Basic Study on Turbulent Lubrication
(3rd Report, Consideration on the Law of Velocity Distributions and the Structure of Turbulent Flow)

Koich Nakabayashi, Osami Kito, and Hiroshi Iwata

In this report, the discrepancy on the Law of the wall described in the previous report has been clarified. First of all, shear stress distribution has been theoretically and experimentally investigated. The relationship between velocity and shear stress gradients is considered in order to learn about the validity of the similarity laws on the velocity distributions, using the mixing length model. Karman constant κ and damping-length constant A^* proposed by Van Driest are obtained for a parameter $\alpha u_0/\nu^4$, and discussed in comparison with the moving equilibrium condition. Townsend's linear stress model is also discussed in the approximate gradient layer.

Key Words: Fluid Mechanics, Turbulent Flow, Turbulent Lubrication, Shear Flow, Shear Stress Gradient, Mixing Length Model, Alternating Pressure Gradient

1. 1. 引言

前報11)では移動壁と静止波状壁間の流路内乱流の速度分布について種々考察した。その中で壁領域において平衡乱流の場合に成立する対数則が成立しないことを述べた。現流のように対数則は壁面せん断応力に等しい一定せん断応力層内で成立する関係式で、これら壁から離れた場所での乱流構造が影響を及ぼさないという仮定のもとで定立っている。壁から離れた場所での乱流構造が基本的にはせん断応力こう配を通して壁領域に影響を与えるので、本報ではせん断応力こう配に注目して考察を行う。しかし前報のように乱流コア部の流れが加速および減速を繰返す場合には、局所のせん断応力こう配のみでなく、その流れ方向変化も重要なパラメータとなるのである。しかし、これは今後の課題である。

さて、Simpson3)の低レイノルズ数の乱流境界層流れでは、Karman定数 x が $Re_{\theta}^{-1/4}$ (Re_{θ} は運動量厚さ基準のレイノルズ数)に従って 0.33 の値まで減少すると報告している。一方、Huffman-Bradshaw3)はSimpsonの結論を誤っており、平衡条件がくずれる層内においても x が普通定数であると述べている。そして、Van Driestの減衰係数 A^* がせん断応力こう配が小さいところでは一定であるが、大きくなれば增大することを示した。しかし、圧力こう配が大きい乱流境界層については、x の値は圧力こう配パラメータ β によって変化するとする報告3)3)もあり、x に与える圧力こう配の影響については今後解明されていない。

本報ではまず、せん断応力分布について考察する。つづいて速度分布の考察を行い、流れ領域を区分する。そして、混合距離モデルにおける上記の x と、A^* の値、およびそれらとせん断応力こう配の平均値との関係、Townsend3)4)による線形せん断応力分布モデルの考察を行い、平衡乱流における上記諸量の値と比較する。そして第2報1)で示したように、非平衡乱流であることが予測される乱流乱れの速度分布則を明らかにするものである。

主な記号

A: Van Driestの減衰係数
I: 慣性項 $= \mathbf{U} \cdot \partial \mathbf{U} / \partial x + \mathbf{V} \cdot \partial \mathbf{U} / \partial y$
固着壁面の流路において、下流方向に \(x \) 軸、固定壁から移動壁方向へ垂直に \(y \) 軸、これらが垂直に \(z \) 軸をとる。流れは \(z = 0 \) の面に対して流下し、流路の平均すきま \(2h \) は波状壁のピッチ \(l \) に対して十分小さいとすれば、
\(z = 0 \) 面内の流れ体運動に対するレイノルズ方程式と連続の式は次式で与えられる。

\[
U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y} = - \frac{1}{\rho} \frac{\partial P}{\partial x} - \frac{\partial (\rho V \nu)}{\partial y} + \nu \frac{\partial^2 U}{\partial y^2}
\]

(1)

\[
0 = \frac{1}{\rho} \frac{\partial P}{\partial y} - \frac{\partial (\rho V \nu)}{\partial y}
\]

(2)

\[
\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} = 0
\]

