Heat Transfer Characteristics of Two-Dimensional Model of Parallel Louver Fin

Kenjiro SUZUKI, Tetsuro HAYASHI, Matthew J. SCHUERGER, Atsuo NISHIHARA, and Masakatsu HAYASHI

The interruption of a fin surface causes renewed boundary layers starting from the leading edge of each interrupted fin. This results in boundary layer thinner in the average over entire length of fin surfaces compared to the uninterrupted case. Therefore, a higher degree of interruption is normally expected to lead to a higher degree of heat transfer. However, to realize this expectation actually, care must be taken of the geometrical allocation of each fin in an array so as to avoid other undesirable effects relating to the fin geometry. Numerical computation of flow and thermal fields have been made for two-dimensional models of two types of parallel louvered fins and an offset fin. Heat transfer characteristics of parallel louvered fins are discussed in comparison with those of an offset fin based upon the results obtained from the performed numerical computation. It is demonstrated that a certain type of parallel louver fin has a higher heat transfer performance than that obtained with an offset fin.

Key Words: Heat Exchangers, Parallel Louver Fin, Convective Heat Transfer, Numerical Analysis

1. 論 言

コンパクト型熱交換器に、形状、配列方式等が異なるさまざまなフィン形態が使用されているが、現状においてはそれら相互の性能の差異や、寸法（幾何形状パラメータ）の変更に伴う個々の形式のフィン性能の変化について明確な知見は存在していない。著者らは、前報においてオフセットフィン二次元モデルにおける流れ場と温度場を、レイノルズ数1,000以下の低レイノルズ数域で数値解析法を用いて計算し、その結果からオフセットフィン形熱交換器の伝熱、流動特性に及ぼす幾何形状パラメータの影響と、その影響が生じる原因について検討した。本報では、同様の数値解析を平行ルーパフィンに対して応用し、主として伝熱特性の観点から、低レイノルズ数域におけるオフセットフィンと平行ルーパフィンの特性を対比し、また両者の特性の差異の原因について検討を施す。
3. 数値解析法の概要

本研究では、運動方程式およびエネルギー方程式を差分法で数値解析を行った。差分法には風上差分を使用するが、その方法は文献(1), (3)のそれに基本的には同じなので、以下の差分法の概要ならびに前報との相違点のみ述べる。

各種の境界層近似を施さないものとし、復元計算を行って定常解を求めた。格子点回りの検査領域内での差分の残差を計算し、それが予め定めた小さな値以下になったときに解が収束したものとみなして計算を打ち切った。運動方程式中の圧力こう配の推算には、連続の式を満たすように格子点の圧力の差分方程式(SIMPLE法)を使用した。計算には直角格子を用いた。

図1に計算を行った二次元フィンモデルを示す。以下では本研究で採用したオフセットフィン、フィン配列形式が異なる2種類の平行ルーパフィンを、それぞれOフィン、PL1フィン、PL2フィンと呼ぶ。近直流と平行な座標をx、フィン面に垂直方向の座標をyとし、その原点を初段フィンの前線位置に置く。フィンパッチを25、フィンオフセット長をLフィン後流長をLxとする。また以下の議論において、あるフィンに注目してそれと前段フィンを呼ぶ際に、それらを上流段、下流段フィンと呼び、またy方向位置は相対するもの、x方向には前後で接するフィンを前段、次段フィンと呼ぶ。

さらに初段のx位置でy方向に接するフィンを横側フィンと呼ぶ。なおOフィンの場合には、すべてのフィンにおいてLx=Lであるが、PL1、PL2フィンの場合には、注目するフィンによりLxの値が相違する。また、前段もしくは次段フィンとのフィン間隔Cは、OフィンでS、PL1フィンで(2/3)S、PL2フィンでは(5/6)Sで固定して計算した。

低レイノルズ数では伝熱特性に及ぼすフィン厚さの影響は小さいので、本研究ではフィン厚さを零と仮定した。フィン厚さが著しく増大すると、フィンの後流が不安定化し、伝熱特性が定常層流下のそれと異なる場合があるので、以下の議論は比較的薄いフィンを対象とするものである。フィン厚さの影響については、別途実験を行う予定である。またフィン厚さが、低レイノルズ数域においても乱れ損失にはより強い影響があるので、以下では乱れ損失についての議論は定常的議論にとどめる。

图中破線で囲った部分が計算領域である。この領域内において、x方向に最大SS1点、y方向に81点の格子点を配置した。格子の配列は不等間隔とし、y方向にはフィン面近傍で密に、x方向にはフィン前線、後線近傍で密になるよう配慮した。なお、格子点配列方向と流線がずれ角度が大きくなるフィン前線、後線に接する格子点で、格子間隔基準レイノルズ数を5以下とすると数値粘性の影響が全体的に僅少となることを確かめ、このことが満足されるよう配慮したものである。

