をセルに分割する。円筒をN_z個の厚さ
$Δz$のスライスに輪切する。つぎに、この半径Rの
円板状スライスを図2に示すように半径方向に等間隔
の同心円で切ったのち、さらに周方向に等分割する。
同心円の半径r_kは

$$ r_k = kΔr, \quad (k = 1, 2, \ldots, N_r) \quad (1) $$

対称軸（z軸）を含む半径$Δr$の円は周方向に分割し
ない。$r_{i-1} < r < r_i$の領域の周方向分割数N_r
は

$$ N_r = 3k, \quad (k \geq 2) \quad (2) $$

に選んだ。したがって周方向に分割したセルの中心角
$Δθ$は$2π/N_r$となる。N_rを式(2)のようにとったの
は次の理由による。分子衝突を計算する際、衝突対を
なす2つの分子は同一のセルに属するものからサンプ
リングされる。2つの分子は分子の距離により無関係に
選ばれるので、可能な最大の分子間距離、すなわち各
セル内の2点間の最大距離とは、どのセルについても
同程度であることが望ましい。図2で、$0 < r < Δr$のセ
ルに対しては、明らかに$0 < Δr$である。式(2)の分
割に対し一般に$L = 2N_a \sin (Δθ/2)$としたが

$$ \frac{L}{2Δr} = \frac{k \sin \left(\frac{\pi}{3k} \right)}{2} \left(= 1.05 \right) \quad (3) $$

よって$L/2Δr$は、周方向に分割されたセルに対
しても$1 \sim 1.05$の範囲になる。図2の最内側のセ
ルの体積V_iは$V_i = π(Δr)^2Δz$となり、$r_{i-1} < r < r_i$にある周方向に分割されたセルの体積V_s
は

$$ V_s = \frac{2k-1}{3k} V_i \quad (k \geq 2) \quad (4) $$

となる。この比は$1/2 \sim 2/3$の範囲にある。計算領
域にあるセルの総数N_cは

$$ N_c = \left[\frac{\pi}{2} N_r (N_r + 1) - 2 \right] N_z \quad (5) $$

ここで代表的な場合、$Δz = Δr = 0.2, N_z = 60,\nN_r = 15$を選んだ。
相手の分子の番号は小区間の番号となる。いずれかの小区間の左側にはいると分子は衝突しない。さて時間$t = 0$では分子を円板の前方（$z > 0$）の領域に配置し、一様流れは極限速度流なので、これらのすべての分子に大きさ$-U_0$のz方向速度成分を与えた。上流側境界$z = a$から流入する分子にも同様の速度を与えた。円板の速度をT_wとし、そこに衝突する分子は拡散反射されるものとする。分子間の衝突は式(6)でシミュレートされる。すなわち、一様流れ中の体積V_0にNs個の数標本分子があるとする。このときΔt時間に相対速度u_{ij}の2つの分子が衝突する確率、式(6)は、時間$t = 0$、長さ$t = 0$、速度をU_0で無次元化して（無次元量をxで示す）

$$P_{ij} = \frac{1}{2} \sqrt{\pi} \frac{V_i}{V_j} \frac{1}{Kn \sqrt{V_i V_j}}$$

ただし、$Kn = \frac{\nu}{2} U_0^2 A$（$A$は一様流れの平均自由行程）はクノール数である。

3. 結 果

速度場、密度場、温度場、抗力係数、および熱伝達係数に及ぼすクノール数ならびに壁面温度の影響を明らかにするために

$$Kn = 0, 0.1, 0.5, 1.0, 5.0, 10, 20, 5$$

$T_w/T_0 = 1$（T_0、T_wは一様流れの壁点温度である）の場合について計算した。図3は上流側の流れが示されるようにクノール数が小さくなるほど円板の壁近くの流れは急激に減速され不連続的変化を示すようになる。図5は円板位置での半径方向の密度分布である。密度は円板の外縁で急激に低下する。図6は$T_w = T_0$の場合における上流側の流れの密度分布を種々のクノール数に対して示す。クノール数が小さくなるにつれて円板壁面における温度のジャンプが次第に小さくなる。また温度分布ともクノール数が小さくなると共に急激に変化するようになるのは、速度分布の場合と同様である。クノール数の違いによる流れのパターンをみるために、図7に$Kn = 0.1$の場合の流れ（質量流量）を示す。クノール数が小さくなるにつれて円板背後（図の左側）へ回り込む流れが見られる。図8は抗力係数C_Dの変化を示す。図9の○印はアルゴンを用いたLagrangeの実験値で、本結果とよく一致していることがわかる。ここにC_Dは次式で定義される。

$$C_D = \frac{1}{2} \rho U_0^2 A$$

ただし$A = \pi r_0^2$で、Pは円板の受ける抗力である。
図6 解点流線上の温度（$T_\infty = T_\infty$）

図7.1 流線（$Kn = 1, T_\infty / T_\infty = 0.5$）

図7.2 流線（$Kn = 0.1, T_\infty / T_\infty = 0.5$）

図8 抗力係数

図9 熱伝達係数

図10 回復温度
図10は回復温度とクヌーセン数との関係を示す。クヌーセン数が小さくなると急激に減少しきる一定値に近づく。これと類似の現象がT∞=T∞の場合は熱伝達係数にも見られる。

4. 結論

極超音速流中におかれた垂直円板周りの3次元中間流を直接シミュレーション・モンテカルロ法を用いて解析した。気体は剛体球分子とし分子衝突はModified Nanbu法でシミュレートした。流れ場、速度場、密度場、温度場、抗力係数、熱伝達係数、流速等に及ぼすクヌーセン数の影響を明らかにした。セル分割は3次元流れを取り扱うように行っているので迎角のある円板周りの流れにも直ちに応用できる。

本研究は文部省宇宙科学研究所との共同研究「空力利用軌道輸送器」（代表 小口 信郎）として、同研究所から研究費の一部援助を受けてなされた。また本研究は、文部省科学研究費重点領域研究「数値流体力学」の計画研究に属するものであり、当該研究費も一

文献