(3)

\[
\frac{\partial W}{\partial z} = 0
\]

(4)

連続の式で \(\partial W/\partial z \) を零にできないのは、有限アスペクト比の波状壁の場合には \(z \) 方向への圧力こう配の存在のため流路内に二次流れが誘起されるためである。

2. 実験装置と方法

実験装置は第2報[9]で述べたものであるが、これの流路形状は図1に見られるようにジャーナル軸受はよく二流元的に展開した形状のもので、第2報[9]で述べたよねに軸受すぎま流れを再現していると考えられる。流れ速度成分 \(V \) とレイノルズ応力の測定には \(x \) 方向に設置された \(\nu \) 形熱線[10]と温度変熱流速計を用い、本実験で使用した \(\nu \) 形熱線は板厚 \(3 \) \(\mu \)mのテングステン線で感知部の長さは \(1.2 \) \(mm \)、熱線頂角 \(2a = 25^\circ \)である。なお壁面せん断応力 \(\tau \) の実験値はこう配法により得られた。

3. せん断応力分布

3.1 理論的考察

図1に示すように、一方が \(U_0 \)で動く移動壁と他方が正弦波状に下流方向へ変化する固定壁間の流れにおいて、下流方向に \(x \) 軸、固定壁から移動壁方向へ垂直に \(y \) 軸、これらに垂直に \(z \) 軸をとる。流れは \(z = 0 \) の面に対し、流路の平均すきま \(2h \) は波状壁のピッチ \(l \) に対して十分小さいとすれば、
\(z = 0 \) 面内の流れ体運動に対するレイノルズ方程式と連続の式は次式で与えられる。

\[
U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y} = - \frac{1}{\rho} \frac{\partial P}{\partial x} - \frac{\partial (\rho V \nu)}{\partial y} + \nu \frac{\partial^2 U}{\partial y^2}
\]

(1)

\[
0 = \frac{1}{\rho} \frac{\partial P}{\partial y}
\]

(2)

\[
\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} + \frac{\partial W}{\partial z} = 0
\]

(3)

\[
\frac{\partial W}{\partial z} = 0
\]

(4)

連続の式で \(\partial W/\partial z \) を零にできないのは、有限アスペクト比の波状壁の場合には \(z \) 方向への圧力こう配の存在のため流路内に二次流れが誘起されるためである。

実験装置は第2報[9]と同様なものであるが、この流れ形状は図1に見られるようにジャーナル軸受すぎまを二次元的に展開した形状のもので、第2報[9]で述べたよねに軸受すぎま流れを再現していると考えられる。流れ速度成分 \(V \) とレイノルズ応力の測定には \(x \) 方向に設置された \(\nu \) 形熱線[10]と温度変熱流速計を用い、本実験で使用した \(\nu \) 形熱線は板厚 \(3 \) \(\mu \)mのテングステン線で感知部の長さは \(1.2 \) \(mm \)、熱線頂角 \(2a = 25^\circ \)である。なお壁面せん断応力 \(\tau \) の実験値はこう配法により得られた。

3. せん断応力分布

3.1 理論的考察

図1に示すように、一方が \(U_0 \)で動く移動壁と他方が正弦波状に下流方向へ変化する
化しない場合には式 (7) や (8) の右辺第 3 項が
零となり、せん断応力は直線分布となるが、本実験の
ように波状壁流路の場合には慣性項が零とならな
いため、1 分布の x 方向の変化によりせん断応力は流
れ方向にさまざまな分布形をとる。このため前報で示
べた壁法則における対数普遍則の破たんが生ずるもの
と考えられる。

3-2 実験結果の考察
せん断応力分布を実験的に
に得る方法として、式 (7) に見られるように平均速度
こう配およびレイノルズ応力から求めることができる方
法を、運動
方程式を積分して求める方法が考えられる。後者の方
法を採用する際には、慣性項 I = \frac{\partial U}{\partial x} + \frac{1}{2} \frac{\partial V}{\partial y}
の第 2 項を得るため、流れ央断面（y = 0）における平
均速度 U を測定しなければならない。