入口境界では、x軸方向速度、温度は一定とし、それぞれの値をU0、T0とする。またy方向速度Vは零とする。フィン面の温度は一定であり、その値をT0とする。なお、以下では流体がフィン面で冷却されるものとして現象の説明を行う。TxとT0には具体的数値を入れて計算を行ったが、温度差は(Tx-T0)<T0を満足する値を用いたので、物体の物性値を一定として純粋対流下の計算を行ったことに相当する。下流側境界では、V=0、他の量についてはx方向こう配を零とする取扱いを行った。下流側境界を最下流フィン後端からある程度下流に設置すると、この取扱いの近似度は向上する。

接近流と平行な境界面では、PLフィンの場合には、Oフィンの場合と異なり、その面を通じて入口に入る流体が常に運動量とエネルギーの輸送を生じる。そこで、この位置の境界条件には、流れ場と温度場いずれもy方向にビッチ2Sで周期的にになっているとする条件を使用した。以下に、この点について少し具体
平行ルーピフィンの伝熱特性に関する基礎的考察

の述べる。

すなわち、同一の \(i \) 位置における一方の境界面 \((j = 1)\) と他方の境界面 \((j = n+1)\) では解くべき変数 \(\Phi_{uv} \)（速度成分 \(U_{uv}, V_{uv} \) および温度 \(T_{uv} \)）が等しくなるものとした。ある \(j = K \) の格子点位置にフィン面が存在する時には、変数の配列順序を \(\Phi_{u1, \ldots, j-1, j+1, \ldots, n} \)，\(\Phi_{v1, \ldots, j-1, j+1, \ldots, n} \) \((K' = j = K \) におけるフィンの裏面を表す）と変えるとこの計算は容易に実行できる。注意する位置 \(i \) においてフィン面が全く存在しない時には、例えば \(j = 1 \) の値を仮に既知として、\(j = 2 \) から \(j = n \) までの \((n-1)\) 個の方程式を解いた。ついで運動方程式、エネルギーの差分式を \(j = 1 \) から \(j = n+1 \) まで \(y \) 方向に積分した保存式を用いて、\(j = 1 \) における各量の値を逆算し、これを再回の反復法にとて同一位置で仮定すべき量として使用した。この方法によって 3 項方程式の解法が使用できる。もちろん、この方法によらずも、Gauss-Seidel 法によって、\(N \) 個の方程式の解を求めることもできる。本研究では、この 2 つの方法を対比したところ、結果は大差ないものの、Gauss-Seidel 法に比して計算時間が \((1/5)\) 以下に短縮できるとの結論になったので、前記的方法を使用した。

4. 計算結果とその検討

4.1 局所熱伝達特性

図 2 に、3 種類のフィン系に対する局所熱断面数 \(Nu_i \) の分布例を示す。ここで \(Nu_i \) は \((T_{i+} - T_{w}) \) を基準温度差として定義している。いずれの系でもフィンを長さ \(L \) ごとに分けるため、そのはずめに薄い温度境界層の熱伝達が利用できる効果（境界層損失効果）が生じて、前緣位置において \(Nu_i \) の値が大きくなっている。また、\(Nu_i \) の値はフィン間隔や生じる流れの加速により大きくなっているが、それが顕著なフィン後継近傍では下流に向かって増大している。一方、各フィン各個々について見ると、まず O フィンの場合には、大略の傾向として、\(Nu_i \) の分布は下流端フィンほど低下している。これは下流に向かって流体温度温度 \(T_{w} \) が \(T_{w} \) に漸近することのほか、後述する後流効果による伝熱特性が下流端フィンほど低下するためである。Fig. 4 段め、4 段めフィンなどどの偶数段目フィンの \(Nu_i \) の分布が、それぞれの前段フィンのそれよりもやや高いのは、2 段めフィンに接近する流体が前段フィンの間隔を加速され、その速度が \(U_0 \) よりよくなるためである。PL1 および PL2 フィンについて、フィンの両面の局所熱断面数が実線と破線で示しているが、両者の差異は PL2 フィンの 5 段めフィン以降では顕著ではない。PL1 フィンの場合には、4, 6, 8 段めのフィンの \(Nu_i \) 分布が、また PL2 フィンでは、3, 4, 5, 7, 8, 9 段めのフィンの \(Nu_i \) 分布が、O フィンにおける対応する位置のフィンのそれぞれより高い。したがって、後述するように系全体の平均熱断面数は PL2 フィンで最大、O フィンで最低となる。

図 2 の結果を得た際同時に計算された流れ場図 3 に示した。図中の矢印は、それぞれの起点位置における速度ベクトルを示す。いずれのフィン系においても流線の曲りは大きくなく、各フィンの後端はほぼ \(\phi \) 軸に平行に発達している。これが PL1 と PL2 フィンにおいてフィン両面の局所熱断面数の差異を小さくしている基本的理由である。

PL1 フィンと PL2 フィンにおいて、O フィンの場合に比べて \(Nu_i \) の分布が高いと指摘したが、いずれもその上流側に後流が存在しない。
存在してもその後流長が大きく、それが3Lあるいは5Lのものに相当している。上流側の後流長Lの場合、その区間内では後流が十分に回復しないため、前線位置に接近する後流はまかななりの速度欠損を有する。このことから、Oフィンの場合の速度ベクトル図から容易に見て取れる。フィン前線に到達する流体が速度欠損を持つ場合には、実質的なレイノルズ数の小さい値を基準とする見かけのレイノルズ数より速度欠損分だけ低下する。---

フィン前線に到達する流体の速度欠損が無視できない場合には、同時にかなりの大きさの温度欠損が存在する。図4には、図2、3と同一条件下の温度場の比較例が示されている。いずれの温度分布も、注目するフィンの前線から0.01L下流の断面で計算されたものである。図4(a), (b), (c)に示した。上流側後流長さがLに等しいOフィンの4段めとPL1フィンの3段めフィンおよびPL2フィンの6段めフィンにおいては、比較的大きな温度欠損が見られる。一方、図4(d), (e)に示した上流側後流長さが3Lに等しいPL1フィンの6段め、PL2フィンの7段めフィン、また図4(f)に示した上流側後流長さが5Lに等しいPL2フィンの8段めフィンに対する結果では温度欠損は小さい。フィン前線に到達する流体の温度欠損ΔTが無視できないときは、フィン前線部の熱伝達を支配する有効温度差は(Tw-Tw)よりΔTだけ小さい(Tw-Tw-ΔT)とされる。この影響は、フィン前線部下流域においても、温度境界層の発達への影響を通じて持続的に残る。このため、後流の未回復効果により、実質レイノルズ数の低下と、有効温度差の減少が生じ、フィン全面の熱伝達が不適となる（以下この影響を後流未回復効果と呼ぶ）。図2に認められたフィン形状による局

所選択数分布の差異は、主として後流長さの相違に基づく後流未回復効果の差異によって生じているものである。

図3をみると、いずれのフィン系においても、前後面接続するフィンの間隙部分には、y方向のかなりの幅を持って、ほぼ一様な速度分布が存在している。かかる状況下、レイノルズ数が低下すると必ずしも実現できない。図5にレイノルズ数Re=250におけるPL2フィンに対する速度場の計算例を示した。レイノルズ数が低下して、フィン後端における境界層厚さとフィン間隔Cの比が増大すると、フィン間隔を通過する質量流量割合が低下し、その分だけ余分に横側フィンとの間の流路幅の広い部分に流れることがになり、図に見られるように流れの蛇行が生じる。それが顕著な場合には、直接的結果としてフィン近傍の流体速度が減少する。同時に、あるフィンの温度境界層が前段フィンの温度境界層に埋もれて発達するこ
とが生じ、熟伝達が不良となる。特に前段フィンと対
面する側のフィン面の不良が顕著となるので、フィン
表面の伝熱特性に相違が生じる。図5と同じ条件の
PL2フィンにおける上面と下面の局所熱流束数分
布を図6に示す。図に見られるように、2-4段めでは
前段フィンに並列する下面の熱伝達が悪く、7-9段
めでは反対に上面の熱伝達が不良である。以下、この
不良を招く原因を境界層変化効果と呼ぶことにする。
いずれのフィン系においても、あるレイノルズ数以下の
境界層変化効果による余分の伝熱特性の低下が顕
著になるが、フィン間隔Cが他のフィン形式のそ
れより小さいPL2フィンにおいては、より高いレイ
ノルズ数において境界層変化効果が生じ始める。なお、
Oフィンでは、流れる蛇行は生じない。