図 2 に実測例として Re = 8 \times 10^4 の場合の平均速
度 V の分布を示し、図中の実線は流れを二次元と仮定
し、

\[V = \int_0^1 \frac{\partial U}{\partial x} dy \]

として求めた値であるが、壁近くではゆるやかに増大
する。これに対し実測値は壁近くで急激に増大し、す
きま中央でほぼ平坦となる。両者の差は前述の二次流
れに基づくものと考えることができる。

図 3 は Re = 8 \times 10^4 の場合について、実測値をもと
に計算した慣性項 I と変圧力こう配 α の比 I/α である。
また、図 4 はその等高線である、前述のように、せん断
応力は慣性項 I と変圧力こう配 α による寄与の和で
表されるが、せん断応力に与える I の寄与の程度は両
者の比 I/α の値に依存する。壁のごく近くでは常に
I/α = 0 であるからせん断応力こう配は変圧力こう配に依
存するが、壁から離れるに従い I が急激に増大するの

[図 3 慣性項 I と変圧力こう配 α の比 I/α]

[図 2 y 方向速度成分 V の分布]

[図 4 I/α の等高線]
とよく一致している。このことから速度測定値および
上述のせん断応力の計算が正しいことが知られる。さら
に、すきまにせん断応力分布はx/lによってかな
り大きな相違のあることがある。

4. 速度分布則の考察

4.1 速度分布モデルの解析 $y' \ll 1/\langle \delta r'/
\partial y' \rangle$, または前述のように, $U/u_\infty \approx 1$の領域では$
\rho \approx 0$と近似できる。このように、せん断応力がほぼ一
定の層に対しては次式の Van Driest の混合距離モデ
ルを適用する。

\begin{equation}
l' = x y' \left[1 - \exp \left(- r^{1/2} y'/A' \right) \right]
\end{equation}

\begin{equation}
l' = \frac{u_\infty}{\nu}, \quad A' = A u_\infty/\nu
\end{equation}

よって遷移層について次の関係式を得る\(^{(5)}\).

\begin{equation}
y' \frac{d u'}{d y'} = \frac{1}{2} \left(1 + 4 l'^{1/2} y' - 1 \right) \frac{y'}{2 l'^{1/2}}
\end{equation}

ただし、粘性底層では次式が成立する。

\begin{equation}
y' \frac{d u'}{d y'} = \gamma
\end{equation}

他方、壁近傍でせん断応力の変化を無視することがで
かない場合には、考えている領域内のせん断応力こ
の平均値 $\langle \delta r'/\partial y' \rangle$ を用いて、次のように線形
化近似する。

\begin{equation}
r' \approx 1 + \frac{\delta r'}{\partial y'} \quad \gamma = 1 + \frac{a \nu}{u_*^2} y'
\end{equation}

\begin{equation}
\left(\frac{\delta r'}{\partial y'} \right) = \frac{a \nu}{u_*^2} \frac{d y'}{d y'}
\end{equation}

ここで $y' \approx 1/2$ 乗則成立の外端の位置である。この
ような場合、混合距離モデルを適用すると、次式が得
られる。

\begin{equation}
y' \frac{d u'}{d y'} = \frac{1}{x} \left(1 + \frac{a \nu}{u_*^2} y' \right)^{1/2}
\end{equation}

ただし、$y' \approx u_*^2/u_\infty^2 < 1$ と仮定する。上式右辺かっ
この内

第 2 項が無視できる場合、または式(10)で y' が十分
大
いたところでは次式の対数評則が成立する。

\begin{equation}
y' \frac{d u'}{d y'} = \frac{1}{x}
\end{equation}

一方、式(14)右辺かっこの内第 2 項が第 1 項に対して
十分大きい場合には 1/2 乗則が成立するが、これにつ
いては第 2 報\(^{(6)}\)で述べたように Kaderら\(^{(8)}\)や El
Telt

\begin{equation}
y' \frac{d u'}{d y'} = \frac{K_0 + a \nu}{2 u_*^2 y'}
\end{equation}

また、乱流コア部においては前報\(^{(9)}\)で示したごとく次
式で表され、

\begin{equation}
y' \frac{d u'}{d y'} = \frac{D_y}{y}
\end{equation}

図 6 に式(10), (11), (15)～(17)を模型的に示す、粘
性底層は実際のような壁近傍の直線分布で表され、そ
れに続いて遷移層が破線で示すような分布となる。対
数則は一点錶率で、1/2 乗則は実際のような分布を、
さらに乱流コア領域は二点錶率で示す直線分布となる
ことがわかる。上述の解析方法に従って $Re = 8 \times 10^4$
の場合について、実験結果を計算したのが図 7 であ
る。図中にはこれらの式で表す速度分布則の成立領域を
示してある。$y' \leq 7$ の粘性底層ではいずれのすき
ま位置においても式(11)に一致し、$u' = y'$ が成立
する。しかし、それ以外の領域では平衡乱流の場合と異
なり、x/l によって成立する速度分布則は相違が見ら
れる、遷移層に対する曲線。式(10)は、実験結果に最も
よく一致するように式(9)の x と A' を決定して描
かれている。対数則の成立領域は $x/l = 0.75, 0.875,$
1.0 に見られる。また、1/2 乗則の成立領域は $x/l =
0.125, 0.25, 0.375$ に見られる。そしてこれらの領域の
外側には乱流コア部が存在する。

4-2 Karman 定数 x と Van Driest 減衰係数 A^r

Huffmanら(13)によれば、Karman 定数 x が普遍であるため、Van Driest 減衰係数 A^r は壁近くの、主として遷移層における平均せん断応力こう配に依存すると述べている。そこで、遷移層外縁までのせん断応力こう配の平均値

$$a_r = \frac{\partial \tau_{xy}}{\partial y}$$

を求める。ここで、τ_{xy} は壁からの遷移層外縁までの距離で、図7に見られるように実験値が式(10)の曲線からはずれる位置として求めた。この a_r の値を用いて、A^r, x の値を $\mu_s^{-1} = \alpha v/\nu$ との関係において示したのが図8である。本実験の場合には、$x = 0.39r$ で、$-\mu_s^{-1}$ が約0.006を越えるとxの値が増大する傾向にある。xの値については、平行平板間乱流クエット流れ(19)で得た値と同じで、El Telbanyら(9)の実験結果とも一致する。A^rについてもxと同様、μ_s^{-1}が正の場合は$A^r = 26$と一定値を示すが、μ_s^{-1}が負の場合にはHuffmanらが示した実験結果とほぼ同様、$-\mu_s^{-1}$が0.08以上では増大する傾向がある。上述の考察から、前報(11)で指摘した壁法則が対数層則よりも大きな値となりx/lの関連によって複雑な分布形を示す原因として、xおよびA^rの値の変化があげられる。この点が平衡乱流の場合と相違する。

4-3 Townsendモデルによる1/2乗則の考察

Townsend(6)が$r = r_0 + r a y$で与えられる線形せん

断応力層について平衡乱流の仮定を用い1/2乗則を導く。この式をαを用いて表せば次式となる。

$$\Delta U/\nu = \frac{\alpha}{x} \ln \left[\frac{4 r_0^2}{\alpha v \sqrt{1 + A^r (x/l)^{1/2} + C}} \right]$$

ただし、$A = 1/x$である。図7に見られる1/2乗則成立領域に関して、式(12), (13)より実験結果からa_r, αを導く。

図9は実験結果から得た$(1 + A^r (x/l)^{1/2})$と$\Delta U/\nu$との関係である。αの正負にかかわらずxの増加に対し$\Delta U/\nu$が増大する。図中の実験はEL Telbanyら(9)の結果で、$\lambda = a h v_*$で定義されるせん断応力(または圧力こう配パラメータである。本実験結果と分布傾向