4-2 フィン系全体の特性 この節では、3種類
のフィン系の全体の特性を相互に比較し、レイノルズ
数や幾何形状パラメータの影響を検討する。図7, 8
に、L/Sを一定にした場合について、各フィン形式に
対する系全体の平均熱流束数Nuおよび系出入口の
圧力係数cfの（負荷を取ると圧力損失係数）のレイノ
ルズ数依存性を示した。図7では、Reの値にかかわら
ず、系全体の平均熱流束数はPL2フィンで最も高
く、ついてPL1フィン、Oフィンの順に低下してい
る。これは、後流未回復効果による伝熱特性の低下が
PL2フィンで最も少なく、一方Oフィンで最も顕著
なためである。同様の差異は、フィン面に作用する粘
性摩擦、流れの加減速に伴う圧力損失にも生じてい
る。すなわち、PL2フィンでは、大部分のフィンにお
いて接流速度がU4程度であるのに対し、Oフィン
では逆に大部分のフィンにおいて接流速度が
U4よりかなり小さいので、圧力損失はPL2フィンで
最大、Oフィンで最小となる。なお、3種類のフィン形
式の間に、圧力損失の差異よりも伝熱特性の差異のほ
うが大きいことが認められる。これは、前者が速度欠
損の未回復のみに依存するのに対して、後者が速度欠
損の未回復にも依存するためである。また、Re=
平行ループフィンの伝熱特性に関する基礎的研究

圧力損失の大小の順序は、平均ネセル数の大小の順序と同じである。これは、前述のように、フィン系の種類によって、系内の各フィンが受ける後流発回復効果が相違することを反映したものである。また、Lを小さくするときのNwの増大率も、PL2フィンで最大、Oフィンにおいて最小である。これはPL2フィンでは、大部分のフィンでLw/Lの値が比較的大きいから、Lを小さくしても後流発回復効果による伝熱特性の低下は顕著に生じないので、境界層発回復効果による伝熱特性の向上が支配的に発揮の対象に対して、Oフィンでは、後流Lwの減少に伴って同時に生じる各フィンの後流発回復効果の増大が、境界層発回復効果による伝熱特性の向上を減殺するためである。

以上の計算例とは逆に、(L/S)を増やすと、系の後部にフィンを付加しても全段数Nを変えて(H/S)を変わったときの平均ネセル数と圧力係数の変化を調べた。Re=1000における結果を図11と図12に示した。前述したように、PL2フィンでは後流発回復効果による顕著な伝熱特性の低下は生じず、またこのレイノルズ数のむとは境界層発回復効果による伝熱性能の低下も大きいか。したがって、後部に付けるフィンは上流部のフィンとはほとんど同じ伝熱特性を持つ。このため、
図11に見られるように全段数Nを増しても、系全体の平均ヌルメント数はほとんど変化しない。一方、Oフィンにおいては後流非回復効果が無視できないから、Nの値にかかわらずその\tilde{Nu}の値はPLフィンのそれより低い。また、後流非回復効果は下流段ほどより顕著になるので、全段数Nがある値以下では、Nの増大とともに\tilde{Nu}は減少する。Nの変化による\tilde{Nu}の変化から推定すると、後流非回復効果が飽和するに要する段数はかなり大きく、$Re=1,000$において10段以上である。なお、圧力損失の前と同様に、平均ヌルメント数の大小の順序と同様に、PL2フィンで最大、Oフィンにおいて最小である。

5. 結 言

本報では、平行ルーパーフィンに対して数値解析を応用し、主として伝熱特性の観点から、低レイルズ数域におけるオフセットフィンと平行ルーパーフィンの特性を対比し、また両者の特性の差異の原因について検討を施した。その結果を総合し、次のようである。

フィンの平均ヌルメント数をよく大きくなるために、フィンオフセット長Lを小さくし、境界層更新効果を利用することが有効である。しかし、フィンの形状のままであれば、マニエス要因として作用する各フィンの後流未回復効果も増大するので、必ずしも十分な効果が期待できない。境界層更新効果を有効に利用するためには、後流未回復効果に伝熱特性の低下が生じないように、なるべく多数のフィンにおいてその上流の後流長を大きくするよう、各フィンの配列方式を決定すべきである。本研究で検討したPL2フィンは、この点で優れたフィン配列方式の一つである。

PL2フィンではOフィンより圧力損失が大きいものの、その圧力損失の差異よりヌルメント数の差異のほうが懐著である。また、このフィン系では全段階を増しても、平均ヌルメント数の低下は生じないので、伝熱量あるいは回収熱量を大きくする設計が容易である。

ただ、コンパクトネスを損ねるために、フィンピッチを減じるときには、OフィンやPL1フィンより境界層乱れによる伝熱促進の抑制が起こりやすいので、この抑制効果が避け得る範囲の、フィン間隔cを選び出す必要がある。$L/S=1$の場合には、$C/S>1$をその際の目安とすることができる。