図7 実験結果と図6の対比

図8 Karman 定数 x と Van Driest 減衰係数 A^r

図9 壁領域でのTownsend表示
表1 B_1とλ

<table>
<thead>
<tr>
<th>B_1</th>
<th>0.125</th>
<th>0.25</th>
<th>0.5</th>
<th>0.625</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>5 x 10^{-4}</td>
<td>5 x 10^{-3}</td>
<td>5 x 10^{-2}</td>
<td>5 x 10^{-1}</td>
</tr>
</tbody>
</table>

図10 Townsend表示の係数 $2A+3B_1$

が似ているが、λとλの値に大きな差が見られる。この図より、式(18)の係数($2A+3B_1$)およびCを得ることができる。

図10は($2A+3B_1$)とλの関係を示したものである。El Telbanyらの方関係式式、($2A+3B_1=19(\lambda^a)$)と比較的よく一致する。表1にλと拡散係数B_1を示す。Telbanyらは$k<1$で$B_1=5.0$を得ている。本実験ではRe$=5\times10^4$の場合に$x/l=0.625$で$B_1=5$となるがその場合には彼らより小さな値となる。式(18)の係数Cと$\Gamma=4\lambda^a\lambda/(\lambda^4a(2A+3B_1))$の関係を図11に示す。Telbanyらの方関係式は$C<0$で、$\Gamma=5$近傍で最大となるように、本実験結果はそれらの結果とはほぼ平行な分布であるが、その値が大きい。

4-4 速度分布則の成立領域

図12は4-1節で述べた方法に従って流流内の速度分布則の領域区分を行った。例えば、Re$=5\times10^4$もこれとほぼ同じようになる。図中の記号V、B、L、G、Cはそれぞれ粘性底層、遷移層、対数則、1/2乗則、欠損層（乱流コア部）を示す。Tは上記のいずれにあってはまらない場合で、遷移層から1/2乗則あるいは乱流コア部へと変化してゆく境界領域である。粘性底層の厚さは$y/2h=0.5$で、ほぼ$y/2h$に比例して分布している。遷移層がすきまが最も小さい位置で最大となり、最大すきまま位置で最小となる。また、対数則は最小すきま位置に見られる。1/2乗則は$a=0$において成立するのであろうが、図のように$a>0$であっても最小すきま位置付近$x/l=0.125$では認められない。さらに、乱流コア部はx/lの変化にかかわらず、すき間中央部$y/2h$=0.4～0.6に存在するのが知られる。

5. 結 言

加速減速を繰返す流流内流れの速度分布を種々考察した結果、次の結論をえた。

（1）せん断応力分布には慣性力の影響が著しく現れ、とくにy方向の速度成分Vによる影響が顕著である。

（2）流れ領域は粘性底層、遷移層、対数則、1/2乗則領域、速度欠損層（乱流コア部）から構成される。

（3）混合距離モデルにおけるxとA^*の値はm^{-1}の値が正か、または負でも比較的小さい場合には、平衡乱流における$x=0.392$、$A^*=26$に一致する。しかしm^{-1}が負で値が大きい場合には$x、A^*$の値が増大する。

（4）1/2乗則領域の速度分布則として、Townsendモデルを用いて考察した結果、拡散係数B_1の値が平衡乱流の場合よりも小さくなる。

終わりに、本研究には昭和61、62年度文部省科学研究補助金一般研究Bの援助が与えられ、ここに謝意を表す。

文献

（1）中林ほか2名、機論、55-519、B（1989）、3321。
（2）Simpson, R. L. J. Fluid Mech. 42（1961）、769。
（3）Huffman, G. D. and Bradshaw, P., J. Fluid Mech., Pt. 119（1972）、45。
（4）Glazowski, W. J., AIAA 16th Aerospace Science Meeting, Huntsville, Alabama, (1979)。
（5）Horstman, C. C., AIAA 9th Fluid and Plasma Dynamics Conference, San Diego, California（1976）。
（6）Townsend, A. A., J. Fluid Mech., 11（1961）、97。
（7）黒崎、機器、53-365、B（1981）、413。
（10）中林ほか4名、機論、54-499、B（1988）、547。