なお、圧力係数のフィン厚さによる変化、フィンがかかり厚い場合のフィン後流の不安定化による伝熱特性の変化等については、今後の検討課題である。最後に、本研究は文部省エネルギー特別研究（エネルギー）「熱エネルギーの高効率利用に関する研究」の一部として行われたものであることを記して謝意を表する。

考 論

（質問）藤 村 哲 司（（株）豊田中央研究所）

（1）貴研究では、4Sを代表寸法にとって整理しておられるが、ルーパーフィンの場合フィン間隔cあるいはルーパーフィン長Lが伝熱特性を決定する重要な諸元と考えるが、この点についてのご見解をご教示願いたい。

（2）オフセットフィンの場合、板厚bが伝熱特性を決定する重要な諸元の一つであると思う。板厚が無視しうる適用範囲をご教示願いたい（たとえばb/L, b/C, Reなど）。

（3）図7でオフセットフィンのヌルメント数のRe数に対する傾きが非常に小さくなっているが、これは、後流の未回復度合がRe数が大きくなるほど増大することなのか、実験でも同様の傾向を示すのか。Re数に対する考察をお教え願いたい。

（回答）（1）オフセット長（貴質問のルーパーフィン）Lの影響については$H/S=9$の場合の一例を図9に示した。Lを短くすると、いずれのフィン形式でも伝熱特性が向上するが、PL2フィンの場合は向こう方に著しいので、その優位性がますます顕著になる。すなわちcについては$(C/S)>1$（本論文中で定義した境界層厚さ）であれば、その影響は小さく、本研究結果の中では図7中のPL2フィンにおける$Re=250$の場合にその影響が若干出ているものと考えている。

文 献

(3) 鈴木(高木・ほか4名編),伝熱学特論, (1984), 269-289, 東京堂
平行ルーペフィンの伝熱特性に関する基礎的研究

（2）フィン後流が円周に留まる範囲では、フィン厚さは各フィンの局所伝熱特性にはある程度影響するものの、フィン系全体の伝熱特性には大きく影響しない（詳しくは次報で報告する）。フィン後流が不安定化した場合については、望月方令の回答を参照願いたいが、十分な知見は一般的にも確立されていないので現在検討中である。

（3）後流の未回復度のレイノルズ数依存性は小さいので、実験の点については加速効果のレイノルズ数依存性が重要と考える。すなわち、フィン表面上の境界層からの流体の排除により境界層外の流れが加速される。各フィンのスセルト数は、レイノルズ数の値にかかわらず、この加速による伝熱増進寄与分だけ高くなっている。低レイノルズ数ほど排除厚さおよびその値の位置による変化率がともに大きいので、加速程度も相対的に大きであり、したがってそれによる伝熱増進寄与も大きいであろう。NuのReに対する傾きが小さいのは、Reが増大するにつれて、この寄与率が低下することに起因するものと考えている。なお、PL２フィンでは、（1）に回答したようにRe=250におけるNuの値が境界層理論によって余分に低くしており、そのことも傾きに影響を及ぼしている。

（質問）望月 貞成（東京農工大学工学部）

一つの明確な境界条件下における物理現象の基本的解析に役立つ結果を得られている点に敬意を表す。

実際には、Re=1,000程度になると、たとえば多数段オフセットフィンの場合、定常層流が存在するのは上流から1段めないし2段めフィンあたりまでで、それより下流段においてはフィン後流に周期的な変動が生ずることが観察されている。すなわち、吐き出されたウェークは次段フィン前線に常時定常的に衝突するのではなく、フィン面の左右に交互に振り分けられ、仮にフィンの板厚が薄であっても、速度欠損を有するウェークが吐き出されるため、かく乱が増大されれば非定常性を帯びるようになる可能性が考えられるが、貴研究における数値計算ではそのような非定常性は生じなかったか。

（回答）本文中に断わったように、本研究の対象は低レイノルズ数域における比較的薄いフィンである。ご指摘のように、レイノルズ数が高くなるとフィン後流が不安定化して、そのため下流側フィンの熱伝達が向上する。後流の安定限界はフィン厚さはもちろん、フィン後流長、フィン段数にも依存する。Reの臨界値は一概に言えない。著者らは、j-因子のRe依存性を参考に、薄いフィンではRe≤1,000で定常層流状態が存在する可能性があると考え、その範囲で伝熱特性への影響が小さいフィン厚さを無視して数値解析を行った。後流が不安定化した状態での流動・伝熱特性については現在検討中である。

（付1）喜多市・ほか3名、第26回日本伝熱シンポジウム講演論文集、Vol.2（1989）、923-925。
（付2）Mochizuki, S., ほか名、Exp. Thermal Fluid Sci. 1, (1988), 51-57。